
����������
�������

Citation: Luong, N.-D.M.; Coroller,

L.; Zagorec, M.; Moriceau, N.;

Anthoine, V.; Guillou, S.; Membré,

J.-M. A Bayesian Approach to

Describe and Simulate the pH

Evolution of Fresh Meat Products

Depending on the Preservation

Conditions. Foods 2022, 11, 1114.

https://doi.org/10.3390/

foods11081114

Academic Editor: Dario De Medici

Received: 15 March 2022

Accepted: 7 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

A Bayesian Approach to Describe and Simulate the pH
Evolution of Fresh Meat Products Depending on the
Preservation Conditions
Ngoc-Du Martin Luong 1 , Louis Coroller 2, Monique Zagorec 1, Nicolas Moriceau 1, Valérie Anthoine 1,
Sandrine Guillou 1 and Jeanne-Marie Membré 1,*

1 Oniris, INRAE, SECALIM, 44200 Nantes, France; ngoc-du.luong@oniris-nantes.fr (N.-D.M.L.);
monique.zagorec@oniris-nantes.fr (M.Z.); nicolas.moriceau@oniris-nantes.fr (N.M.);
valerie.anthoine@oniris-nantes.fr (V.A.); sandrine.guillou@inrae.fr (S.G.)

2 Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne,
UMT ACTIA Alter’iX 19.03, 29000 Quimper, France; louis.coroller@univ-brest.fr

* Correspondence: jeanne-marie.membre@oniris-nantes.fr; Tel.: +33-24068-4058

Abstract: Measuring the pH of meat products during storage represents an efficient way to monitor
microbial spoilage, since pH is often linked to the growth of several spoilage-associated microorgan-
isms under different conditions. The present work aimed to develop a modelling approach to describe
and simulate the pH evolution of fresh meat products, depending on the preservation conditions. The
measurement of pH on fresh poultry sausages, made with several lactate formulations and packed
under three modified atmospheres (MAP), from several industrial production batches, was used as
case-study. A hierarchical Bayesian approach was developed to better adjust kinetic models while
handling a low number of measurement points. The pH changes were described as a two-phase
evolution, with a first decreasing phase followed by a stabilisation phase. This stabilisation likely took
place around the 13th day of storage, under all the considered lactate and MAP conditions. The effects
of lactate and MAP on pH previously observed were confirmed herein: (i) lactate addition notably
slowed down acidification, regardless of the packaging, whereas (ii) the 50%CO2-50%N2 MAP accel-
erated the acidification phase. The Bayesian modelling workflow—and the script—could be used for
further model adaptation for the pH of other food products and/or other preservation strategies.

Keywords: poultry sausage; potassium lactate; modified atmosphere packaging; food modelling;
nonlinear model; Bayesian inference

1. Introduction

Spoilage occurrence in fresh meat products characterized by changes in their sensory
quality during storage is usually due to the development of microorganisms contaminating
the products or to chemical deterioration, such as oxidation [1]. Studying spoilage dur-
ing storage is generally done by monitoring several physicochemical or microbiological
spoilage responses [2,3]. Among these responses, pH changes in meat products have been
widely measured, since pH is known as an intrinsic factor that can both influence and
change, depending on the growth of several spoilage-associated microorganisms [1,4,5].
For instance, the development of Lactic Acid Bacteria (LAB) is intimately associated with
pH changes, since these bacteria can behave differently under different pH conditions
and also produce lactic acid by their fermentative activities, leading to the acidification
of meat products [6,7]. Analyzing acidification during storage by describing pH changes
may represent a simple first step in studying meat spoilage, since pH can be measured
easily and accurately on meat in the laboratory and also reflect the development of several
microorganisms frequently considered as spoilage indicators. Besides, several strategies
can be used by food manufacturers to limit the development of these microorganisms. We
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can cite, for example, adding food preservatives, including lactate, or packaging products
under modified atmosphere (MAP), with mixtures of O2 and CO2 gases [8–13]. In the
field of predictive microbiology, the effects of these strategies are generally described by
modelling the behavior of the target microorganisms [14–17]. However, the application
of such approaches for the spoilage of fresh meat products is not straightforward when
spoilers have not been identified beforehand in the whole food microbiota [16]. Besides,
modelling different responses associated with spoilage can also be difficult due to sparse
experimental data.

In this context, Bayesian modelling approaches for describing pH changes can be an
interesting way to monitor spoilage. Firstly, Bayesian methods can help to fill data gaps
with prior information, possibly provided by experts or other preliminary works [18,19].
Secondly, such methods can be useful for the analyses of food products to decipher potential
sources of variability and/or uncertainty, since the conception of Bayesian models can
include these sources as parameters [20]. Thirdly, the results of parameter estimations,
obtained as posteriori value distributions, could be useful for further model validation
using external data, as well as for numerical simulations of pH under other conditions.

This study aimed to develop a Bayesian modelling approach to estimate parameters
of acidification kinetics, with a limited number of time points in the monitored pH curves.
Bayesian modelling has already been applied to meat matrices [21,22]. Hereby, it was
applied to fresh sausages, industrially made using different potassium lactate formulations
and modified atmospheres for packaging. The pH factor was chosen as spoilage response
because (i) pH is closely linked to spoilage-associated microorganisms, (ii) pH is measurable
with good precision in the laboratory and (iii) pH prior information required for the
Bayesian approach can be obtained by experts or from previous works in the literature.

2. Materials and Methods
2.1. Products and pH Measurement

The experimental data used in this study were extracted from a data paper monitoring
several spoilage responses of fresh turkey sausages with different lactate formulations
and conditioned under modified atmospheres during chilled storage (the data paper is
available online [23]). Only data associated with the monitoring of pH were used herein.
The meat of the sausages was from turkey. Pork fat was added to a final content of 11%
in sausages. Potassium lactate (2.0% w/w, corresponding to full normal dose) was used as
additive. Furthermore, sausages were battered with a spice mix at a concentration of∼2.5%;
it contained sodium salt ∼40%, dextrose ∼10%, spices ∼15%, aromas ∼22%. Sausages
were produced in ten independent batches and under several “process conditions”. These
conditions corresponded to three initial concentrations of potassium lactate in sausage
formulation combined with three modified atmosphere packaging processes. In practice,
for each production batch, sausages were first made from the same batch of turkey meat
in sufficient quantity for all conditions. The sausages were provided by two French meat
processing companies, and the total quantity of sausages produced within the research
project was around 360 kg. Indeed, since within the project microbial, physico-chemical
and sensorial analyses on sausages were performed, four different trays with five sausages
per tray (equivalent of 5 × 50 g of sausages per tray) were required. Nine conditions
were considered in the present study: for simplification purpose, in the present article, we
denoted “Full dose”, “Half dose” and “Zero lactate” for the three lactate formulations (2%,
1% and 0% w/w in sausage samples, respectively); “Air”, “MAP1” and “MAP2” for the three
packaging conditions (Air packaging, MAP1: 70%O2-30%CO2 and MAP2: 50%CO2-50%N2,
respectively). The level of lactate and type of modified atmosphere were chosen as function
of current practice in industry in France. For each condition, analyses were done at four
time points (day 2, 8, 15, 22 after production). Therefore, the required minimum quantity of
sausages was 50 g (sausage) × 5 (sausages/tray) × 4 (trays) × 3 (atmospheres) × 3 (lactate
formulation) × 4 (sampling time) = 36 kg per batch. All the above quantities were repeated
in ten independent industrial batches which makes finally 360 kg of sausages.
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The pH measurement was done in each condition using the tray destined for microbial
analyses. All pH measurements were done in triplicate (technical replicates) for each of
four sampling time points. The choice of these points was inspired by the French Norm NF
V01-003 used to establish the shelf life of chilled perishable and highly perishable food [24].
It consists of storing samples at 4 ◦C for one-third of the shelf life and then, at 8 ◦C during
the remaining two-thirds of the storage duration. The use-by-date (UBD) established by the
producers for the sausages containing the normal dose of lactate and conditioned under
modified atmosphere, was 15 days for turkey sausages. Therefore, sausages were first
stored at 4 ◦C for 5 days and then placed at 8 ◦C during the remaining storage duration. To
be able to observe spoilage occurrence, the storage duration was extended to one UBD and
half, i.e., 22 days, hence the four chosen sampling time points at 2, 8, 15 and 22 days after
production, respectively. The data associated with pH are plotted in Figure 1.
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Figure 1. pH value of sausages as a function of storage time under different process conditions. For
each condition, the points correspond to the average pH value obtained from three measurements on
three different sausage samples (technical replicates), the different thin grey curves correspond to
different production batches. The black thick curves correspond to the average pH across batches.
Adapted from [25].

2.2. Formalisation of the Model

First, it should be noted that not all the pH curves were independent because the
different formulations and packaging steps were carried out on the samples from the same
batch after production. Second, samples under each process condition were monitored at
different times. Consequently, the model was built with successive levels: (i) production
batch, (ii) process condition and (iii) time of sampling (Figure 2).
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Figure 2. (a) Directed Acyclic Graph (DAG) of the model. The rectangles represent data or co-
variates and the ellipses represent model parameters. Directed arrows represents relationships
between parameters, covariates and data: dashed arrows correspond to deterministic functions and
solid arrows correspond to stochastic relationships. (b) Schematic representation of the determin-
istic part describing evolution of the average pH with different acidification rates under different
process conditions.

2.2.1. Deterministic Part

We denote by NR, NP, NT the total number of production batches, the total num-
ber of atmosphere conditions and the total number of sampling time points, respec-
tively (NR = 10, NP = 3, NT = 4). Within a production batch r (r = 1, . . . , NR), the initial
pH value, denoted pH0, was assumed to be fixed for a batch for all process conditions since
sausage samples were formulated and packed from each batch.

Starting from the same initial value pH0, the acidification processes under different
conditions were described by a two-phase model, based on the patterns observed in the
data. For a given ‘process’ (lactate and packaging) condition k (k = 1, . . .), the deterministic
part of the model assumed that pH values linearly decreased with an acidification rate βk
(expressed as unit of pH decreasing per day), supposed to vary from one process condition
to another, before reaching a stabilisation phase from the time point θ (expressed in days).

The acidification rate βp, supposed to vary depending on the initial lactate content and
the atmosphere for packaging p, was modelled using log-linear-based models as follows:

ln(βP) = λ. Lactaten + δP, (1)

where Lactate is the initial lactate content (expressed in % w/w), βP (unit of pH decreasing
per day, βP > 0) is the acidification rate of the formulated sausages under the atmosphere
p (p = Air, MAP1, MAP2), λ is a slope parameter describing effect of lactate on the
acidification rate, δP represents the additive effect of the atmosphere p on the acidification
rate, and n is a scale parameter (log-linear model in case of n = 1).

2.2.2. Stochastic Part

The stochastic part of the model aimed to describe random variations due to variabil-
ities and uncertainties by assuming probability distributions for model parameters. An
initial statistical analysis of the dataset revealed a significant batch effect: pH changes were
different from one batch to another [25]. This batch effect was then taken into account in
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the present paper. The initial value pH0 after production was assumed to vary between
production batches and to follow then a normal distribution:

pH0 ∼ N
(
µpH0 , σpH0

)
, (2)

where µpH0 and σpH0 corresponded to the mean and standard deviation of the pH observed
in fresh sausages at the day of production.

For a given lactate-atmosphere condition k, the pH of sausages at the timei(i = 1, . . . , NT),
denoted Yi(k), was modelled as follows:

Yi(k) ∼ N
(

mi(k); σpH

)
(3)

where σpH represents the random variations in the measurement at each time point and
mi(k) the expected pH value under given process condition and time:

mi(k) =

{
−βk.timei(k) + pH0, ∀ timei < θ (acidification phase)
−βk. θ + pH0, ∀timei ≥ θ (stabilisation phase)

(4)

With βk the acidification rate of samples under the condition k, pH0 the initial pH value
as described in Equation (2), θ the stabilisation time (in days). The description of all model
parameters is gathered in Table 1.

Table 1. Parameters of the model: symbol, definition and prior distribution. N stands for the normal
distribution, half-N stands for the half-normal distribution, U stands for the uniform distribution.

Symbol Definition Prior Distribution

µpH0

Mean of the initial pH value across
production batches N (5.84, 0.11) *

σpH0

Standard deviation of the initial pH
across production batches half−N (0, 0.1)

σpH
Standard deviation of the pH value

across measurement half−N (0, 0.1)

δAir
Additive effect of the “Air packaging”

on acidification rate U (−10; 10)

δMAP1

Additive effect of the
“MAP1:70%O2-30%CO2” on

acidification rate
U (−10; 10)

δMAP2
Additive effect of the “MAP2:

50%CO2-30%N2” on acidification rate U (−10; 10)

λ
Slope parameter characterising the
effect of lactate on acidification rate U (−1; 1)

Model 1 Model 2 Model 3 Model 4

n Scale parameter characterising the
effect of lactate on acidification rate n = 1 (fixed) U (−3; 3) n = 1 (fixed) U (−3; 3)

θ
Time point (in days) at which the pH

reaches the stabilisation phase θ = 15 (fixed) θ = 15 (fixed) U (8; 22) U (8; 22)

* Lerasle et al., 2014 [26].

2.3. Parameters Inference

Prior distributions were specified for each model parameter and are given in Table 1.
First, the prior for initial mean value of pH µpH0 was defined from data extracted from
previous work of Lerasle, et al. [26]. The authors provided a mean and standard deviation
of the pH in fresh poultry sausages at 5.84 and 0.11, respectively. The prior of µpH0 was then
described by a normal distribution N (5.84, 0.11). The standard deviation parameters σpH0

and σpH were described by half-normal distributions half-N (0, 0.1) (positive value ranges)
for simplification purposes [19]. The effects of lactate and atmospheres were described
using uniform distributions.
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The main difficulty in the estimation of θ (stabilisation time) and n (scale parameter
characterising effects of lactate, Equation (2) resides mainly in the adjustment of kinetic
models in a low number of experimental points (3 formulations and 4 measurements
across 22 days). Therefore, a comparative strategy was carried out to better estimate
these parameters. For this, by principle of parsimony, we considered four (sub)-models
where θ and n were alternatively fixed or to be estimated (see Table 1). When applicable,
θ was arbitrarily set at 15 days, corresponding to the use-by-date (UBD) established by
the producers for sausages; otherwise, θ was assumed to follow a uniform distribution
with an interval of ±7 days around the above prior UBD, θ ∼ U (8; 22). Finally, where
appropriate, n was set at n = 1 (corresponding to a simple log-linear first order to describe
the acidification rates); otherwise, if estimated, the prior of n was described by a uniform
distribution.

Bayesian inference was performed using the JAGS software linked to the rjags R pack-
age [27,28]. Three independent Markov Chain Monte Carlo (MCMC) chains starting at
different given values were run in parallel. After an initial burn-in period of 5000 iterations,
for each chain, the Bayesian algorithm simulated 60,000 iterations and sampled from these
runs with a thinning interval of six iterations in order to reduce autocorrelations between
consecutive iterations. The final sample size per MCMC chain was then 10,000. The total
number of iterations for the above simulations and thinning was chosen using a method
proposed by Raftery and Lewis [29] who calculated a minimum effective sample size
required from a short preliminary test run. The convergence of the estimation process
was checked by visually diagnosing the similarity between the ranges of output values
of the three chains and by the convergence criteria proposed by Gelman and Rubin [30]
and Geweke [31]. Samples from three chains were then combined and recorded as large
samples of the full posterior joint distribution with a total of 30,000 sets of estimated pa-
rameter values. The above procedure was carried out independently for each model M1,
M2, M3 and M4. The adjustment of these four models was compared according to the
penalized-likelihood Deviance Information Criterion (DIC) [27,32]. The model with the
best (lowest) value of DIC was chosen to explore the full distribution of posterior joint
parameters obtained as output of rjags. For each parameter, we considered (i) the estimate
as the median value of the posterior marginal distribution, denoted “point estimate”, and
(ii) the 95% credibility interval (95% CI) from the quantiles of 2.5% and 97.5% of this distri-
bution. These point estimates were used to evaluate the goodness of fit of the model by
plotting adjusted data (using point estimates of model parameters) versus observed data.
Finally, the full joint distribution was used to simulate the pH kinetics (estimate and 95%
credibility band) under different conditions.

3. Results
3.1. Model Fit and Selection

For all four considered models and all parameters, convergence of the three MCMC
chains were successfully checked by visual plotting and according to the chosen conver-
gence criteria. The computed chains could then be considered as a large sample of posterior
distribution of the parameters. The DIC criteria for comparing different models were
computed and are gathered in Table 2.

Table 2. Deviance Information Criterion of the four considered models computed using the R
package rjags.

Model Total Number of Parameters to Be Estimated DIC

Model 1 7 (n fixed, θ fixed) −274.8
Model 2 8 (θ fixed) −271.0
Model 3 8 (n fixed) −296.5
Model 4 9 −294.1



Foods 2022, 11, 1114 7 of 13

In Table 2, on the one hand, the DIC was highest for models 1 and 2 (with two fixed
parameters, or by fixing the stabilisation time θ), suggesting a low quality of adjustment
of these models on experimental data compared to the others. On the other hand, for
model 4 (without any fixed parameter), the DIC seemed to suggest a better fit, but probably
was penalised by the high number of parameters to be estimated. Model 3 with n fixed
showed the best (lowest) DIC, suggesting that it was the most suitable model among those
tested for describing our data and estimating parameters. For this model, the goodness-of-
fit plot showing comparison between adjusted and observed values, as well as the diagnosis
of residuals, are shown in Figure 3. These edits showed a reasonably fitted trend between
the observed and adjusted data, with no visual bias; the residuals did not show important
outliers, except for one clearly underestimated point, probably due to technical errors in the
experiments (Figure 3). Despite these errors, we decided to keep this point in the collected
dataset (as seen in Figure 1 “Full dose of lactate—MAP2”) to ensure equilibrium in the
experimental design (four sampling time points per condition).
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Figure 3. (a) Comparison of the observed experimental pH values with those adjusted by the
model using point estimates of each parameter in model 3; (b) residuals versus adjusted pH values
(Residual = pHobserved − pHadjusted).

3.2. Parameter Distribution

The point estimate of each model parameter, as well as its 95% credibility interval
obtained with model 3, are gathered in Table 3.

Table 3. Estimated parameters (model 3). The point estimate of each parameter corresponds to the
median value of its posterior marginal distribution; the 95% credibility interval is defined by the 2.5%
and 97.5% quantiles of the marginal distribution.

Parameter Estimated (Point Estimate—95% Credible Interval)

Stabilisation time
θ (in days) 12.9 [12.1; 13.7]

Effect of lactate and atmosphere on acidification rate
λ −0.095 [−0.119; −0.071]

δAir −2.430 [−2.528; −2.340]
δMAP1 −2.487 [−2.587; −2.394]
δMAP2 −2.339 [−2.429; −2.254]

n n = 1 (fixed)
Initial pH and variability sources

µpH0 6.49 [6.41; 6.57]
σpH0 0.10 [0.07; 0.13]
σpH 0.15 [0.14; 0.16]
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3.2.1. Stabilization Time and pH

As the output of model 3, the stabilisation time θ was estimated at 12.9 days (Table 3).
Its posterior distribution suggested a 95% credible interval, varying from 12.1 to 13.7 days.

The pH reached at the stabilization phase can be deduced from Equation (1) to
Equation (4), using the values of parameters (as estimated in Table 3). For example, for
sausage samples formulated with 2% w/w (full dose) of lactate and packed under air, an
average value of pH at the 15th day can be estimated as follows:

pHday15 (stabilisation phase) = −βair ∗ θ + pH0 = − exp(λ ∗ Lactaten + δAir) ∗ θ + pH0

= − exp
(
−0.095 ∗ 21 − 2.430

)
∗ 12.9 + 6.49 = 5.55

3.2.2. Acidification Rate under Effects of Lactate and Atmospheres

The parameters of the model characterising the effects of lactate and atmospheres
on acidification have been defined, for their respective prior, by non-informative uniform
distribution. The experimental data enabled us to successfully estimate these parameters;
their 95% credible intervals were much narrower than the prior, suggesting more targeted
ranges of values. As shown in Table 3, the parameter λ characterising the effects of lactate
on the acidification rate was estimated at −0.095 (95%CI: −0.119; −0.071). Its negative
value suggested that increasing the initial lactate content in the formulation enabled one to
decrease the acidification rate and, therefore, slow down the drop in pH. The additive effects
of atmosphere were estimated, from lowest to highest, at −2.487 (95%CI: −2.587; −2.394) for
MAP1:70%O2-30%CO2,−2.430 (95%CI:−2.528;−2.340) for air packaging and−2.339 (95%CI:
−2.429; −2.254) for MAP2: 50%CO2-50%N2. These estimations suggested that, for a given
sample of formulated sausages, packaging under MAP2: 50%CO2-50%N2 would accelerate
the acidification phase in comparison with the air packaging and MAP1:70%O2-30%CO2.
In order to better illustrate these effects, the variation in the acidification rate (β, covariate
of the model) was calculated using the above point estimates of λ, δAir, δMAP1, δMAP2 and
is shown in Figure 4.
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The computed evolutions of β in Figure 4 showed that increasing the initial lactate con-
tent would slow down the acidification of turkey sausages, whatever the atmosphere used.
The fastest acidification was observed in the case of ‘Zero lactate’ sausages, packed under
MAP2: 50%CO2-50N2. Under these conditions, the acidification rate was estimated to be
around 0.096 unit of pH per day; i.e., a drop of one pH unit in just about 10 days. In contrast,
for sausages formulated with 2% w/w lactate and packed under MAP1: 70%O2-30%CO2,
the rate was estimated at 0.068; i.e., a drop of one pH unit in 14.7 days. The slightly curved
evolutions of the suggested effect of lactate, i.e., β, were not necessarily linear: for example,
according to Figure 4, increasing lactate content from 0 to 1% w/w seemed to slow down
acidification slightly more easily by comparing to the increase from 1% to 2%.
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3.2.3. Initial pH and Variability Sources

The mean initial value of pH across production batches µpH was estimated to be 6.49 on
day 0, with a 95% credibility interval of 6.41 to 6.57 (Table 3). The estimated distribution of
initial pH was significantly higher than the distribution of the prior, previously defined
as a normal distribution, with a mean of 5.84. The standard deviation of the initial pH
σpH0 describing the variability across production batches was estimated to be 0.10. The
parameter σpH describing the random variations from the measurement at each time
and each condition was estimated at 0.15. For these standard deviation parameters, the
posterior distributions have shifted to the right of the prior distribution, revealing that
the pH variabilities and uncertainties estimated from our data were greater than initially
assumed in prior information (Figure 5).

Foods 2022, 11, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 4. Acidification rate 𝛽 computed using the point estimates of 𝜆, 𝛿஺௜௥, 𝛿ெ஺௉ଵ, 𝛿ெ஺௉ଶ. 

3.2.3. Initial pH and Variability Sources 
The mean initial value of pH across production batches 𝜇௣ு was estimated to be 6.49 

on day 0, with a 95% credibility interval of 6.41 to 6.57 (Table 3). The estimated distribution 
of initial pH was significantly higher than the distribution of the prior, previously defined 
as a normal distribution, with a mean of 5.84. The standard deviation of the initial pH 𝜎௣ுబ describing the variability across production batches was estimated to be 0.10. The 
parameter 𝜎௣ு describing the random variations from the measurement at each time and 
each condition was estimated at 0.15. For these standard deviation parameters, the poste-
rior distributions have shifted to the right of the prior distribution, revealing that the pH 
variabilities and uncertainties estimated from our data were greater than initially assumed 
in prior information (Figure 5). 

   
(a) (b) (c) 

Figure 5. (a) Distribution of initial pH; (b) variability sources; (c) stabilization time. Prior distribu-
tion: blue curves for all parameters; posterior distributions: green curve (𝜇௣ுబ), light and dark orange 
curves (𝜎௣ுబ  and 𝜎௣ு), red curve (𝜃). 

3.3. Possible Use of the Model for Simulation 
The full Bayesian procedure for the four models with all the estimated parameter 

distributions was prepared (R scripts/RData) and is available online at 
https://github.com/ndmluong/acidification (accessed on 11 March 2022). These files can 
be used as a first step to perform numerical simulations for the pH kinetics of sausages 
under different user-defined formulation-atmosphere conditions (pH curves and credible 
bands). Some simulation examples for two different initial formulations (0.5% and 1.5% 
w/w) are plotted in Figure 6. Such simulations can be useful for validation purposes on 
external experimental data, for example, by evaluating how external data could be over-
laid by credibility bands simulated using our estimated parameters. 

Figure 5. (a) Distribution of initial pH; (b) variability sources; (c) stabilization time. Prior distribution:
blue curves for all parameters; posterior distributions: green curve (µpH0 ), light and dark orange
curves (σpH0 and σpH ), red curve (θ).

3.3. Possible Use of the Model for Simulation

The full Bayesian procedure for the four models with all the estimated parameter
distributions was prepared (R scripts/RData) and is available online at https://github.
com/ndmluong/acidification (accessed on 11 March 2022). These files can be used as a
first step to perform numerical simulations for the pH kinetics of sausages under different
user-defined formulation-atmosphere conditions (pH curves and credible bands). Some
simulation examples for two different initial formulations (0.5% and 1.5% w/w) are plotted
in Figure 6. Such simulations can be useful for validation purposes on external experimental
data, for example, by evaluating how external data could be overlaid by credibility bands
simulated using our estimated parameters.
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The provided scripts also allow the possibility to describe pH evolution and estimate
acidification rates for other independent data, possibly collected on other food matrices,
with other user-defined atmosphere factors and/or other formulations as covariates. Tu-
torials are available in the provided R script files to help the users get started with our
modelling analysis procedure.

4. Discussion

In the present study, a comparative approach was performed, in order to select the
most appropriate model (with alternatively fixed or estimated parameters) to describe a
two-phase acidification curve, including a likely breaking point between two sampling
times. The model selection, based on a penalized-likelihood criterion (DIC), must be a
good compromise between improving adjustments and limiting the number of estimated
parameters due to the small amount of data. Surprisingly, arbitrarily setting the stabilization
time to one of the four sampling time points did not necessarily improve the selection
criterion, compared to other models where the stabilization time was estimated. Indeed,
the latter was estimated successfully between two sampling time points (the 8th and
15th day). One possible explanation could be that the chosen sampling time points (with
7-day intervals) were not suitable for studying pH kinetics (hence, for spoilage as well).
Therefore, setting the stabilization time at one sampling time could have strongly biased
the fit of the model. In our models, we assumed that the stabilization time was the same for
all lactate and atmosphere conditions to avoid an important number of parameters, making
their estimation more difficult. In further studies, the experimental designs (number and
interval between sampling times) may need to be adapted for each condition. In such
adapted designs, one could possibly improve the model by assuming different stabilization
times, depending on the condition.

An advantage of Bayesian simulation techniques is the ability to build a hierarchical
structure and easily communicate on it via an acyclic graph, as illustrated in Figure 2. Such
hierarchical structures enabled us to overcome the problem of independence in the dataset,
associated with the successive stages of meat production on an industrial scale. Besides, the
Bayesian modelling approach precisely estimated the random differences across industrial
production batches. Hierarchical Bayesian approaches have already been applied in food
modelling, in particular, to separately estimate the biological variability and the uncertainty
on the parameters [20,33–35]. Additionally, MCMC simulations for Bayesian modelling
provides, as output, complete estimated distributions of the parameters that could be useful
for further model adjustment on external experimental data collected by other researchers.
R tools (scripts and tutorials) are provided for this purpose.

The Bayesian model illustrated herein confirmed the effects of lactate and atmosphere
on pH kinetics, observed in our previous work [25], with a notable improvement in the
description of lactate concentration as a quantitative variate, rather than a qualitative factor.
Adding lactate into the formulation slowed down the acidification process, as expected,
likely due to its role in inhibiting several microorganism-producing acids [36–39]. The gas
composition used in MAP2: 50%CO2-50%N2 accelerated the acidification phase compared
to the Air packaging and MAP1:70%O2-30%CO2, regarding the acidification rates. The
quick acidification in MAP2: 50%CO2-50%N2 is probably due to its high initial content
of CO2 that favours acid-producing bacteria, such as lactic acid bacteria [1,9]. Another
possible explanation could relate to the formation of carbonic acids (H2CO3), resulting
from the important absorption of CO2 into the meat products [40–42]. Besides the main
expected results above, our modelling approach brought three major improvements. First,
the storage time and the initial lactate concentration were described as continuous-scale
co-variates, but not as factors, thus, providing further possibilities to simulate the process.
Second, the effects of lactate and atmosphere were quantified as the acidification rate
associated with each condition, then representing much more comprehensive parameters,
in an intuitive way. Finally, the Bayesian MCMC simulation techniques made it possible to
evaluate credibility intervals around these effects. The modelling of the acidification rates
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could even have been improved further, by including the concentration of O2 and CO2 in
the model.

The initial value of pH (day 0) estimated with our data (at 6.49) was higher than the
pH observed by Lerasle et al. [26], giving a slight deviation for high pH values from the
fitting line (Figure 1). This deviation could be explained by the composition of the sausages,
such as the type of poultry meat (chicken or turkey) and their respective percentage.
This difference in composition has been reported, for example, by Saucier et al. [43],
who observed a higher pH in chicken meat (around 6.18) than in turkey (around 5.95).
Nevertheless, despite such differences at day 0, our model was successfully adjusted on
the overall dataset, since the Bayesian approaches take into account prior information
and likelihood of data as well. The two-phase trend appeared to provide an accurate fit,
despite outliers, possibly due to technical errors in the experiments. The linear decrease
in pH in poultry meat products has been reported in the literature. For instance, Tovunac,
Galić, Prpić and Jurić [36] suggested a linear decrease in pH in chicken frankfurters under
different packaging types by fitting decreasing linear models to experimental data. The
stabilization phase has been described in the literature due to the buffering effect in food
products, such as meat [44]; Ellouze, et al. [45] modelled the buffering effect in the evolution
of pH related to the total production of lactic acid by bacteria, using logistic-based sigmoidal
models. In our study, the major difficulty remained in the low number of sampling time
points, which could be inappropriate to fit this type of model, hence, our choice of two
linear phases. Nevertheless, the two-phase (acidification-stabilization) model described
well the pH evolution in fresh poultry sausages under the influence of lactate formulation
and the type of MAP.

5. Conclusions

The kinetics of turkey sausage pH were monitored and successfully fitted using a
Bayesian modelling approach, despite a limited number of experimental data points. The
addition of potassium lactate combined with air or 70%O2-30%CO2 packaging slows down
acidification of fresh turkey sausages and consequently limits potential sausage spoilage
due to lactic acid bacteria. However, before applying such preservation conditions, we rec-
ommend also assessing the sensory qualities of the final product. The Bayesian modelling
approach could be reused for other studies, especially in the context of empirical modelling
framework of meat spoilage. For such a purpose, the Bayesian modelling workflow—and
the script—have been provided. The prior distribution could be generated using existing
data or previous studies, as done here, but also by seeking experts’ knowledge.
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