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Abstract: The effects of freezing methods, including rapid freezing (RF) or slow freezing (SF),
combined with thawing methods, e.g., water immersing thawing (WT) or cold thawing (CT), on
the meat yield, drip loss, gel properties, and digestive properties of meat detached from red swamp
crayfish were investigated. RF greatly reduced the freezing time compared to SF, and the thawing
time of frozen crayfish was obviously shortened by WT in comparison to CT. RF and CT improved
the meat yield but increased the drip loss, probably as a result of the greater protein denaturation or
degradation. A soft and flexible gel was obtained by SF-CT, while a hard one was achieved by RF-WT.
An SEM analysis showed that SF resulted in rough and irregular microstructures with larger pore
sizes. Freeze-thawing led to an increase in the β-sheet content at the expense of α-helix and variations
in the microenvironment of tyrosine and tryptophan residues in protein molecules of the gels, which
was more pronounced in the SF-CT group. Moreover, freeze-thawing could cause enhanced protein
digestibility but reduce the antioxidant activity of gels. These findings underline the promise of the
freezing-thawing treatment in tuning the gel-based meat products of crayfish.

Keywords: freezing; thawing; crayfish; meat yield; gel properties; digestibility; antioxidant activity

1. Introduction

Aquatic products are among the most important foods consumed worldwide due
to their presence of high-value proteins, essential micronutrients, and desirable sensory
properties (delicious taste and unique aroma) [1]. However, these valuable food ingredients
are highly perishable after harvest, hence their preservation becomes particularly crucial
for the aquatic processing industry [2]. Freezing, as a common unit operation of food
processing, can effectively reduce the water activity, inhibit microbial growth and enzyme
activity, and retard the quality deterioration, thereby extending the shelf-life of aquatic
products [3,4].

The ice crystals formed by freezing are disruptive to muscle fibers and cells of seafood,
and they can induce protein denaturation, resulting in thawing drip loss and the deteri-
oration of protein functional properties [5,6]. Interestingly, the freezing-induced protein
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denaturation could be applied to weaken (or loosen) the connection tissue between the
shell and the meat, thus facilitating the subsequent shucking of shrimp [7]. Data from
previous research suggested that a freeze-thawing treatment prior to peeling was beneficial
to improving meat yield and organoleptic quality, as well as reducing the energy or labor
consumption required for the complete removal of the shell from the meat [8].

The red swamp crayfish (Procambarus clarkii) is an important economic species in
China with high market value because of its nutritional attributes (high protein and low-fat
content) and ease of breeding (fast growth rate and excellent adaptability) [9]. In 2020, the
annual cultivation amount of red swamp crayfish was close to 2.4 million tons, which was
an increase of about 14.55% compared to 2019 [10]. The output of the processed crayfish
was also continually increasing as a response to the climbing demand. Though several
deep-processing products, such as the frozen boiled crayfish tail, frozen crayfish meat, and
the ready-to-cook seasoned crayfish, have been developed, they still cannot satisfy the
needs of consumers for diversified products [11]. Nowadays, developing meat gel products
from crayfish meat is increasingly attracting the attention of aquatic processing enterprises
and consumers [12].

Meat separation is the essential stage for gel preparation. Its pretreatment method
plays an important role in the subsequent deep processing of crayfish. Our preliminary
experiments proved that freeze-thawing was effective for the shelling of crayfish. While
freezing weakens the connected tissue, it will inevitably have some negative effects on the
separated muscle, such as drip loss, freezing-induced protein denaturation, and decreased
gelling properties [6]. Moreover, the typical thawing methods (thawed by cold water or air)
are also crucial in the quality control of meat products after frozen treatment [13]. However,
to our best knowledge, few studies have investigated the impact of freeze-thawing on the
meat yield and gelling properties of the shucked meat from crayfish.

Therefore, in this study, the effects of freezing methods, namely, liquid nitrogen rapid
freezing (RF) and slow freezing (SF), combined with two thawing methods, including
water-immersing thawing (WT) and cold thawing (CT), on meat yield and heat-induced
gel properties of red swamp crayfish were investigated. The gel properties, including gel
strength, deformation, and breaking force, color parameters, water-holding capacity, mi-
crostructure, protein secondary structural change, as well as the protein in vitro digestibility
and antioxidant activity, were comprehensively evaluated to elaborate on the relationship
between the gel properties and freezing-induced protein denaturation.

2. Materials and Methods
2.1. Materials

Live crayfish (P. clarkii) with weight of 15.93 ± 0.52 g were purchased in March 2021
from a local aquatic products market (Anhui, China) and were immediately transported to
the food processing laboratory within 1 h. The crayfish (n = 75) were kept alive at about
10 ◦C, and the subsequent experiments for crayfish were proceeded within 24 h.

2.2. Freezing and Thawing Treatments

The live crayfish (n = 75) were randomly distributed into five clusters and were either
(1) frozen by liquid nitrogen rapid freezing (RF), and thawed by water immersing thawing
(WT) at about 10 ◦C, RF-WT; or (2) frozen by refrigerator slow freezing (SF) by using a
BCD-216SDN refrigerator (Haier Co., Ltd., Shandong, China) at −18 ◦C, and thawed by WT,
SF-WT; or (3) frozen by RF, and thawed by cold thawing (CT) in a BCD-216SDN refrigerator
at 4 ◦C, RF-CT; or (4) frozen by SF and thawed by CT, SF-CT. The unprocessed crayfish were
served as the control group, CG. The center temperature of crayfish treated by different
freezing-thawing treatments was recorded by a multi-channel temperature logger (Model
AT4202, Anbai Instrument Co., Ltd., Changzhou, China) with a precision of ±0.2 ◦C.
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2.3. Crayfish Meat Collection, Meat Yield, and Drip Loss Measurement

After the above freezing-thawing treatment, the crayfish muscle tissue was detached
from the shells manually. The meat yield of crayfish (Y) was defined as the mass ratio of
obtained crayfish meat (W1) to crayfish (W0) and calculated as Equation (1).

Y = W1/W0 × 100% (1)

Drip loss was defined as a percentage of weight loss of crayfish meat after shelled and
expressed as Equation (2).

Drip loss = (W0 − W1 − W2)/W0 × 100% (2)

where W0 is the weight of five fresh crayfish of each group, W1 is the weight of the detached
crayfish meat, and W2 is the weight of the shell and head after manual peeling.

2.4. Gel Preparation

The peeled crayfish meat was chopped at 5000 rpm for 3 min by using a MQ5035
blender (Braun Co., Ltd., Kronberg, Germany). Afterward, 2% (w/w) of NaCl was added
to the paste and blended for 1 min at 1000 rpm for protein dissolution. The mixture was
stuffed into beaker of 5 mL. Then the packed beakers were heated in a water bath (95 ◦C,
6 min), followed by cooling for 30 min. The crayfish meat gels were stored at 4 ◦C before
further use.

2.5. Mechanical Properties and Color Analysis of Gels

The mechanical properties, including gel strength (g × mm), breaking force (g), and
deformation (mm) of crayfish meat gel samples (about 15 mm in diameter and 15 mm in
height.) were analyzed by using a TA. XT plus texture analyzer (Stable Micro System Co.,
London, UK). The conditions were selected as follows: probe type, P/0.25S; test speed, 1.0
mm/s; pre-test speed, 1.0 mm/s; post-test speed, 5.0 mm/s; trigger force, 5 g; pressing
distance, 12 mm. At least 6 samples were analyzed for each group. The color of crayfish
meat gels was estimated by a colorimeter (Model NR60CP, Sanenshi Co., Ltd., Guangdong,
China), and the test conditions were as follows: observer: CIE 10◦ standard observer;
illuminant: D65; measuring time: 0.4 s.

2.6. Water-Holding Capacity Determination and SEM Observation

Water-holding capacity (WHC) of gels of crayfish meat was determined following
the method of Liang, et al. [14]. The crayfish meat gels were cut into cylindrical flakes
with 2 mm thickness and were submerged in glutaraldehyde solution (2.5%, v/v) at 4 ◦C
for 24 h, then dehydrated with a series of ethanol solutions (60–100%). After substituting
the ethanol with isoamyl acetate, the frozen gels were freeze-dried for 4.5 h in a model
FD-ID-50 freeze dryer (Bilang Instrument Co., Ltd., Shanghai, China). The freeze-dried
samples were sputter-coated, and the microstructure of crayfish meat gels was detected
using a Carl Zeiss Microscope (Oberkochen, Germany) at voltage of 3.0 kV.

2.7. Ultraviolet (UV) Spectrum and Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The crayfish meat gels were diluted to 0.5 mg/L with 0.6 mol/L KCl solution, and
the UV-Vis absorption spectrum at wavelength of 220–320 nm was recorded by D-7PC
spectrophotometer (Feile Instrument Co., Ltd., Nanjing, China). The second-derivative
UV spectra was calculated and plotted by Origin 2018 software. For the FTIR analysis,
the crayfish meat gels were frozen and then freeze-dried for 6 h by a freeze dryer (Model
FD-ID-50, Bilang Instrument Co., Ltd., Shanghai, China). The freeze-dried meat gels were
blended with potassium bromide of spectral purity, and the mixture was compressed
into cylindrical sheet. The spectra of crayfish meat gels were measured in a Nicolet 6700
spectrometer (Thermo Fisher Scientific Co., Waltham, MA, USA). PeakFit software was
applied to gain the protein secondary structures [15].
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2.8. In Vitro Gastrointestinal Digestion and Antioxidant Activity of Crayfish Meat Gels

In vitro gastrointestinal digestion of the crayfish meat gels was performed by the
method of Singh, et al. [16] with some modifications. Crayfish meat gels (1 g) were
homogenized with phosphate buffer (7 mL, pH 2.0). After the homogenate was pre-
incubated at 37 ◦C for 5 min, pepsin solution (1.5 mg/mL, 0.5 mL) was added and then the
hydrolytic reaction was performed in a water bath at 37 ◦C for 60 min. After the simulated
gastric digestion, the mixture was added with 7.5 mL of 0.5 mol/L Tris HCl to adjust the
pH to 6.9. Then, 0.5 mL of trypsin solution (1.5 mg/mL) was mixed, and the digestion
reaction was conducted for 60 min at 37 ◦C. The reaction was terminated in boiling water
bath for 5 min, and the reactant was centrifuged at 5000 rpm for 20 min at 4 ◦C to collect the
supernatant for testing. Antioxidant activities of the simulated digested crayfish meat gels
were measured according to the previous literature. The DPPH radical scavenging activity
(DPPH-RSA) was assessed by the method of [17]. Ferric reducing antioxidant power
(FRAP) and ABTS-radical scavenging activity (ABTS-RSA) were determined according to
the procedures of Singh, Prabowo, Benjakul, Pranoto, and Chantakun [16].

2.9. Protein Patterns of Gels before and after Digestion

SDS-PAGE was analyzed using the method of Li, et al. [18] with some modifications.
Before digestion, crayfish meat gels (4 g) were mixed sodium dodecyl sulfate (SDS) solution
(1%, w/v, 36 mL) and homogenized (5000 rpm, 3 min) with a T18 homogenizer (IKA,
Schwarzwald, Germany). The mixture was centrifuged (5000 rpm, 5 min, 6 ◦C) by a
5430R centrifuge (Eppendorf, Hamburg, Germany), and the supernatant was separated and
adjusted to a uniform protein concentration level. After digestion, 0.4 mL of the supernatant
from the digested sample was used for analysis. Electrophoresis was performed by a DYCZ-
24KF electrophoresis apparatus (Liuyi Biological Technology Co., Ltd., Beijing, China) at
170 V for about 3 h.

2.10. Statistical Analysis

All data were statistically analyzed by using the SPSS 20.0 software (IBM, Armonk,
NY, USA) by Duncan’s multiple range test at a significance level of p < 0.05. A minimum of
3 batches of samples were used for the test.

3. Results and Discussion
3.1. Freezing and Thawing Curves of Crayfish

The freezing curves of crayfish subjected to SF and RF are compared in Figure 1A. The
time required for SF and RF was 490 min and 13 min, respectively, as the core temperature of
the crayfish decreased from 17.2 ◦C to −18 ◦C. As expected, RF shortened the total freezing
time by about 97.34%, compared with SF. The freezing rate could be defined as rapid (fast)
freezing when the time for the core temperature of food to traverse from −1 to −5 ◦C is
less than 30 min, and it is considered slow freezing once the time exceeds 30 min [19]. The
freezing methods, SF and RF, allowed the core temperature to decrease from −1 ◦C to
−5 ◦C in 156.33 and 2.17 min, respectively (Figure 1D), indicating that SF and RF in the
current study belonged to typical slow freezing and rapid freezing, respectively. Freezing
rate is the main factor affecting the ice crystal size in the food freezing process [20]. A small
number of large extracellular ice crystals could be formed by slow freezing, whereas small
ice crystals distributed both intra- and extra-cellularly are produced by fast freezing [21].
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Figure 1. Freezing curves (A), refrigerator thawing curves (B), water immersing thawing curves (C),
and freezing-thawing time (D) of red swamp crayfish. RF, rapid freezing; SF, slow freezing; CT, cold
thawing; WT, water immersing thawing.

Generally, the freezing curve of crayfish can be divided into three stages, i.e., pre-
freezing stage (Stage I, 5~0 ◦C), phase transition (Stage II, 0~−5 ◦C), and sub-freezing
(Stage III, −5~−18 ◦C). Among those stages, stage II was considered the maximum-ice-
crystal formation zone, which is critical for the size and distribution of ice crystals in frozen
crayfish [22]. As shown in Figure 1A, the RF greatly reduced the elapsed time of this stage
as compared with the SF. It was suggested that RF shorten the time to pass through the
maximum-ice-crystal formation zone by accelerating the freezing rate. Surface energy
theory could explain this advantage of RF, i.e., smaller ice crystals have higher surface
energy due to the smaller radius of curvature and larger surface-to-volume ratio, which is
thermodynamically unstable, and freezing tends to reduce the surface energy by increasing
the size of the crystal, thus providing the driving force for the ice crystal growth. This
could be conducive to promoting a more rapid phase transition and reducing the freezing
time [23].

The frozen crayfish were thawed by CT and WT until the core temperature reached
4 ◦C. The CT and WT curves of crayfish frozen by RF and SF are shown in Figure 1B,C
respectively. The thawing times of CT for the RF and SF groups were 264 min and 451 min,
respectively, while the thawing times of WT for those groups were 4.41 min and 8.17 min, re-
spectively (Figure 1D), indicating that WT greatly shortened the thawing time of the frozen
crayfish. Similar results were also found in the thawing process for the frozen bighead
carp (Aristichthys nobilis) fillets [24], as well as the frozen pompano (Trachinotus ovatus) [25].
This might be explained by the fact that the water [0.604 W/(m•K)] has a higher thermal
conductivity (i.e., heat transfer rate) than air [0.066 W/(m•K)] [19,21]. Likewise, it was
also found that SF increased the thawing time of crayfish compared to RF, irrespective of
thawing by CT or WT, probably owing to the relatively high freezing point of ice crystals in
the intercellular space [19].

3.2. Meat Yield and Drip Loss of Crayfish Meat

As shown in Figure 2A, the meat yield of crayfish in the CG group was 15.68%. After
RF-WT, SF-WT, RF-CT, and SF-CT treatments, the yield significantly increased to 17.24%,
20.22%, 20.06%, and 20.88%, respectively (p < 0.05), indicating that the freeze-thaw process
was capable of improving the meat yield. The muscle of crayfish is closely connected to the
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shell through connective tissue (epidermis, in which protein is the main component) [26].
The freeze-thawing treatment allowed the protein of connective tissue to denature, resulting
in shell loosening, which facilitated the subsequent peeling [7]. Within a certain range, the
greater the degree of protein denaturation, the easier it is to separate the meat from the shell,
and the better the integrity of the detached meat (Figure 2C). Thus, the yield of crayfish meat
can be accordingly increased. In addition, the meat yield in the SF-WT, RF-CT, and SF-CT
groups was significantly higher than that of RF-WT (p < 0.05), implying that the protein
denaturation in the RF-WT group was the lowest compared to the other treatments.
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Figure 2. Meat yield (A), drip loss (B), and appearance (C) of crayfish meat treated by different
freezing-thawing combinations. Different letters (a–c) in (A) for meat yield and letters (a–d) in (B) for
drip loss indicate significant differences (p < 0.05). CG, control group; RF, rapid freezing; SF, slow
freezing; CT, cold thawing; WT, water immersing thawing. n = 15.

Changes in drip loss of crayfish samples treated by freeze-thawing are shown in
Figure 2B. The drip loss of CG was 2.89 ± 0.13%, and freeze-thawing treatments of SF-WT,
RF-CT, and SF-CT significantly increased the drip loss to 4.96–6.74% (p < 0.05). Evidently,
crayfish frozen by SF exhibited higher drip loss than that of RF samples (p < 0.05). Thawing
drip loss is related to the disruption of muscle fibers and cells by the mechanical stress of
ice crystals (volume expansion) as well as the protein denaturation caused by pH changes
during freezing [5]. The freezing rate affects the size and distribution of ice crystals in the
muscle of the frozen crayfish. As the freezing rate increased, the size of ice crystals became
smaller and their distribution narrower, leading to less damage to the muscle fibres and
proteins, which could reduce the drip loss of the meat after thawing [27,28]. Therefore,
SF and CT seemed to denature the protein to a greater extent during the freeze-thawing
process, thus increasing the meat yield, as well as the drip loss.

3.3. Texture and Color of Crayfish Meat Gels

The gel strength, deformation, and breaking force of crayfish meat gels as influenced
by freeze-thawing treatments are shown in Figure 3. The gel strength of the RF-WT, SF-WT,
RF-CT, and SF-CT groups was 244.56, 73.26, 57.30, and 34.67 g•mm, respectively, which
were all inferior to the control group (403.58 g•mm) (p < 0.05). As shown in Figure 3C,
the decrease in gel strength can be reflected by the obvious reduction in breaking force,
whereas the variations in the deformation were relatively small (Figure 3B). This revealed
that the crayfish subjected to the freeze-thawing pretreatment resulted in a soft and flexible
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texture for subsequent heat-induced gels, which might be beneficial to the people suffering
from dysphagia [17].
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different freezing-thawing combinations. Different letters (a–d) in (A) for gel strength, letters (a–b) in
(B) for deformation, letters (a–d) in (C) for breaking force, and letters ((A–C) for L value; (a–c) for a
value; a’–b’ for b value) in (D) indicate significant differences (p < 0.05). CG, control group; RF, rapid
freezing; SF, slow freezing; CT, cold thawing; WT, water immersing thawing.

Moreover, it was found that crayfish meat gels with varied gel strengths could be
obtained by different freezing and thawing combinations. In terms of thawing by WT, the
gel strength of RF samples (244.56 g•mm) was significantly greater (p < 0.05) than that
of the SF (73.26 g•mm). For the CT, the gel strength of RF samples (57.30 g•mm) was
also higher than that of SF (34.67 g•mm), though the difference is statistically insignificant
(p > 0.05) (Figure 3A). Therefore, RF was found to be in favor of maintaining the gel
strength of crayfish meat compared with SF. Additionally, the gel strength of WT samples
was significantly higher (p < 0.05) than that of the CT by the same freezing method (RF or
SF). In conclusion, RF and WT could preserve the mechanical properties of the crayfish
meat gels compared to SF and CT.

Li, Wang, Kong, Shi, and Xia [6] reported that the gel strength of myofibrillar protein
(MP) gels from mirror carp (Cyprinus carpio) significantly decreased from 2.44 N to 1.94 N
when subjected to a freeze-thawing process (frozen in a refrigerator at −25 ◦C and thawed
in a refrigerator at 4 ◦C for 12 h). Subsequent trials found that the freeze-thawing caused
MP denaturation and aggregation, as evidenced by the reduced protein solubility and
Ca2+-ATPase activity, the increased particle size, and the high molecular weight of MP,
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as well as the increased average roughness of the MP film (Rg, atomic force microscopy),
leading to the reduced gel-forming ability. A previous study on the MP gelling properties
of mirror carp treated with freeze-thawing (frozen at −25 ◦C and thawed at 4 ◦C for 12 h)
found that freeze-thawing decreased the storage modulus G’ of MP gels, and the ζ-potential
of MP declined from 26.87 mV to 23.9 mV, while the median diameter (dV,0.5) of protein
increased from 24.41 µm to 32.3 µm, implying protein aggregation of MP occurred during
freeze-thawing [29]. Consequently, changes in the functional and structural properties of
MP are responsible for the decreased gelling properties.

The freezing-induced denaturation of proteins could be ascribed to the ice crystal
formation, freeze-concentration, and cold denaturation of proteins. Among those factors,
protein cold denaturation was considered as the spontaneous unfolding of protein as a
result of the exothermic process of decreased entropy during cooling, which could be
almost negligible compared with the other two factors [5]. Qian, Hu, Mehmood, Li, Zhang,
and Blecker [28] compared the effects of slow freezing (SF, frozen at −20 ◦C for 12 h)
and ultra-fast freezing (UFF, frozen at −80 ◦C for 12 h) on the size and distribution of ice
crystals in bovine Longissimus dorsi muscles, and they found that the average number, the
equivalent diameter, and the ratio of ice crystals sum area to that of cell area of SF samples
were about 116, 35 µm, and 0.32, respectively, while those indexes of UFF samples were
about 169, 25 µm, and 0.15, respectively, suggesting that a larger number of ice crystals of
smaller size were formed by UFF. The freezing rate (slow and fast freezing) is largely related
to protein denaturation, and MP denaturation was more pronounced in slow compared to
fast freezing during the freezing of pork steaks [27].

Although the mechanism of the impact of ice crystal formation on MP denaturation is
currently not well disclosed, several clues are available for better understanding. During the
process of freezing, the extracellular water begins to freeze, and the unfrozen water within
the cells will migrate to the outside of the muscle fibers to form extracellular ice crystals.
Then muscle fibers are severely compressed by the extracellular ice crystals, leading to
the distortion of rigor bonds (actomyosin cross-bridges) and thereby the denaturation
of myosin heads [1]. This could also bring about the increased concentrated solutes of
the unfrozen water phase and decrease the pH around the structural proteins (actin and
myosin filaments), resulting in freezing-induced denaturation of MP stemming from the
higher ionic strength and lower pH [20]. Fast freezing might reduce the exposure time
of myofilaments to concentrated solutes, alleviating the pH variation, probably through
trapping part of the protons within the small ice crystals, as well as the fiber compression,
and thus reducing the protein denaturation [1,27]. Besides, the protein oxidation caused by
the ice-crystal growth might also disrupt the protein structure, and irregular ice crystals
produced by slow freezing could promote the MP oxidation [6].

In fact, the thawing process is another crucial component affecting the gelling prop-
erties of frozen meat [13], because it can cause physical damage to the muscle cells and
denaturation, oxidation, and aggregation of MP [1,30]. For the aquatic product, during
the thawing process, the effects of the action of endogenous enzymes (such as cathepsin
L) released from the distorted cells [31] and the metabolism of rejuvenated microorgan-
isms [30] on the MP are non-ignorable. In this study, the gel strength of WT samples was
superior to that of CT, and this might be ascribed to the greatly reduced thawing time of
WT (Figure 1D), which decreased the action time of microorganisms and enzymes.

The color parameters (L, a, and b) of crayfish meat gels prepared from freeze-thawed
crayfish were displayed in Figure 3D. A freeze-thawing cycle of crayfish prior to gel
preparation led to a significant decrease in the L values of the subsequent heat-induced gels
(p < 0.05), compared with CG (untreated crayfish). Previous literature reported that the
high value of lightness in gels could be related to protein aggregation, and the increased
cross-links promote a compact structure, leading to a greater area of light reflectance [32].
The decrease in the whiteness of protein gels from mirror carp was due to the freezing-
induced denaturation of MPs, and protein denaturation could reduce the free water content
in the gel network structure, which decreased the reflection [6]. However, freeze-thawing
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treatments significantly improved the a and b values of crayfish meat gels (p < 0.05),
making the gels appear attractive red, and this is consistent with the visual appearance
as presented in Figure 3E. This could benefit from the more pigment cells (containing
astaxanthin) separated from the epidermis as a result of the freezing-induced denaturation
of connective tissue [7,26], and the result was consistent with the improved meat yield of
crayfish observed in Figure 2A. Hence, the crayfish meat gels with various gel strengths
can be prepared by different freezing-thawing combinations, and the color of the gels could
be ameliorated by the freeze-thawing process.

3.4. WHC and SEM of Gels

The impact of the freeze-thawing process on the WHC of gels was shown in Figure 4A.
The WHC of the gels made from the freeze-thawed crayfish meat varied from 70.85–77.92%,
while the value of the control was 81.96%, indicating that the freeze-thawing treatments
caused a significant decrease in the WHC of gels (p < 0.05). Cando, et al. [33] reported
that the WHC of surimi gels was associated with the type and number of water-protein
interactions, in addition to the intrinsic network structure within the gels. A previous study
on the gel properties of MP from mirror carp (C. carpio) treated with freeze-thaw cycles
found that the immobilized water (T21 water), trapped in the microstructure of gels, was
the major component in the gels, and its relaxation time became longer after freeze-thawing,
suggesting that the amount of free and mobilized water in MP gels increased after a freeze-
thawing treatment. This might be due to the loose and porous structure of MP gel because
of the freezing-induced denatured proteins [6].
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Figure 4. Water-holding capacity (A) and scanning electron microscopic images (B–F) of heat-induced
gels of crayfish meat processed by several freeze-thawing combinations. (B): CG; (C): RF-WT; (D): SF-
WT; (E): RF-CT; (F): SF-CT. CG, control group; RF, rapid freezing; SF, slow freezing; CT, cold thawing;
WT, water immersing thawing. Different letters (a–d) in (A) for water-holding capacity indicate
significant differences (p < 0.05).

As shown in Figure 4B–F, the gels in the CG and RF-WT groups exhibited a compact
gel network with small regular pores (Figure 4B,C), revealing that RF-WT was beneficial
to the microstructural maintenance of crayfish meat gels, and this was in accordance
with the relatively good mechanical properties observed in Figure 3A–C. However, RF
combined with CT (RF-CT group) resulted in a slightly porous structure (Figure 4E). Since
the longer thawing time (264 min vs. 4.41 min) could endow the endogenous enzymes
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and microorganisms with the ability to rejuvenate and act on the proteins, leading to
the degradation of MPs [30]. Yang, et al. [34] reported that the TVB-N values of frozen
swimming crab (Portunus trituberculatus) significantly increased from 6.67 mg/100 g (fresh
meat) to 8.12 mg/100 g and 7.53 mg/100 g, respectively, after air thawing (at 15 ◦C for
270 min) and water-immersing thawing (at 15 ◦C for 101 min). Interestingly, slow freezing
rendered the gel network rough and irregular (Figure 4D,F), especially for the SF-CT group,
the reticular structure was seriously damaged (Figure 4F). The microstructure of crayfish
meat gels was shown to be more negatively affected by the SF, which could be the result of
the freezing-induced denaturation of MPs (as discussed in Section 3.3).

Generally, MPs’ gelation contains the following two major stages: (i) MPs dissolve
to form protein sol under the action of salt (2~3% sodium chloride can usually realize the
sufficient dissolution of MPs), comprising of myosin and actin separation and depolymer-
ization of myosin chains; (ii) the dissociated MPs undergo thermal conformational changes
and aggregations under conditions of heat. The stage ii is probably as follows: Myosin
S1 expands when the temperature rises to around 35 ◦C, and myosin molecules begin to
form dimers and oligomers through head-to-head agglutination, mostly through disulfide
bonds and hydrophobic contacts. When the temperature rises to around 40 ◦C, the myosin
dimers and oligomers tend to assemble due to head-to-head contacts. The tail radiates into
three-dimensional space, whereas the aggregation head is prone to aggregating into spheri-
cal masses. As the temperature continues to rise above 55 ◦C, the formed aggregates are
crosslinked and aggregated by tail interactions to form particle units, mainly via hydrogen
bonds, by forming a three-dimensional network structure [6,33,35].

The formation of the microstructure was mainly influenced by the relative rates of
protein aggregation and unfolding, i.e., a compact and homogenous gel microstructure is
usually formed while protein unfolding proceeds slower than its aggregation. Conversely,
a coarse and heterogeneous gel microstructure is commonly obtained when the rate of
unfolding exceeds that of aggregation [13,36]. Thus, it can be inferred that the freezing-
induced denaturation of the myosin head was responsible for the reduced gelling properties
of crayfish MPs.

3.5. UV Spectrum and FTIR

The UV spectra can be used to reflect the change of protein conformation by evaluating
the microenvironment changes of aromatic amino acid side chains (such as tyrosine and
tryptophan) [15]. As shown in Figure 5A, the maximum absorptions and positions of the
peaks of UV spectra altered in the freeze-thawed groups, and it was suggested that the
change of protein conformation in the meat gels of crayfish was responsible. Besides, the
second derivative spectrum of crayfish meat gels was obviously altered in the SF-CT group
(Figure 5B), revealing that the tertiary structure of gels obviously changed. The results of
the UV spectrum further confirmed the alteration of protein conformation in gels induced
by the freeze-thawing treatment, which was more pronounced by the SF-CT.

The FT-IR spectra for crayfish meat gels as influenced by freeze-thawing treatments
are displayed in Figure 5C. The gels exhibited absorption bands at 3270 cm−1 (amide A,
N–H or O–H stretching), 2920 cm−1 (amide B, C–H stretching), 1622 cm−1 (amide I, C=O
and C=N stretching), 1521 cm−1 (amide II, C–N stretching and N–H bending), 1238 cm−1

(amide III, C–H bending), and 1071 cm−1 (C–O and C–C stretching) [14]. The migration
of the amide A band could be used to estimate the interaction between protein and water
molecules [37]. Commonly, the amide I band located at 1600–1700 cm−1 is often applied to
estimate the information of protein secondary structures, including α-helix, β-turn, β-sheet,
and random coil [14].

The secondary structures of the meat gels of crayfish were estimated, and the results
are displayed in Figure 5D. The contents of α-helix of meat gels produced from the freeze-
thawed crayfish decreased, while the contents of β-sheet increased, compared with the CG
group. Additionally, it was also found that the SF led to a significant rise in the β-sheet
content of crayfish gels (p < 0.05) at the expense of α-helix, presumably due to the disruption
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of hydrogen bonding in α-helix by large ice crystals during slow freezing. It has been
reported that freeze-thaw treatments could promote the conversion of α-helix (ordered
rigid structure) to a relatively loose β sheet (disordered flexible structure) in the MP of
mirror carp (Cyprinus carpio L.), owing to the broken hydrogen bonds by physical effects as
well as the protein oxidation accelerated by freeze-thawing [29]. Therefore, freeze-thawing
not only affects the tertiary structure of crayfish meat gels, but also the secondary structure.
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3.6. Digestibility, Antioxidant Activity, and SDS-PAGE

The effect of different freeze-thawing methods on the protein digestibility of crayfish
meat gels by gastrointestinal environment simulation was shown in Figure 6A. SF before
gelation of crayfish meat obviously enhanced the digestibility of the heat-induced gels
(SF-WT vs RF-WT, SF-CT vs RF-CT) (p < 0.05). Meanwhile, the frozen crayfish thawed
by CT showed a significant increase in protein digestibility of gels by comparison with
WT (p < 0.05). The interference of SF and CT on digestion of crayfish meat gels could be
mainly attributed to the denaturation or degradation of crayfish proteins, which altered
the microstructure of the meat gels, increasing the accessibility of enzymes to hydrolytic
sites [38].
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For the antioxidant activity of the digest from crayfish meat gels, it was found that
freeze-thawing treatments significantly decreased the DPPH-RSA, ABTA-RSA, and FRAP
of the gels compared with the CG group (p <0.05), particularly for the SF-CT (Figure 6B–D).
The lower antioxidant activity was probably related to the discrepant peptides derived
from the crayfish meat gels [17]. Fang, et al. [39] reported that the proteolysis of surimi gels
might be influenced by the structural properties under simulated gastrointestinal digestion,
and they found more cross-linking in silver carp (Hypophthalmichthys molitrix) surimi gels
induced by microbial transglutaminase (MTGase) retarded the pepsin digestion process
at first, and the digestion sites and the quantities of peptides in the gels differed from the
surimi gels without the addition of MTGase. However, other factors, such as molecular
conformation, chemical bonds, etc., affecting the digestive characteristics (digestibility and
produced peptides) of crayfish meat gels are still unclear.
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The SDS-PAGE analysis was conducted to ascertain the protein patterns of crayfish
meat gels before and after digestion. Before digestion, meat gel samples showed typical
electrophoresis profiles, according to the report by Shao, et al. [40], the typical protein
bands of gels of crayfish meat could be assigned to the myosin heavy chain (MHC, about
220 kDa), paramyosin (about 100 kDa), actin (about 44.3 kDa) and tropomyosin (about
36 kDa), respectively, and actin and MHC were the two main proteins. Notably, the MHC
band intensity in the RF-WT and SF-WT groups (lanes 2 and 4 on the left) was lighter than
that of the RF-CT and SF-CT (lanes 3 and 5 on the left), indicating that thawing by CT
could lead to MHC degradation. However, after the digestion, these bands disappeared,
and proteins were digested into peptides of less than 35 kDa. Therefore, further analytical
methods, such as tricine-SDS-PAGE and mass spectrometry, need to be used to analyze the
characteristics of these low molecular weight peptides.

3.7. Schematic Model

Figure 7 shows the schematic model of the effect of freeze-thawing on crayfish meat
and its gelling properties. Freezing denatures the protein of the epidermis, leading to shell
loosening of crayfish, facilitating the subsequent peeling, and slow freezing causes greater
protein denaturation and thus improves the meat yield [7]. Accordingly, freezing also
disrupts muscle fibers and cells and induces the denaturation of MP [9,22]. Quick freezing
produces a large number of small ice crystals distributed both intra- and extra-cellularly,
while slow freezing generates a small number of large ice crystals that are extracellular [20].
Large ice crystals outside the cell can cause greater damage to myofibers and proteins.
Freezing-induced denaturation of MP is mainly attributed to the compression effect of ice
crystals and pH decline by freeze-concentration, which is more pronounced by using slow
freezing [1,5]. The thawing process results in MP denaturation, oxidation, and aggregation,
and even degradation, probably due to microorganism metabolism and the action of
endogenous enzymes [13,30]. In the present study, CT was found to be disadvantaged in
maintaining the gelling properties of MP for the frozen crayfish. We speculated that the
denaturation of MP by freeze-thawing could change the relative rate of protein unfolding
and aggregation during the subsequent heating.
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4. Conclusions

RF greatly shortened the total freezing time compared with SF (490 min vs. 13 min),
and WT obviously decreased the thawing time compared with CT. However, SF and
CT increased the meat yield, probably due to the greater degree of protein denaturation.
Different combinations of freezing-thawing resulted in the crayfish meat gels with various
mechanical properties. A soft and flexible texture could be obtained by SF-CT, while a
hard and flexible gel could be produced by RF-WT. Freeze-thawing not only affects the
internal microstructure, but also the tertiary and secondary structures of protein in the
crayfish meat gels. Moreover, those changes might increase protein digestibility but reduce
the antioxidant activity of gels. These findings could provide a scientific basis for the
manufacture of a novel gel-based meat product made from crayfish. The mechanism of
freeze-thawing treatment on the gelling properties of MP remains to be further studied.
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