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Abstract: It is a challenge to degrade sulfated polysaccharides without stripping sulfate groups. In the
present study, a photocatalytic method was applied to degrade fucoidan, a sulfated polysaccharide
from brown algae. The degradation with varying addition amounts of H2O2 and TiO2 were monitored
by high performance gel permeation chromatography (HPGPC) and thin layer chromatography (TLC),
and fucoidan was efficiently degraded with 5% TiO2 and 0.95% H2O2. A comparison of the chemical
compositions of 2 products obtained after 0.5 h and 3 h illumination, DF-0.5 (average Mw 90 kDa)
and DF-3 (average Mw 3 kDa), respectively, with those of fucoidan indicates the photocatalytic
degradation did not strip the sulfate groups, but reduced the galactose/fucose ratio. Moreover,
12 oligosaccharides in DF-3 were identified by HPLC-ESI-MSn and 10 of them were sulfated. In
addition, DF-0.5 showed anticoagulant activity as strong as fucoidan while DF-3 could specifically
prolong the activated partial thromboplastin time. All samples exerted inhibition effects on the
intrinsic pathway FXII in a dose-dependent manner. Thus, photocatalytic degradation demonstrated
the potential to prepare sulfated low-molecular-weight fucoidan with anticoagulant activity.

Keywords: fucoidan; photocatalytic degradation; anticoagulant activity

1. Introduction

Fucoidans are water-soluble biologically active sulfated polysaccharides in brown
algae [1], which are mainly composed of L-fucose and small amounts of galactose, glu-
cose, xylose, mannose, and uronic acid. There are numerous reports of fucoidans that
have a number of biological activities, including anti-coagulant [2,3], anti-tumor [4], anti-
inflammatory [5], anti-diabetic [6], anti-oxidant [7], anti-viral [8], and anti-thrombotic [9]
effects. The molecular weight of fucoidan is related to its biological activity and the low
molecular weight fucoidan usually has better biological activity [2,9]. The researchers
found that the inhibitory effects of fucoidans on coagulation and cell proliferation are
dependent on their sulfation degree [9]. Other researchers also found that the low molec-
ular weight of fucoidan has higher anticoagulant activity in vivo, and the sulfate content
plays an important role on anticoagulant activity [10]. Other researchers have also found
that low molecular weight fucoidan is easier to be degraded and utilized by intestinal
microorganisms [11]. Therefore, it is indeed to find an efficient and safe method for
fucoidan degradation.

Traditional degradation methods for fucoidans include acid hydrolysis [12], enzymatic
degradation [13], ultrasonic assisted degradation [14], and microwave-assisted degrada-
tion [15], etc. Acid hydrolysis has often been applied to degrade polysaccharides, but
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it could cause environmental pollution. Moreover, it could damage the sulfate group
of fucoidan leading to the loss of bioactivity [16]. The enzymatic approach for fucoidan
degradation is high-cost and inefficient which has restricted its industrial-scale applica-
tions [17]. Ultrasonic assisted degradation and microwave-assisted degradation have high
requirements for equipment, which greatly increases the production cost of fucoidan degra-
dation [18,19]. Therefore, it is necessary to find an environmentally friendly, low-cost,
high-efficiency degradation method which can retain the sulfate group of fucoidan.

Photocatalytic degradation, as an emerging ‘Green Chemistry’ technology, has at-
tracted increasing attention in recent years. Photochemical oxidation processes have been
used for degradation of many different organic pollutants [20]. This process is simpler,
higher yielding and more environmentally benign than conventional methods. The photo-
catalytic process originates from the semiconductor band gap. The photons with a higher
energy than the band gap can be absorbed while an electron is promoted to the conduction
band, leaving a hole in the valence band. Then this excited electron can be used to drive a
degradation reaction [21]. This degradation performance is attributed to highly oxidizing
holes and hydroxyl radicals (HO•) that are known as strong oxidizers [21]. TiO2 is the
most widely used catalyst for photocatalytic degradation because of its chemical stability
and low biological toxicity [22]. Therefore, photocatalytic degradation shows advantages
of low-energy-cost and high-degradation-efficiency. However, there is no report on its
application in the polymerization of sulfated polysaccharides.

Thus, the present study investigated the TiO2-catalyzed photocatalytic reaction for
fucoidan degradation, and the degradation products were characterized and compared
with the undegraded fucoidan by a series of analysis techniques to reveal the compositional,
structural, cytotoxicity and anticoagulant activity changes of polysaccharides caused by
photocatalytic degradation.

2. Materials and Methods
2.1. Materials

Fucoidan from Undaria pinnatifida was supplied by Qingdao Bright Moon Seaweed
Group Co., Ltd. (Qingdao, China). Its average molecular weight was determined as
190 kDa and its sulfate content as 26%. Titanium dioxide (TiO2) nanoparticles (25 nm)
were purchased from Evonik Degussa China Co., Ltd. (Shanghai, China) (Supplemental
Method S1 and Supplemental Method S2) (Supplemental Figures S1 and S2). Acetonitrile
and methanol alcohol as chromatographic grade were purchased from Fisher, Pittsburgh,
PA, USA.

2.2. Photocatalytic Degradation of Fucoidan

Photocatalytic Xenon Light Source System (CEL-HXF300-T3) was purchased from
Beijing Zhongjiao Jinyuan Technology Co., Ltd. (Beijing, China) Photocatalytic reaction
apparatus consists of a light source (Xenon lamp 300 W, PerkinElmer), a filter (AREF
300–1100 nm) and a power source.

The photocatalytic reaction was carried out in a reactor with dimension of 70 × 50 mm
(height × diameter). The irradiation was carried out using a 300 W Xenon lamp. Fucoidan
(1.0 g) was dissolved in water (200 mL) mixture at room temperature under magnetic
stirring for 12 h to obtain a homogeneous fucoidan solution. Titanium dioxide (0.2–1.0 g)
was added into the fucoidan solution. A magnetic stirrer was located at the reactor’s
base, which a homogenous TiO2 suspension could be maintained throughout the reaction.
Immediately after the addition of H2O2 (0–6.4 mL) to the reactor, the Xenon light was turned
on to initiate the reaction (pH 6). During the photolysis experiments, the solution composed
of the fucoidan solution and catalyst was placed in the reactor and stirred magnetically with
simultaneous exposure to Xenon light and the illumination time was between 0.5 h and 9 h.
After the reaction, the solution was centrifuged at 9600× g for 10 min and the supernatant
solution was dialyzed (molecular weight cut-off 300 Da) and lyophilized (chamber pressure
15 Pa, cold trap temperature −45 ◦C and material thickness 10 mm).
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2.3. Chemical Analysis

The total sugar content of the degraded polysaccharide was determined by the phenol-
sulfuric acid method at 490 nm using fucose as standard [23]. The sulfate group content was
determined by the BaCl2-gelatin turbidity method at 360 nm using K2SO4 as standard [24].
The content of sulfated polysaccharide was determined by the metachromatic assay with
1,9-dimethylmethylene blue (DMB) [25] at 525 nm by UV-visible spectrophotometer, using
fucoidan as the standard. The calculation defined for the contents of sulfate group and
sulfated polysaccharide are shown in Supplemental Method S3 and Supplemental Method S4.

2.4. Determination of Molecular Weight Distribution

The average molecular weight of degraded polysaccharide was determined by high
performance gel permeation chromatography (HPGPC) using chromatographic column of
TSK-4000PWXL (7.8 mm × 300 mm) and TSK-5000PWXL (7.8 mm × 300 mm). The effluent
was monitored by a Waters 2414 refractive index detector. The sample was centrifuged at
9600× g for 10 min and filtrated on 0.22 µm filter membrane. The injection volume was
10 µL, and the mobile phase was 0.1 M ammonium acetate at 0.4 mL/min with the column
temperature at 30 ◦C. Different molecular weight dextrans (1, 5, 12, 25, 50, 150, 410, and
670 kDa) were used as molecular weight standards. The dextrans were purchased from
Sigma Chemical Co., Ltd. (Shanghai, China).

2.5. Thin Layer Chromatography (TLC)

The degraded polysaccharide sample (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 h) and standards
(glucose, lactose, β-cyclodextrin) were injected onto the TLC plate (Merck, Germany). The
separation was performed with n-butanol, glacial acetic acid, and water (2:1:1, v/v/v).
Then the TLC plate was dried for 15 min at room temperature, sprayed with 0.2% w/v
naphtoresorcinol in ethanol-H2SO4 (96:4, v/v), and heated at 105 ◦C for 10 min to visualize
the saccharide bands [26].

2.6. Analysis of Monosaccharide Composition

The monosaccharide composition of the degraded polysaccharide was analyzed by
using HPLC system (Agilent 1260, Santa Clara, CA, USA). The degraded polysaccharide
was hydrolyzed at 120 ◦C with 1.3 M trifluoroacetic acid (TFA) for 3 h. After hydrolysis,
the resulting sugar was labeled by 1-phenyl-3-methyl-5-pyrazolone (PMP). Then, the PMP
derivatives were analyzed by HPLC-PAD with a Silgreen ODS C18 (250 × 4.6 mm, 5 µm)
which was kept at 30 ◦C. The mobile phase was composed of 20 mM ammonium acetate-
acetonitrile (83:17, v/v), and the flow rate was set as 1.0 mL/min [27].

2.7. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis

FT-IR spectra of the lyophilized degraded polysaccharides in KBr pellets were recorded
at room temperature on a Spectrum One-B FTIR Spectrometer (Perkin Elmer, Waltham,
MA, USA). The FTIR spectra were recorded in the frequency range of 500–4000 cm−1 and
the resolutions were set as 4 cm−1.

2.8. Mass Spectrometry Analysis

The degraded polysaccharide was analyzed by HPLC-MSn after derivation with PMP.
HPLC-MSn experiment was performed on a Finnigan LXQ ion trap mass spectrometer
(Thermo Fisher, Pittsburgh, PA, USA) equipped with an electrospray ion source (ESI) and
a photodiode array detector (PAD) controlled by XCalibur software (Thermo). A TSKgel-
Amide-80 (20 × 150, 3 µm) column used to separate the PMP labeled saccharides. The
analysis was conducted in positive mode, the spray voltage was set to +4.5 kV, and the
scan range was set from m/z 100 to 2000. The capillary temperature was 275 ◦C and the
mobile phase composed of 20 mM acetate–acetonitrile (83:17, v/v, pH 6) at a flow rate of
0.2 mL/min.
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2.9. Anticoagulant Activity

All the coagulation experiments were performed according to the method reported
by Mour
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using kits (Shanghai Solar Biotechnology, Shanghai, China). Briefly, 100 µL of pre-warmed
APTT reagent was mixed with 80 µL of normal rabbit plasma and 20 µL of pre-warmed
polysaccharide in 0.9% NaCl, after incubation at 37 ◦C for 3 min the mixture was added
with 100 µL of 0.025 mol/L calcium chloride (37 ◦C) and then APTT was recorded as the
time by the coagulometer. For prothrombin time (PT) assay, citrated normal rabbit plasma
(80 µL) was mixed with 20 µL of polysaccharide in 0.9% NaCl solution, after the incubation
at 37 ◦C for 1 min, 200 µL of pre-warmed PT assay reagent was added, and the clotting
time was recorded. For TT assay, 160 µL of citrated normal rabbit plasma was mixed with
40 µL polysaccharide in 0.9% NaCl solution, followed by incubation at 37 ◦C for 1 min, and
the clotting time was recorded after addition of 200 µL of pre-warmed TT.

2.10. Cell Culture Assay

Human colon adenocarcinoma cells (HT-29) were obtained from Type Culture Col-
lection of Chinese Academy of Sciences (Shanghai, China). These cells were cultured in
Dulbecco’s modified essential medium (DMEM) with high glucose, 1% amino acids, 10%
fetal bovine serum (FBS), and 1% antibiotic.

2.11. Cytotoxicity Study in HT-29 Cells

The MTT (methyl thiazolyl tetrazolium) assay was used to investigate the cytotoxicity
of degraded polysaccharide against HT-29 cells [8]. Briefly, 200 µL of culture medium
containing 2 × 104 cells were added to each well of 96-well plate. After 24 h culture, the
medium was replaced with 100 µL culture medium containing test samples of different
concentrations (200, 400, 600, 800, 1000 and 2000 µg/mL). Then the viability of the HT-29
cells was evaluated by MTT method after another 24 h. The absorbances of the wells were
determined by using a microplate reader (Biotek, Winooski, VT, USA) at 570 nm. H2O2
(50 µg/mL) was used as positive control and the test samples (2000 µg/mL) that were
added into the culture medium without HT-29 cells was used as blank control. Finally, the
relative cell viability was calculated with the following equation.

Relative cell viability (%) = (Asample − Ablank)/ (Acontrol − Ablank) × 100

2.12. Chromogenic Factor XII Activation Assay

Human activated coagulation factor XII (FXIIa) ELISA Kit was purchased from Wuhan
Huamei Bioengineering Co., Ltd. (Wuhan, China) The chromogenic factor XII (FXII)
activation assay of degraded fucoidans was conducted according to the kit instructions
using standard human plasma. The absorbances of the wells were determined by using a
microplate reader (Biotek, VT, USA) at 450 nm. Standard was used as a positive control
and saline solution (0.9% NaCl) was used as a negative control.

2.13. Statistical Analysis

All the results were expressed as mean ± SD. Data were analyzed using SPSS 17.0
statistical software. Differences between the groups were considered statistically significant
at p < 0.05.

3. Results and Discussions
3.1. Optimization of Photocatalytic Degradation Conditions

The photocatalytic degradation reaction was optimized by varying the illumination
time and the addition amount of TiO2 and H2O2. As illustrated in the Figure 1A, the
average molecular weight of fucoidan decreased gradually in the photocatalytic shown in
Figure 1B, but it took 9 h to yield the product with the average molecular weight ≤ 10 kDa.
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A further photocatalytic reaction with 5% TiO2 as well as 0.95% H2O2 showed an even
higher degradation efficiency, and the product had an average molecular weight of 3 kDa
after 3 h of reaction (Figure 1C). Then the degradation results of the reaction with 0.24%
and 0.48% of H2O2 were compared with that with 0.95% H2O2, and as illuminated in
Figure 1D,E, 0.24% and 0.48% H2O2 could not reduce the average molecular weight of
fucoidan to ≤ 10 kDa after 3 h of the reaction as 0.95% H2O2. In addition, fucoidan
could not be decreased with 5% TiO2 and 0.95% H2O2 within 6 h in the absence of light
(Supplemental Figure S3).
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Figure 1. Molecular weight distribution of fucoidan degraded with 1% TiO2 (A), 5% TiO2 (B), 5%
TiO2 and 0.95% H2O2 (C), 5% TiO2 and 0.24% H2O2 (D), 5% TiO2 and 0.48% H2O2 (E), 5% TiO2 and
0.95% H2O2 (F), and TLC of degraded fucoidan (G).

TLC analysis demonstrated the low-molecular-weight products produced by the
photocatalytic reaction (Figure 1G). After an hour reaction, oligosaccharides could be
observed, and the low-molecular-weight products accumulated alone with the reaction time.
Then monosaccharide and other small molecules were also produced as the by-products
after 4 h reaction. Obviously, 0.5 h reaction could significantly reduce the molecular-weight
of fucoidan, while a reaction time of 3 h is suitable to prepare oligosaccharides with fewer
by-products. Thus, the samples degraded for 0.5 and 3 h, named as DF-0.5 and DF-3,
respectively, were selected for subsequent chemical analysis.

TiO2, as the photocatalyst, could generate photoinduced electrons and positive holes
under the irradiation of light, and these charged species can further generate free radi-
cals [29]. H2O2 which could also produce radicals, has been applied widely in the degrada-
tion of polysaccharides [30]. However, it took a longer time (6–48 h) to degrade fucoidan
even at a higher reaction temperature (≥50 ◦C) with more H2O2 (≥2%) in the presence of
metal ions [31], and demonstrated a much lower degradation efficiency than the photocat-
alytic reaction with H2O2. H2O2 has been worked as an electron acceptor due to its high
oxidizing efficiency as a consequence of its high oxidation potential and can promote an
increase in the production of free radicals [32]. Other researchers have also found that the
efficiency of the photocatalytic degradation was significantly improved by the combination
of TiO2 and H2O2 [32,33]. The results show that the photocatalytic degradation method
could improve the degradation efficiency of fucoidan. Thus, a combination of 5% TiO2 and
0.95% H2O2 was applied in the subsequent experiments in the present study.

3.2. Chemical Composition Analysis

The degradation products of fucoidan prepared under optimized conditions (1.0 g
TiO2 and 6.4 mL H2O2 for 0.5 h and 3 h, named as DF-0.5 and DF-3, with yields of 87.38%
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and 43.34%, respectively) were subject to chemical composition analysis (Table 1). The
average molecular weights of DF-0.5 and DF-3 were 90 kDa and 3 kDa, respectively. The
chemical composition of DF-0.5 showed great similarity to that of fucoidan, while the
contents of the total sugar and sulfated polysaccharides of DF-3 were obviously decreased
compared with the original fucoidan.

Table 1. Chemical compositions of fucoidan and its 2 degradation products (DF-0.5 and DF-3).

Sample Average
Mw/kDa Total Sugar % Sulfate Group % Sulfated

Polysaccharides %

Fucoidan 190 47.52 ± 1.93 26.22 ± 2.04 97.10 ± 0.01
DF-0.5 90 48.46 ± 1.00 23.08 ± 0.92 95.85 ± 0.04
DF-3 3 36.46 ± 2.49 ** 22.69 ± 0.72 57.70 ± 0.01 ***

Data are expressed as mean ± SD (n = 3). ** p < 0.01 and *** p < 0.001 indicate statistically significant differences
from the control group.

To identify the functional groups of the degraded polysaccharide, FTIR spectra of
Fucoidan, DF-0.5 and DF-3 were compared as shown in Figure 2. A major broad band
at approximately 3440 cm−1 and an absorption band at approximately 1055 cm−1 were
respectively attributed to the O-H and C-H stretching vibrations. The absorption band at
around 1649 cm−1 was derived from the stretching vibration of the carboxylate anion of
uronic acids, and the absorption band at around 1263 cm−1 was derived from the stretching
vibration of S=O in the sulfate group. The FTIR spectra of Fucoidan, DF-0.5 and DF-3,
showed great similarities and no obvious differences were observed. This indicates the
photocatalytic degradation did not change the function groups of fucoidan.
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Monosaccharide composition analysis was carried out by HPLC-PAD following acid
hydrolysis and derivatization with PMP. As shown in Figure 2B, Fuc, DF-0.5 and DF-3
were all composed of galactose (Gal) and fucose (Fuc), but their ratio showed differences.
Obviously, the mass ratio of galactose to fucose in DF-3 (0.7:1.0) was much lower than
those in Fuc (1.3:1.0) and DF-0.5 (1.2:1.0). Thus, this result revealed that galactose in the
polysaccharide structure was gradually reduced in the photocatalytic degradation.

Since many bioactivities of sulfated polysaccharides are related to their sulfate group,
it is necessary to pay attention to the influence of photocatalytic degradation on the sulfate
group content. The chemical composition analysis results indicate the sulfate group in
the polysaccharide chain was not reduced during the photocatalytic degradation, and
this phenomenon was also observed in the oxidation degradation with H2O2 [31]. The
decrease of the sulfated polysaccharide content determined by DMB suggests the presence
of sulfated small saccharides in DF-3 because the sulfated tri-, di- and mono-saccharide
was undetectable in the DMB assay. In addition, the decrease of galactose in DF-3 indicates
that galactose in the chain was more ready to break down into monosaccharide or other
small molecules than fucose in the photocatalytic degradation reaction.
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3.3. Identification of Oligosaccharides Produced by Photocatalytic Degradation

The oligosaccharides in DF-3 were analyzed by HPLC-ESI-MSn after PMP derivatiza-
tion, and tetra-, tri- and di-saccharides were detected and elucidated by their MS data. The
ratios of the peak areas of the identified oligosaccharides in extracted ion chromatograms
were shown in Supplemental Table S1 and the pseudo-molecular ions of PMP-labeled
oligosaccharides from the DF-3 were illustrated in Supplemental Figure S4.

As illustrated in the Figure 3A, the pseudo-molecular ion of the Peak 1 at m/z 1143
[M+H]+ gave product ions at m/z 1063 [M-SO3+H]+, m/z 983 [M-2SO3+H]+, m/z 903
[M-3SO3+H]+, m/z 837 [M-3SO3-Fuc+H]+ and m/z 757 [M-4SO3-Fuc+H]+ in MS2. Thus,
Peak 1 was determined as a tetrasaccharide composed of 3 sulfate groups, 3 Fuc residues
and a 134 Da residue which was inferred as 2,3,4-trihydroxypentanal, a photocatalytic
degradation product of Fuc. The possible photocatalytic degradation process of Fuc to yield
2,3,4-trihydroxypentanal (dFuc) is shown in Figure 4. Due to the attack of the radicals in the
reaction solution, the aldehyde at C-1 of Fuc was oxidated to carboxylic acid, and then the
decarboxylation reaction yielded a pentane-1,2,3,4-teraol. Subsequently, the oxidation of the
hydroxyl group to aldehyde group produced the final product, 2,3,4-trihydroxypentanal.
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As shown in Figure 3B–E, some kinds of trisaccharides were observed in DF-3. The
pseudo-molecular ion of Peak 2 at m/z 997 [M+H]+ gave product ions at m/z 917 [M-
SO3+H]+, 837 [M-2SO3+H]+, 771 [M-2SO3-Fuc+H]+, 691 [M-3SO3-Fuc+H]+, 611 [M-4SO3-
Fuc+H]+ and 495 [M-4SO3-2Fuc+H]+ in MS2. So Peak 2 was identified as the PMP deriva-
tive of tetra-sulfated Fuc→Fuc→dFuc. Peaks 3–8 in Figure 3C all had pseudo-molecular
ions at m/z 917, and offered similar MS2 spectra (Supplemental Figure S5). They all showed
product ions at m/z 837 [M-SO3+H]+ in MS2 by losing a SO3 residue, and they also gave
fragment ions 771 [M-2SO3-Fuc+H]+, 691 [M-3SO3-Fuc+H]+, 611 [M-4SO3-Fuc+H]+ and
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495 [M-4SO3-2Fuc+H]+ as Peak 5. Therefore, Peaks 3–8 were identified as PMP labeled
tri-sulfated Fuc→Fuc→dFuc. The pseudo-molecular ions of Peak 9–12 all showed at m/z
947 [M+H]+ which gave product ions at m/z 867 [M-SO3+H]+, 787 [M-2SO3+H]+, 641
[M-2SO3-Fuc+H]+ and 495 [M-2SO3-2Fuc+H]+ in MS2. Peaks 13 and 14 demonstrated
their pseudo-molecular ion at m/z 867 [M+H]+, and their structure could be confirmed by
fragment ions at m/z 787 [M-SO3+H]+, 641 [M-SO3-Fuc+H]+ and 495 [M-SO3-2Fuc+H]+.
Thus, Peaks 9–12 in Figure 3D and Peaks 13 and 14 in Figure 3E were established as PMP
derivatives of di-and mono-sulfated Fuc→Fuc→Fuc, respectively.

As illustrated in the Figure 3F–L, some disaccharides could also be observed in DF-3.
Peak 15 in Figure 3F shows a pseudo-molecular ion at m/z 815 [M+H]+ which affords
product ions at m/z 735 [M-SO3+H]+, 655 [M-2SO3+H]+, 589 [M-SO3-Fuc+H]+ and 509
[M-2SO3-Fuc+H]+ in MS2. The disaccharide was composed of 2 sulfate groups, a Fuc
residue and a 160 Da residue which was inferred as dehydrogenated Gal (dGal) produced
from the photocatalytic degradation of Gal. Besides, Peaks 16 and 17 in Figure 3G with the
same pseudo-molecular ions at m/z 895 [M+H]+ offered fragment ions shown at m/z 815
[M-SO3+ H]+ and m/z 735 [M-2SO3+H]+, indicating an additional SO3 residue compared
to Peak 15. Peaks 16 and 17 were identified as PMP derivatives of trisulfated Fuc→dGal.

Peaks 18–20 in Figure 3H show the same pseudo-molecular ion at m/z 771 [M+H]+

which affords a product ion at m/z 691 [M-SO3+H]+, 611 [M-2SO3+H]+ and 465 [M-2SO3-
Fuc+H]+, indicating its structure as PMP labeled di-sulfated Fuc→dFuc. Peaks 21 and
22 in Figure 3I with uniform pseudo-molecular ions at m/z 721 [M+H]+, further yielded
fragment ions at m/z 641 [M-SO3+H]+ and m/z 495 [M-SO3-Fuc+H]+. Thus, Peaks 21 and
22 were both identified as PMP labeled mono-sulfated Fuc→Fuc, but they differed in the
sulfated substitution. Peak 23 in Figure 3J with a pseudo-molecular ion at m/z 691 [M+H]+

was characterized as a PMP labeled mono-sulfated Fuc→dFuc by its fragment ions at m/z
611 [M-SO3+H]+ and m/z 465 [M-SO3-Fuc+H]+. The pseudo-molecular ion of Peak 24 at
m/z 673 [M+H]+ provides product ions at m/z 511 [M-Gal+H]+ which were characteristic
for a disaccharide of Gal→Gal. Peak 25 in Figure 3M shows a pseudo-molecular ion at
m/z 627 [M+H]+ which affords a product ion at m/z 465 [M-Gal+H]+. Thus, the saccharide
portion of Figure 3L was identified as PMP labeled Gal→dGal. In the present study, a
series of oligosaccharides, including di-, tri- or tetra-saccharides, were observed in the
photocatalytic degradation products of fucoidan, and interestingly, sulfate groups remained
in oligosaccharide fragments. Some methods have already been applied to degrade sulfated
polysaccharides, such as acid hydrolysis and hydrogen peroxide degradation. However,
acid hydrolysis could remove the sulfate groups which is important for the bioactivity and
function of the sulfated polysaccharides [34]. Hydrogen peroxide degradation [31] failed to
produce oligosaccharides. The findings in the present study suggest that photocatalytic
degradation could retain the sulfate group of fucoidan and have more advantages in the
production of sulfated oligosaccharides from polysaccharides.

3.4. Cytotoxicity of the Degraded Fucoidans

Considering the emergence of novel fragments in the photocatalytic degradation, it is
necessary to evaluate the toxicity of the degradation products of fucoidan for the safety in
their further application. Numerous researches have revealed that fucoidan could reduce
the HT-29 cell proliferation or induce apoptosis of HT-29 cells [35,36]. Then, in the present
study, the influences of fucoidan, DF-0.5 and DF-3 on the proliferation of HT-29 human
colon adenocarcinoma cells were determined by the MTT method. As shown in Figure 5,
all the three samples showed no significant cytotoxicity at concentrations ≤2000 µg/mL.
Numerous researches have revealed that many polysaccharides could reduce the cell
proliferation at a concentration of around 1000 µg/mL [37,38]. Fucoidan, it has also been
reported, could reduce the number of viable Lewis Lung Carcinoma and melanoma B16
cells at a concentration of around 1000 µg/mL [39]. The findings in the present study
suggested that photocatalytic degradation could not enhance the cytotoxicity of fucoidan,
indicating the safety of the photocatalytic degradation products of fucoidan.



Foods 2022, 11, 822 9 of 12

Foods 2022, 11, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 4. The chemical structure change of fucose during photocatalytic degradation reaction. 

3.4. Cytotoxicity of the Degraded Fucoidans 

Considering the emergence of novel fragments in the photocatalytic degradation, it 

is necessary to evaluate the toxicity of the degradation products of fucoidan for the safety 

in their further application. Numerous researches have revealed that fucoidan could re-

duce the HT-29 cell proliferation or induce apoptosis of HT-29 cells [35,36]. Then, in the 

present study, the influences of fucoidan, DF-0.5 and DF-3 on the proliferation of HT-29 

human colon adenocarcinoma cells were determined by the MTT method. As shown in 

Figure 5, all the three samples showed no significant cytotoxicity at concentrations ≤ 2000 

μg/mL. Numerous researches have revealed that many polysaccharides could reduce the 

cell proliferation at a concentration of around 1000 μg/mL [37,38]. Fucoidan, it has also 

been reported, could reduce the number of viable Lewis Lung Carcinoma and melanoma 

B16 cells at a concentration of around 1000 μg/mL [39]. The findings in the present study 

suggested that photocatalytic degradation could not enhance the cytotoxicity of fucoidan, 

indicating the safety of the photocatalytic degradation products of fucoidan. 

 

Figure 5. Effects of the degraded fucoidans on the HT-29 cell proliferation. Results were presented 

as mean ± SD (n = 6). ** p < 0.01 indicate statistically significant differences from the control group. 

3.5. Anticoagulant Activity of the Degraded Fucoidans 

Fucoidan has been found to have significant anticoagulant activity which indicates 

its potential application as an anticoagulant as well as the risk to cause hemorrhage in its 

other applications. In the present study, the anticoagulant activities of fucoidan, DF-0.5 

and DF-3 were evaluated by the APTT, PT and TT assays using heparin as a reference. As 

shown in Figure 6, DF-0.5 could prolong APTT, PT and TT in a concentration-dependent 

manner, although its anticoagulant activity was similar to fucoidan, but weaker than that 

Figure 5. Effects of the degraded fucoidans on the HT-29 cell proliferation. Results were presented as
mean ± SD (n = 6). ** p < 0.01 indicate statistically significant differences from the control group.

3.5. Anticoagulant Activity of the Degraded Fucoidans

Fucoidan has been found to have significant anticoagulant activity which indicates its
potential application as an anticoagulant as well as the risk to cause hemorrhage in its other
applications. In the present study, the anticoagulant activities of fucoidan, DF-0.5 and DF-3
were evaluated by the APTT, PT and TT assays using heparin as a reference. As shown in
Figure 6, DF-0.5 could prolong APTT, PT and TT in a concentration-dependent manner,
although its anticoagulant activity was similar to fucoidan, but weaker than that of heparin.
However, DF-3 only prolonged the clotting time of APTT obviously but its capability was
weaker than fucoidan and DF-0.5. Moreover, DF-3 showed no significant effect on the
clotting time of PT and TT. Given the fact that fucoidan, DF-0.5 and DF-3 have similar
sulfate contents but vary in the molecular weight and the molar ratio of fucose to galactose,
this finding is consistent with the previous report that molecular weight and the molar
ratio of fucose to galactose plays a vital role in the anticoagulant activity of fucoidan [40].
As we know, TT indicates the inhibition of the common pathways of coagulation, while
APTT and PT indicate the inhibition of the intrinsic pathway of coagulation and extrinsic
pathway, respectively [41]. Interestingly, DF-3 specifically prolonged the clotting time of
only APTT but not PT or TT, suggesting its selective participation in the intrinsic pathway
of the blood coagulation cascade.
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Figure 6. Comparison of the activated partial thromboplastin time (A), prothrombin time (B) and
thrombin time (C) of the degradation products (DF-0.5 and DF-3) with those of fucoidan and
heparin (n = 4).

The effects of fucoidan, DF-0.5 and DF-3 on FXII which triggers the intrinsic pathway
of blood coagulation were further investigated in vitro. As shown in Figure 7, all samples
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exerted inhibition effects on the intrinsic pathway FXII in a dose-dependent manner. Fu-
coidan and DF-0.5 exerted stronger inhibition effects on FXII than DF-3. These results were
consistent with the results of the APTT, PT and TT assays. Notably, DF-3 could specifically
prolong the clotting time of APTT, but not PT or TT, and it also exerted inhibition effects
on the FXII. This indicates DF-3 targets the intrinsic pathway of coagulation although
its effect is not as strong as fucoidan or DF-0.5. It has been reported that FXII inhibition
could reduce thrombosis without causing abnormal bleeding [42]. Thus, the photocatalytic
degradation of fucoidan is promising to provide safer anticoagulant agents targeting the
intrinsic coagulation pathway without increasing the bleeding risk.
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4. Conclusions

The photocatalytic degradation reaction condition was optimized to obtain low-
molecular-weight fucoidans by varying the illumination time and the addition amounts
of TiO2 and H2O2. The composition and structure of the degraded fucoidan were charac-
terized, and the results indicated that the photocatalytic degradation did not remove the
sulfate groups of fucoidan, and sulfated tetra-, tri-, and di-saccharides were identified in
DF-3. All the photocatalytic degradation products showed no significant cytotoxicity at
concentrations ≤2000 µg/mL. Moreover, fucoidan and DF-0.5 could prolong APTT, PT and
TT, but DF-3 could only prolong the clotting time of APTT. All samples exerted inhibition
effects on the intrinsic pathway FXII in a dose-dependent manner. Thus, the present study
demonstrated the photocatalytic degradation as an environmentally friendly, low-cost
and effective method to prepare low-molecular-weight fucoidans, but not stripping their
sulfate groups.
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10.3390/foods11060822/s1. Supplemental Method S1: SEM observation, Supplemental Method S2:
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produced by photocatalytic degradation, Figure S1: SEM images of TiO2. 100,000 × TiO2 (a);
50,000 × TiO2 (b); 30,000× TiO2 (c); 10,000× TiO2 (d), Figure S2: TEM images of TiO2. 40,000 × TiO2
(a); 80,000 × TiO2 (b); 150,000× TiO2 (c); 400,000× TiO2 (d), Figure S3: Molecular weight distribution
of fucoidan degraded with 1% TiO2, 0.95% H2O2 in the absence of light, Figure S4: The pseudo-
molecular ions of PMP-labeled oligosaccharides from the DF-3, Figure S5: MS2 of PMP-labeled
oligosaccharides from the DF-3.
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