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Abstract: Seaweeds are traditional food ingredients mainly in seaside regions. Modern food science
and nutrition researchers have identified seaweed as a source of functional nutrients, such as dietary
soluble and insoluble fibers, proteins, omega-3 fatty acids, prebiotic polysaccharides, polyphenols,
and carotenoids. Owing to the rich nutrients, seaweeds and seaweed extract can be used as func-
tional ingredients by modifying the nutrients composition to reduce the proportion of available
carbohydrates, delaying the gastric emptying time and the absorption rate of glucose by increasing
the digesta viscosity, and attenuating the digesting rate by blocking the activity of digestive enzymes.
This review presents the concept of using seaweed as unconventional ingredients that can function
synergistically to reduce the glycemic potency of cereal products.
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1. Introduction

The prevalence of type 2 diabetes (T2D) has escalated exponentially from 110 million
adults in 1994 to 536.6 million in 2021, and it is estimated to reach 578 million by 2030
and 700 million by 2045 [1,2]. The low- and middle-income countries in total contribute
to most adult diabetes cases (414.0 million) in 2021 [3]. When the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) emerged in the global pandemic [4], T2D came
to be an important risk factor for severe morbidity and mortality related to COVID-19
infection (coronavirus disease-2019) [5–9]. The glycemic management is, therefore, one
public priority of the population at a high risk of developing T2D, particularly in Asians
who are predisposed to poorer insulin sensitivity and higher postprandial blood glucose
excursions compared to Caucasians [10–12]. The glycemic index (GI) is a numerical value
used to characterize the impact of carbohydrate foods to raise postprandial blood glucose
concentration and guide people to choose foods that raise the glucose slowly [13]. The GI
value is calculated as the percentage of the area under the 2-h blood glucose response curve
(AUC) after consuming food containing 50 g of available carbohydrates in comparison
to the AUC generated by 50 g glucose in the same participants [13]. If a food has a GI
lower than 56 it is considered to have a low glycemic potency, where a GI between 56–69 is
medium, and a GI higher than 69 is high [14]. Adhering to a diet of low glycemic potency
(glycemic index (GI) < 56) lowers the acute impact of foods on postprandial glycemic
response and is strongly associated with better long-term glycemic management to reduce
T2D risk [14].

One challenge regarding glycemic management is that the staple food that accounts
for 60% of total daily energy consumption in low- and medium-income countries, such as
most of the Asian population, is high GI (GI ≥ 70) refined cereal foods [15,16]. For example,
white rice, which has been associated with postprandial hyperglycemia and increased
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risk of T2D, is the main staple food in the Asian diet [17–19]. Although cereals with the
lower glycemic potency (i.e., lower GI) is well perceived as a protective dietary factor of
the T2D risk [20], people may favor refined cereals with preferred sensory characteristics
(i.e., color, odor, texture, and flavor) to the healthy alternative since food habits, culture,
and family tradition play a significant role in accepting cereal foods [21]. Replacing refined
cereal foods with animal-based foods such as meat and meat products can even further
increase the risk of T2D [22] in Asian populations that have already been experiencing a
shift towards a modern meat dietary pattern [23,24]. Reducing the glycemic potency of
cereal foods becomes an important and practical strategy.

Current strategies to reduce the glycemic potency of cereal foods are commonly
achieved through the following mechanisms: (1) reducing the available carbohydrate,
(2) reducing the post-consumption digestion rate, (3) reducing post-digestion glucose
absorption rate, and (4) increasing postprandial blood glucose clearance rate [25] (Figure 1).

Figure 1. The applications of seaweeds in reducing the glycemic potency of cereal foods.

Seaweeds, which have been used as food ingredients in some coastal regions [26], are
a renewable source of high-value nutrients, including dietary fiber, protein, functional fatty
acids, prebiotic polysaccharides, polyphenols, carotenoids, and minerals [27]. They can be
re-invented as unconventional ingredients in lowering the glycemic potency of cereal foods
by modifying the nutrient composition to reduce the energy contribution from available
carbohydrates, attenuating the digesting rate by blocking the activity of digestive enzymes,
and delaying the gastric emptying time and the glucose absorption rate by increasing
the digesta viscosity. In fact, seaweeds have attracted attention from food industries as
functional ingredients to fortify the nutritional composition and health-related beneficial
properties in bakery, dairy, fish, meat, and vegetable-based food products [28]. According
to the Seafood Source report, the number of new food products containing ingredients
derived from seaweeds launched in the European market has increased by 147 per cent in
four years (from 2011 to 2015) demonstrating Western countries’ growing interest in these
substances [28,29].
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The previous reviews and perspective articles reviewed the potential biological proper-
ties of various seaweeds as a nutritional supplement in the long-term prevention and treat-
ment of diseases, such as anti-cancer, anti-inflammatory, anti-hypertensive, anti-microbial,
anti-viral, anti-obesity, and neuroprotective functions [30]. Many studies have focused on
the supplementary value of either individual seaweed extract with high-value bioactive
nutrients or comparing the nutritional values between different types of seaweeds [30]. Nev-
ertheless, to the authors’ best knowledge, no current article has collectively presented the
strategies of using edible seaweeds as added functional ingredients to reduce carbohydrate-
rich food’s glycemic potency or glycemic index. As the contents of bioactive compounds
vary between seaweed species, reformulating the high GI or glycemic potency of cereal
food products does not need to be limited to one seaweed or one nutrient. Instead, multiple
seaweed-derived ingredients can work synergistically to combine the different peculiar
compositions of various seaweed species. The present article presents the concept of us-
ing various seaweeds as innovative ingredients in cereal products, and that can function
synergistically to target different mechanisms to reduce the glycemic potency.

In this review, we also summarize published clinical studies that investigated the effect
of seaweeds and seaweed extracts on the acute glycemic response in healthy adults, and
we review the potential mechanisms that could explain the beneficial role of seaweeds and
seaweeds extract on glucose metabolism. The eligible studies include studies that recruited
adults (≥18 years old) reported as healthy with a body mass index (BMI) between 18.5 and
40 kg/m2, parallel and crossover randomized controlled trials (RCTs) that investigated
the acute effect of seaweed species and/or extracts on to up to 3-h postprandial blood or
plasma glucose, using placebo as control.

Given that the present article is not a systematic review, we may not have identified
some studies and publication bias should be acknowledged. However, both authors con-
ducted the literature search independently using a combination of medical subject heading
(MeSH) search terms and free text search terms. The search terms include combinations of
“healthy”, “adult”, “normal weight and/or overweight and/or obese”, “seaweed and/or
seaweed extract”, “placebo”, “blood glucose and/or plasma glucose and/or serum glu-
cose”, “randomized controlled trials”, and “postprandial”. We searched the publications
between January 2000 and January 2022.

2. Reducing the Glycemic Potency of Cereal Foods: A Diet Challenge

Cereal foods, which is a group of grains including rice, sorghum, maize, millet, bar-
ley, buckwheat, and the staple foods made of flour (e.g., pasta, bread, roti, noodles, etc.),
remain a vital high-carbohydrate commodity in nourishing the still increasing world popu-
lation [15]. Grain processing is a prerequisite for eating cereals, with milling fractionation
resulting in the removal of bran fraction together with many compounds beneficial for
human metabolism concentrating energy-dense parts into flour. The rapid urbanization in
low- and middle-income countries brought dietary change toward an increasing amount of
medium and high GI cereal foods [23,31], such as biscuits, cakes, bars, and cereal snacks,
which are the carriers of high amounts of added sugar, lipids, and salt [32] (Table 1). GI
values of most common cereal foods are in the high GI category (GI ≥ 70) and the medium
GI category (GI 56–69) [14].

Incorporating low GI cereal foods in the daily diet should be an important com-
ponent of glycemic management [14]. Livesey et al. [33] conducted a meta-analysis of
24-prospective cohorts of 7.5 million person-years of follow-up and reported a significant
dose-dependent association between glycemic load and the risk of T2D. It is recommended
that when the daily carbohydrate intake is between 200–250 g (median value in Western
diets), the target GI should be below 40 [33]. When the daily carbohydrate intake exceeds
250 g per day, high GI foods (>70) should be limited to a lower frequency [33]. When the
daily carbohydrate intake exceeds 300 g per day (over 60% of energy), an average GI of 33
should be recommended by introducing more low GI foods (GI < 50) [33].
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Table 1. Glycemic index (GI) of common cereal products.

Food Items Serving Size (g) GI Value (Mean ± SEM) Reference

High-farinaceous food
White rice 194 96 ± 6.6 [34]
Brown rice 176 66.21 ± 7.78 [35]

Jasmine rice 180.3 78.7 ± 11.6 [36]
Parboiled white rice 259 77 ± 4 [37]
Parboiled brown rice 167 50.1 ± 5.37 [35]

Basmati rice 188.3 50 ± 5.8 [36]
Glutinous rice 109 89 ± 8 [38]

Bario celum (black rice) 50 60.9 ± 7.2 [39]
Beras merah (red rice) 50 78.3 ± 9.9 [39]

White rice porridge 290 98.4 ± 8.1 [40]
Sorghum (coarse) 232 53 ± 2.84 [41]

Sorghum (fine) 252 56 ± 9.83 [41]
Maize (steamed) 164 74.7 ± 6.5 [42]
Millet (steamed) 169 64.4 ± 8.5 [43]
Millet (porridge) 550 93.6 ± 11.3 [43]
Barley powder 67 69.8 ± 6.7 [44]

Processed carbohydrate foods
Buckwheat noodles 70.2 59.6 ± 13.3 [44]

Wheat noodles 91.5 48.2 ± 4.9 [44]
Wheat pasta 330 72 ± 6.51 [41]

Puffed rice grains 56.2 72.4 ± 6.6 [44]
Rice vermicelli 63.3 56 ± 7 [45]

Rice cakes 93.8 80.7 ± 8.5 [44]
Rice balls 100 96.9 ± 15.1 [44]
Rice dosa 193 76 ± 5 [46]
Rice idli 162 85 ± 4 [46]

Sorghum pasta 330 46 ± 6.47 [41]
Buckwheat jelly 318.5 65.7 ± 11.8 [44]

Bakery foods
Rice flour muffin 119.4 79.1 ± 6.3 [47]

Rice bread 116.6 73.4 ± 7.6 [44]
White wheat bread 91.4 83 ± 8.8 [48]

Wholemeal wheat bread 128 77 ± 6 [49]
Wheat pancakes 102.8 57 ± 9.7 [44]
White wheat roti 119 64 ± 9.24 [41]
Brown wheat roti 69.44 61 ± 5.77 [50]

Sorghum multigrain roti 119 68 ± 8.63 [41]
Sorghum flakes poha 277 45 ± 5.27 [41]
Wheat flour muffin 126.1 74.4 ± 8.1 [47]

Bagel 104.1 77.4 ± 11.5 [44]
Rye bread 109.4 64.9 ± 18.4 [44]

Corn flour cake 54 85.02 ± 11.21 [51]
Corn flour cookie 71 52.23 ± 6.78 [51]
Corn flour muffin 136.9 74.4 ± 5.4 [47]

Castella cake 114.2 59.9 ± 13.3 [44]
Buckwheat pancakes 169.4 49.9 ± 8.9 [44]

Sorghum biscuits 75 54 ± 6.3 [41]
Processed breakfast cereal

All-Bran (Kellogg’s Inc.,
Seol, South Korea) 57.5 51.4 ± 11.1 [44]

Cornflakes (Kellogg’s
Inc., Seol, South Korea) 56.2 51.6 ± 10.7 [44]

Rice flakes poha 277 74 ± 4.87 [41]
Wheat biscuits 75 57 ± 11.4 [41]

GI: glycemic index. All GI tests were performed on healthy participants for 2 h using 50 g glucose as the reference
food. Serving size (g): the portion size of the food item in each GI test.
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Lowering the glycemic potency (i.e., GI) of cereal foods directly impacts the postpran-
dial blood glucose excursion. The amount of glucose available in the bloodstream mainly
depends on several components, including the available carbohydrate content in foods,
carbohydrate digestion, hormonal regulation, glucose transport mechanisms and glycoly-
sis [52]. The primary glucose available for the human body comes from the breaking down
of the dietary carbohydrate (mostly from starch in cereal foods) by enzymes, including
α-amylases and oligossacharidases (e.g., α-glucosidase and sucrase) to monosaccharides
(mainly glucose) in mouth and duodenum [52]. In the small intestine, the active transport
ensures a one-way flow of glucose D-isomers from the gut to the epithelial cells regardless
of glucose gradient via activating sodium Na-glucose transporter 1 (SGLT1) [52]. The
absorbed glucose within the capillaries is then transported via mesenteric circulation to
target cells for harness energy [52].

The glucose metabolism is closely controlled by pancreatic hormones glucagon and
insulin. While the glucagon handles the breakdown of stored liver glycogen and stimula-
tion of gluconeogenesis and ketogenesis, insulin’s roles are to promote glucose uptake by
cells, stimulate protein and fat synthesis, and inhibit glucagon activities [52]. Other hor-
mones, including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like
peptide-1 (GLP-1) produced by intestinal L-cell, are also responsible for glucose clearance
in blood capillaries, slowing down gastric emptying, suppressing postprandial glucagon
production, and increasing glucose-dependent insulin production. After uptake, glucoses
undergo glycolytic flux to provide cellular energy and intermediates for energy supply for
metabolism in humans [52]. In total, 23% of the glucose is disposed to the brain, 29% to
splanchnic tissues (liver and gut), and 25% to insulin-dependent skeletal tissues, while the
rest is used by other tissues such as the heart, adipose tissue, and the kidney.

Quality of cereal foods from a nutritional perspective became apparent as people
became more aware of the impact of sedentary lifestyles, increased availability of foods
with high energy density and high GI and changing eating patterns on health. The interplay
between cereal foods quality (nutrition and glycemic potency) and the human digestive
system brings about changes in physiology important for the maintenance of healthy
homeostasis, particularly glucose homeostasis. Intending to improve the nutritional profile
and lower the glycemic potency of cereal foods, research activities around the world
emphasized studying physiological mechanisms and factors leading to lower glycemic
potency and to the development of technologies suitable for rendering unconventional
ingredients to improve the health benefit in cereal food products.

3. Seaweed: The Unconventional Potential of the Traditional Food Ingredients in
Lowering the Glycemic Impact

The glycemic index can be attenuated by adjusting the nutrient composition to reduce
the energy contribution from available carbohydrates, mitigating the digesting rate by
blocking the activity of digestive enzymes, and delaying gastric emptying time and glucose
absorption rate by increasing the digesta viscosity. Seaweeds, which provide a range
of high-value nutrients, such as dietary fiber, protein, functional fatty acids, prebiotic
polysaccharides, polyphenols, and carotenoids, can lower glycemic potency via interfering
with the mechanisms. In this section, we review the use of seaweeds in modern days and
the macro-and micro-nutrients of seaweed that may exhibit glycemic-lowering effects.

3.1. Seaweed: A Traditional Food Ingredients in Modern Days

Seaweeds or algae are autotrophic organisms that generate energy through photosyn-
thesis [53]. They are the sea “vegetables” that provide nutrition and energy as feeds to other
marine organisms [53]. The seaweeds are classified taxonomically into four main groups
according to their pigmentations: red seaweed (Rhodophyta), green seaweed (Chlorophyta),
brown seaweed (Phaeophyta), and blue-green seaweed (Cyanophyta) [53]. Red seaweed, such
as Corallina officinalis, Tenarea tortuosa (formerly named Lithophyllum tortuosum), Asparagopsis
armata, Palmaria palmata, and Mastocarpus stellatus, are the most abundant and primitive
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class. Brown seaweed (phylum Ochrophyta, class Phaeophyceae) is further divided into
two subgroups: kelps mainly in the Western Cantabrians and Iberian Peninsula Atlantic
coasts; (Laminaria hyperborean, Laminaria ochroleuca, and Saccorhiza polyschides), and fucales
(Fucus vesiculosus, Fucus serratus, Himanthalia elongata, and Ascophyllum nodosum) [54,55].
Green seaweed, such as Ulva lactuca, is less abundant than the other groups [32]. Currently,
only around 200 out of approximately 10,000 species are used as food ingredients [56,57].
Around 10 species are cultivated to provide 30 percent of the 120 million tones (measured
in wet weight) of the world aquaculture production in 2019 [57]. In 2021, red seaweed
and brown seaweed were ranked the second and the third-largest species groups in global
aquaculture, respectively [57].

Red, brown, and green seaweeds have been used as direct food ingredients or pro-
cessed foods in the coastal regions of Asian countries (e.g., China, Japan, and Korea), few
European countries (e.g., Greenland and Iceland), and some South American countries
(e.g., Mexico and Chile) [53,58,59]. The average adult in Japan and South Korea consumes
around 14.3 g (wet weight) dietary seaweeds per day [60,61]. Amongst the seaweed foods,
the most recognized are Porphyra/Pyropia spp. (Nori), Laminaria/Saccharina spp. (Kombu),
and Undaria spp. (Wakame) [61]. Due to the global migration and cultural infiltration
and the advancing technologies in food preservation and transportation, more regions
have started to consume seaweed as direct food ingredients [53,62,63]. Further, due to the
year-round availability, seaweeds have gained much attention as an inexpensive source for
plant-derived extract. The seaweeds are commonly extracted to make food hydrocolloids
such as agar, carrageenan, and alginates. The growth of consumers’ demands for healthy
foods, sustainable food production, and plant-based foods has motivated the research for
unconventional use of edible seaweeds beyond the traditional culinary use [64].

From a nutritional standpoint, the nutrients in seaweeds are excellent substances that
can improve the carbohydrate quality and lower the glycemic potency of cereal foods.
Similar to most terrestrial edible plants, seaweeds are excellent sources of dietary fiber,
omega 3 fatty acids, polyphenols, and phytochemicals such as carotenoids [65]. These
nutrients have been recognized and endorsed for health benefits and potential development
of functional ingredients [57]. These seaweed-derived nutrients may have technological
properties that make them viable to be incorporated in food products when the quantity is
carefully evaluated to meet the required sensory quality [27,64,65].

Nevertheless, the availability of the nutrients and the nutrient composition of sea-
weeds growing in the wild are highly variable between seasons [66–68]. For example, the
total seaweed carbohydrates content in wet weight reaches the highest in the maximum
growth periods and in the summer months when photosynthetic activity is the highest [67].
The lipid content is correlated to the temperature change and reaches the highest concen-
tration in winter and spring [69]. The protein content reaches the highest concentration in
August [68]. The synthesis of the bioactive compounds generally responds to the intense
irradiation and high oxygen concentration that typically happens in February to act against
the free radicals and other oxidizing agents [68]. The moisture content of fresh seaweed
is very high (up to 94% of the biomass, Table 2), which also varies between seasons in the
wild [27]. The advancing seaweed cultivation technologies have solved the problems of
nutrient variations in wild-harvested seaweeds [70,71]. For instance, by modifying the
abiotic factors, the production of target nutrients can be well controlled [72,73].
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Table 2. Nutrient composition of some green algae (chlorophyta), red algae (Rhodophyta), and brown
algae (phaeophyceae).

Seaweed Species Moisture
(% of WW)

Dietary Fiber Protein Lipids
Total

Polyphenols ReferenceSoluble
(% DW)

Insoluble
(% DW)

Maximum
Protein
(% DW)

Total
(% DW)

EPA
(% DW)

Brown seaweed (Phaeophyceae)
Ascophyllum nodosum 67–87 42–64 NA 8.7 3.62 7.24 960 mg PGE/100 g DW [74–77]

Bifurcaria bifurcata 73 15 23 8.92 6.54 4.09 1990 mg PGE/100 g DW [76–79]
Durvillaea antarctica NA 28 44 11.6 0.8 4.95 NA [80]

Fucus vesiculosus 67–82 11 49 12.99 3.75 9.94 1150 mg PGE/100 g DW [76,77,81,82]
Laminaria spp. 73–94 36 10 21 0.8 16.2 NA [79,83–86]

Saccharina latissima 73–94 17.12 13.11 25.7 0.8 NA 11.1 mg GAE/100 g DW [79,84,86–88]
Sargassum fusiforme 61 32.9 16.3 20 1.4 42.4 NA [81,85,89,90]
Undaria pinnatifida 88 30.0 5.3 24 4.5 13.2 4460 mg GAE/100 g DW [81,85,90,91]

Red seaweed (Rhyodophyta)
Chondrus crispus 72–78 22.25 12.04 27.2 2 NA NA [74,89,92,93]

Garateloupiaturuturu 85 48.1 12.3 22.9 3 NA NA [84,94]
Jania rubens NA NA NA 11.28 2 NA 56 mg GAE/100 g DW [95,96]

Porphyra/Pyropia spp. 77–91 17.9 16.8 44 1.0 10.4 5530 mg GAE/100 g DW [84–87,90,91,97]
Pterocladiella capillacea NA NA NA 20.67 2 NA 93 mg GAE/100 g DW [95,96]

Green seaweed (Chlorophyta)
Caulerpa lentillifera NA 17.21 15.78 9.26 1.11 0.86 NA [98,99]

Ulva clathrata 78–80 21.9 18.7 44 1.5 NA NA [80,86,100]
Ulva lactuca 78–80 20.53 34.37 44 1.27 0.87 2.86 mg GAE/100 g DW [80,84,86,101,102]

WW: wet weight; DW: dry weight; GAE: gallic acid equivalents; PGE: phloroglucinol equivalents; NA: not available.

3.2. Carbohydrates: Dietary Fiber and Polysaccharides

Seaweeds have high amounts of total carbohydrates, ranging between 20–76% of
dry weight (DW) depending on the species (Table 2) [27]. The highest total carbohydrate
contents are found in species such as Fucus, Ascophyllum, Porphyra, and Palmaria [27]. Car-
bohydrates in seaweeds exist as cell wall structural, storage, and functional mucopolysac-
charides [27]. In terms of regulating glycemic potency, seaweed is a good source of carbo-
hydrates alternative, since the majority is available as dietary fibers that cannot be utilized
and absorbed by the human body. In fact, seaweed has even higher levels of total dietary
fiber than terrestrial plant foods [27,66]. Based on DW, seaweed’s average total dietary fiber
content can vary from 36% to 60% (Table 2). The available carbohydrate, such as glucose,
mannose, and galactose are in small quantity [27].

Seaweeds contain two main fractions of dietary fibers: around 25% water-soluble
fibers [73] and 21.8% insoluble fibers [55]. Soluble fibers, such as agars, alginates, fucoidan,
carrageenan, laminararan, and porphyran can form viscous gels in water in the human
gastrointestinal tract to promote satiety, improve intestinal microbiota, and slow down
the digestion and absorption of other nutrients [27]. Insoluble fibers, including cellulose,
hemicelluloses (2–10% and 9% DW, respectively), mannans, and xylan are mainly from
cell wall polysaccharides (i.e., the building blocks to support the thallus in water) [27].
They cannot form gels in water or fermented in the large intestine, but can keep water
content in the structural matrix to facilitate large intestine transit and increase the fecal
mass [27]. The ratio of soluble to insoluble fiber (S/I) in seaweeds varies depending on the
type of seaweed and growing conditions, but is generally higher than the values found in
terrestrial edible plants [55]. In this review, we are going to scoop the glucose-attenuating
effect of the seaweed dietary fibers.

3.2.1. Alginate

Alginate was discovered as a major dietary fiber in brown algae (Phaeophyceae) from
the genera Laminaria, Undaria, and Hizikia [27]. It is a glucose polymer that comprises
a block-wise monomers α-l-guluronic acid (G residue segments) and β-d-mannuronic
acids (M residue segments) to form alternating G-blocks and M-blocks or MG-blocks [103].
The viscosity and gelling forming ability of alginate is contributed by the content of
G-residues [104], and play an important role in reducing the post-digestion nutrients
absorption and gastrointestinal signaling to control satiation and satiety [105,106]. One
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unique property of alginate is its ability to form gel in both acid environments (pH < 3.5
at stomach) and form ionic gelation in the presence of divalent cations (such as sodium
and calcium) [105]. Now, in both alginates forms, alginic acid (a linear polyuronic acid)
and salt (sodium alginates (SA) and calcium alginate Ca-alginate), are widely applied as
natural hydrocolloids to thicken aqueous solutions to form desired food formation and
quality [107].

Alginate has been reported to decrease the concentration of serum cholesterol [108],
prevent the absorption of toxic chemical substances in the gut [109,110], and prevent a
postprandial increase of blood glucose and insulin [111]. Previous in vitro research showed
that the predominant postprandial blood glucose-suppression effect of calcium alginate
is by its ability to inhibit brush border enzyme α-glucosidase [112,113]. In addition, the
positive correlation between the viscosity of the starch suspension and the decrease of starch
digestion suggests the main suppression effect comes from the increase of viscosity by
alginates, which act as a barrier to physically interfere with the contact between α-amylase
and starch and between α-glucosidase and maltose [112].

The acute postprandial glycemic potency of alginate-fortified foods and beverages in
healthy adults was investigated [114–119] (Table 3). The beverages fortified with sodium
alginate reported a significant reduction in peak glucose concentration (Cmax) between
6–53.2% [114–116,119]. Fortification with higher sodium alginate (8.13 g) more significantly
attenuated the Cmax and postprandial peak insulin than the same beverage with lower
sodium alginate (4.06 g) [115]. Compared to a similar quantity of total dietary fiber, sodium
alginate exhibited a significant glucose-lowering effect [119]. A pre-load of beverage
fortified with sodium alginate extract (15 g) also attenuated the postprandial glucose
excursion after a subsequent meal by 40% [116]. The significant reduction of Cmax and
incremental area under the glucose excursion curve (iAUCgluose) was also reported for
sodium alginate fortified solid food (crispy bar containing 50 g available carbohydrate) [117]
(p < 0.05). Kato et al. [118] found that both 5% (3.2 g) and 8% (5.0 g) calcium alginate in
mixed meals significantly reduced the Cmax and iAUCgluose (p < 0.05) in healthy subjects.
The results from acute clinical trials strongly support the potential of using alginate salt
(sodium alginate and calcium alginate) to lower the glycemic potency of cereal food.

3.2.2. Fucoidan

Fucoidan is a complex sulphated polysaccharide found mainly in the cell walls of
brown seaweeds [120]. It is primarily composed of a pentose sugar backbone comprising of
repeating hexose deoxy sugar L-fucose residues that are linked by α-(1–3), α-(1–3)-α-(1–4),
and in some minor cases by α-(1–3)-α-(1–2) linkages with sulphate groups presented in
C-2, C-3, and C-4 positions [120]. It also contains some other neutral monosaccharides,
including glucose, galactose, xylose, mannose, and rhamnose [121,122] and may contain
acetate and uronic acids [123].

The monosaccharide composition, the degree of sulphation, and molecular weight of
fucoidan highly differ between species and within species between different harvesting
seasons [124,125] and is linked directly to its bioactivity [126,127]. The most bioactive
fraction of fucoidan is that it contains mainly fucose, variable proportions of galactose, and
a high-sulfate low-uronic acid proportion; whereas the low bioactive fraction contains other
monosaccharides apart from fucose and a low-sulfate high-uronic acid proportion [128]. Fu-
coidan’s size varies from <10 kDa (low molecular weight fucoidan (LMWF)), 10–10,000 kDa
(medium molecular weight fucoidan (MMWF)), to >10,000 kDa (high molecular weight
fucoidan (HMWF)) [123,129]. High molecular weight may cause low cell membrane perme-
ability, low bioavailability, and lower potential clinical efficacy [130]. For example, LMWF
(4.58–6.5 kDa) exhibits potential anticoagulant effect, whilst a higher molecular weight
>850 kDa lacked certain activity[131,132]. HMWF was reported to have no significant effect
on long-term glycemic control in diabetic patents [133]. LMWF, on the other hand, has
been reported to impact glycemic control via promoting insulin secretion [127], protecting
pancreatic [23], and improving insulin resistance [131,134]. As a result, HMWF depoly-
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merisation to synthesize oligomeric components of smaller molecular weight has been
advocated to improve bioactivity and bioaccessibility [129].

In the past 10 years, the antidiabetic potential of fucoidan as an unconventional bio-
compound has gained attention with the therapeutic effects at various stages of glucose
metabolism. Fucoidan extract from Undaria pinnatifida, Fucus vesiculosus, and Ecklonia maxima
has been reported to act as the inhibitor of α-glucosidase [132,135] and implicated as a potential
antidiabetic agent [136–138]. Fucoidan from Ascophyllum nodosum and Turbinaria ornata has
exhibited an inhibitory effect on α-amylase [136,139]. Fucoidan’s negative charge may help
to regulate the SGLT1 to slow down the post-digestion glucose absorption in the intestinal
lumen [125]. Fucoidan extracts from Cucumaria frondose [131] and Acaudina molpadioides [140]
have been reported to increase insulin production by activating the PI3K/PKB pathway and
increase the blood glucose uptake by muscle and fat tissue via activating glucose transporter
4 (GLUT4) translocation. It has been implicated as an inhibitor of dipeptidyl peptidase IV
(DPP IV), which is an enzyme responsible for the rapid degradation of incretin hormones
such as GLP-1 [141,142], to increase insulin production [143]. In addition to the acute effect,
HMWF has been reported to improve the bowel movements (i.e., stool frequency) in T2D
patients [96], which may assist the long-term T2D management. However, a pre-load
of low dose (0.5 g) and high dose (2.0 g) fucoidan extract did not report a significant
hypoglycemic effect when compared to a placebo (cellulose) in healthy adults [144]. Again,
no significant effect on postprandial glycemia was found in adults who are overweight or
obese otherwise healthy [145] (Table 3). The inconsistency could be a result of the inclusion
of low bioactivity and bioaccessibility of fucoidan as an intervention. Since the inadequate
data on molecular weight and degree of sulphation, it is difficult to associate the clinical
efficacy to the structural and chemical composition.

3.2.3. Other Dietary Fibers and Polysaccharides

Besides the two soluble fibers, alginate and fucoidan, which stand out for the acute
hypoglycemic effect, other dietary fibers are directly and indirectly associated with post-
prandial blood glucose management [55]. Laminarin, a class of low-molecular-weight
(5 kDa) storage β-glucans found mainly in brown seaweeds Laminaria, Undaria pinnatifida,
Fucus vesiculosus, and Saccharina species (up to 35% DW) has multiple (1,3)-β-D-glucan
units comprising (1,3)-D-glucopyranose residues with 6-O-branching in the primary chain
and (1,6)-links between chains [146]. Depending on the level of branching, it can be water-
soluble or insoluble. Laminarin has many reported biofunctional activities, including
blocking starch digestion, activating macrophages leading to immunostimulatory, anti-
inflammatory, anti-tumor, and wound-healing activities [147]. Agar (100–30,000 kDa),
which commonly presents in red seaweeds Gracilaria and Gelidium, is the first registered
hydrocolloid in Europe (registration number E406) [148]. It contains around 40% of
agaro-oligosaccharides, which has been reported to possess a potential activity against
α-glucosidase [149], suppressing the generation of pro-inflammatory cytokines and the
activity of the pro-oxidative enzyme that associated with producing nitric oxide [150].
Ulvan, a water-soluble sulphated polysaccharide from the green seaweed Ulva and Entero-
morpha, comprises mainly rhamnose, uronic acid, and xylose [27]. A systematic review
has discussed its function in anti-oxidant and anti-hyperlipidemic [151], which may assist
the long-term glycemic management. Carrageenan (193–324 kDa), commonly obtained
from red seaweeds of Eucheuma and Kappaphycus, are found in three major forms, κ- car-
rageenan and ι-carrageenan that have gelatinization properties, and a thickening substance
λ-carrageenan [55]. Carrageenan gel has been reported to exhibit a range of pharmacologi-
cal applications, including antiviral properties, by blocking the transmission of HIV [152]
and STD viruses [153], anticoagulant activity by inhibiting platelet aggregation [154]. How-
ever, since carrageenan has been reported to cause reproducible inflammatory reactions
and lead to glucose intolerance [155], it is not recommended as an unconventional food
ingredient for people at higher risk of dysglycemia. Mannitol is a sugar alcohol correspond-
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ing to mannose found in brown seaweeds Laminaria and Ecklonia. It is commonly used to
replace sucrose in sugar-free compound coating due to its sweet taste [27].

Table 3. Human trials of the efficacy of functional seaweed extract on acute postprandial glucose.

First Author,
Year

(Reference)
Study Design Subjects Intervention Source Dose Duration Effect

El Khoury
2014a
[115]

Randomized,
placebo-controlled,

crossover
design study

24 Healthy
adults

Low sodium alginate
extract vs. placebo

chocolate milk

Laminaria
hyperborea Study 1: 4.06 g 2 h ↓ Cmax by 6%

El Khoury
2014b
[115]

Randomized,
placebo-controlled,

crossover
design study

24 Healthy
adults

High sodium
alginate extract vs.

low sodium alginate
chocolate milk

Laminaria
hyperborea Study 2: 8.13 g 2 h

↓ Cmax by 13%
↓ peak insulin

by 46%

Jensen 2012a
[116]

Randomized,
double-blind,

placebo-controlled,
4-way, crossover

design study

19 Healthy
adults

Sodium alginate
extract vs. control
preload beverage

without
sodium alginate

Laminaria
hyperborea,

Lessonia
trabeculata

Study 1: 9.9 g 3.5 h No significant
difference

Jensen 2012b
[116]

Randomized,
double-blind,

placebo-controlled,
4-way, crossover

design study

20 Healthy
adults

Sodium alginate
extract vs. control
preload beverage

without
sodium alginate

Laminaria
hyperborea,

Lessonia
trabeculata

Study 2: 15.0 g 3.5 h ↓ iAUC glucose
by 40%

Huang 2019
[114]

Randomized,
double-blind,

placebo-controlled,
crossover

design study

12 Healthy
adults

Sodium alginate
extract + 172 kcal

sugar beverage with
soy protein isolate at

pH7 vs. control
sugar beverage

N/A 0.625 g 2 h ↓ Cmax by
53.2%

Wolf 2002
[119]

Randomized,
double-blind,

placebo-controlled,
crossover

design study

30 Healthy
adults

Sodium alginate
extract vs. control

glucose-based
beverage of similar

total dietary
fiber level

N/A 3.75 g 2 h ↓ iAUC glucose
by 75%

Williams 2004
[117]

Randomized,
double-blind,

placebo-controlled,
crossover

design study

48 Healthy
adults

Sodium alginate
extract and guar gum
vs. placebo in crispy
bar (containing 50g

available
carbohydrate)

N/A 1.6 g 3 h

↓ Cmax
concentration

by 30%
↓ iAUC glucose

by 33%

Kato 2018
[118]

Randomized,
double-blind,

placebo-controlled,
crossover

design study

15 Healthy
adults

Calcium alginate
extract vs. control

meal without
calcium alginate

N/A Study 1: 3.2 g 2 h
↓ Cmax by 11%
↓ iAUC glucose

by 15%

Kato 2018
[118]

Randomized,
double-blind,

placebo-controlled,
crossover

designstudy

15 Healthy
adults

Calcium alginate
extract vs. control

meal without calcium
alginate

N/A Study 1: 5.0 g 2 h
↓ Cmax by 15%
↓ iAUC glucose

by 21%

Hernández-
Corona et al.

2014
[145]

Randomized,
double-blind,

placebo-controlled,
parallel

design study

25 over-
weight/

obese adults

Fucoidan extract vs.
placebo N/A 0.5 g 2 h No significant

difference
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Table 3. Cont.

First Author,
Year

(Reference)
Study Design Subjects Intervention Source Dose Duration Effect

Murray et al.
2018a
[144]

Randomized,
double-blind,

placebo controlled,
crossover

design study

38 healthy
adults

Fucus vesiculosus vs.
placebo (cellulose)

preload before 50 g of
available

carbohydrate from
white bread

Fucus
vesiculosus Study 1: 0.5 g 2 h No significant

difference

Murray et al.
2018b
[144]

Randomized,
double-blind,

placebo controlled,
crossover

design study

38 healthy
adults

Fucus vesiculosus vs.
placebo (cellulose)

preload before 50 g of
available

carbohydrate from
white bread

Fucus
pediculosis Study 2: 2.0 g 2 h No significant

difference

Paradis et al.
2011
[156]

Randomized,
double-blind,

placebo-controlled,
crossover

design study

23 healthy
adults

Ascophyllum nodosum
+ Fucus vesiculosus vs.

placebo preload
before 50 g of

available
carbohydrate
from bread

Ascophyllum
nodosum +

Fucus
vesiculosus

0.5 g 3 h

↓ iAUC insulin
by 12.1%

No significant
effect on

postprandial
glucose

Yoshinaga and
Mitamura 2019

[157]

Randomized,
open-label,
2-period,

crossover design

26 adults
with pre-
diabetes

Undaria pinnatifida vs.
placebo with

200 g rice

Undaria
pinnatifida 4.0 g 2 h

↓ Postprandial
glucose at

30 min by 7%
↓ iAUC glucose

by 8%

Tanemura et al.
2014a
[158]

Randomized,
placebo (as test

meal) controlled,
crossover

design study

12 healthy
adults

Undaria pinnatifida vs.
control meal with

no extract

Undaria
pinnatifida 70.0 g 3 h No significant

difference

Tanemura et al.
2014b
[158]

Randomized,
placebo (as test

meal) controlled,
crossover

design study

12 healthy
adults

Undaria pinnatifida
sporophylls vs.

control meal with
no extract

Undaria
pinnatifida

sporophylls
70.0 g 3 h

↓ Postprandial
glucose at

30 min
↓ iAUC
glucose

0–30 min

N/A: not available.

3.3. Protein

Total protein content varies significantly between species and harvest seasons. It
is generally low in brown seaweed (5–24% DW) and high in red and green seaweeds
(10–47% DW) [159]. (Table 2) The content of proteins, peptides, and amino acids of red and
green seaweeds reaches the maximum in summer [75,159]. Total protein can represent up
to 44% DW in Porphyra tenera (nori) and Ulva spp. [84], which is comparable to high-protein
vegetables such as soy [110]. The maximum content in brown seaweeds is found in Undaria
in spring, which is around 24% DW [160] followed by Laminaria and Sargassum (around
20% DW) [90] and Fucus (12.99% DW) [74]. Most seaweed species are a rich sources of all
essential amino acids at the recommended level by WHO [27]. Although some amino acids,
including threonine, lysine, tryptophan, sulphur amino acids (cysteine and methionine),
and histidine are limited in algal proteins [66], the levels are still higher than those in
terrestrial edible plants [27].

The functional amino acids present in seaweeds have shown key biological activ-
ities [66]. Peptides extracted from red seaweed Palmaria palmate exhibited significantly
higher DPP IV inhibition capacity (IC50 > 200 µM) than the natural origin peptides from
edible terrestrial plants, collagen, and milk protein [161]. The collected data suggest the
potential for increasing insulin production to improve postprandial glucose clearance [161].
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3.4. Lipids

Seaweeds contain a lower lipid quantity (1–4.5% DW) than other marine organ-
isms [110]. (Table 2) The contribution of seaweed lipids as a food energy source appears to
be low than terrestrial oil-rich edible plants such as nuts and soybeans [162]. However, the
proportion of long-chain polyunsaturated fatty acids (PUFAs) in seaweeds is higher than
in terrestrial edible plants [162]. Particularly, the eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA) that belong to the omega-3 fatty acids family are linked to a range
of biochemically and physiologically important functions [162]. Red seaweeds contain a
higher quantity of EPA, palmitic acid, oleic acid, and arachidonic acid; brown seaweeds
contain higher oleic acid, linoleic acid, and α-linolenic acid but low EPA; green seaweeds
have a greater quantity of linoleic acid and α-linolenic, palmitic, oleic, and DHA [163].
Both red and brown algae are good sources of omega-3 and omega-6 fatty acids [164]. The
amounts and concentrations of these PUFAs vary depending on environmental tempera-
ture, with lower temperatures favoring their production. The biological benefit of EPA and
DHA on hyperlipidemia, blood pressure, cardiac function, vascular reactivity, endothelial
function, and anti-inflammation have been extensively studied [162,165].

Furthermore, the prominent lipid in seaweed oil, phospholipids (62–78% phosphatidyl-
choline and 10–23% phosphatidylglycerol of the total lipid), has shown greater resistance
to oxidation and a higher bioavailability [166]. Phospholipids in foods act as natural
emulsifiers, aiding and easing the digestion and absorption of fatty acids, cholesterol,
and other lipophilic nutrients [166]. Therefore, seaweed oils have many advantages over
plant and fish oils as unconventional ingredients in that they are much more resistant
to deterioration (rancidity) [166]. Fucosterol, another prominent sterol found in brown
seaweed, has been shown to exert a high affinity of inhibitory effect on α-amylase [167]
and α-glucosidase, and promote the postprandial glucose clearance by suppressing the
expression of protein-tyrosine phosphatase 1B (PTP1B which inversely regulates insulin
signalling) [168,169].

3.5. Polyphenols

Polyphenols are not abundant in seaweeds. Compared to red and green seaweed (only
<1% DW) [82], brown seaweeds have relatively higher levels of polyphenols (up to 4 g
GAE/100 g DW) [27]. One of the main polyphenols in brown seaweeds, phlorotannis, is
derived from the polymerization of several phloroglucinol units (1,3,5-trihydroxybenzene),
has been reported to inhibit α-glucosidase and α-amylase activities [170]. The inhibitory
effect of phlorotannis can be noncompetitive (phlorofurofucoeckol-A, 7-phloroeckol, and
dioxinodehydroeckol) and competitive (dieckol and eckol) [171]. Bromophenols, found in
both red seaweed (Rhodymeniaceae) and brown seaweed (Leathesia nana) also exhibit the α-
glucosidase inhibitory effect [172]. Furthermore, both phlorotannins and bromophenols can
increase the insulin-mediated glucose uptake by skeletal muscles by inhibiting the activity
of PTP1B, which regulates the leptin and insulin signaling pathways [172,173]. In vivo
studies have reported Fucus vesiculosus and Ascophyllum nodosum attenuated postprandial
blood glucose excursion and dropped insulin peak in rats with diet-induced steatosis [170].
Further studies observed the same hypoglycemic effect in mice with non-alcoholic steato-
hepatitis (NASH) [170] and rats with diet-induced steatosis [174] after being treated with
phlorotannins extract.

3.6. Carotenoids

Carotenoids that are synthesized naturally by photosynthetic seaweeds give a range
of pigmentations [175,176]. Fucoxanthin is one of the major xanthophyll found abun-
dantly in brown seaweeds such as Fucus spiralis (171 mg/kg DW) and Ascophyllum nodosum
(660 mg/kg DW) [177]. One of the anti-diabetic values of fucoxanthin is supported by
its α-glucosidase inhibitory function, which delays the digestion and absorption of glu-
cose [178,179]. Another anti-diabetic mechanism of fucoxanthin is via upregulating the
GLUT4 expression in skeletal muscle via the induction of Peroxisome proliferator-activated



Foods 2022, 11, 714 13 of 24

receptor-γ (PPARγ) coactivator-1α and increasing Akt phosphorylation [172,173]. The ani-
mal models (C57BL/6J mice fed in high-fat diet) are reported to have normalized GLUT4
expression and increased uptake of glucose in skeletal muscle [180,181]. The hypoglycemic
and hypoinsulinemic effect of fucoxanthin was also reported in diabetic/obese KK-Ay
mice [178] and obese KK-Ay mice [179].

4. Proposed Strategies for Seaweeds-Derived Functional Ingredients in
Glycemic Control
4.1. Reducing the Available Carbohydrate

Lowering available carbohydrate content can be achieved by replacing the available
carbohydrates with other macronutrients derived from seaweeds (Figure 2). For example,
mannitol from brown seaweeds Laminaria and Ecklonia can be used as a replacement for
sucrose (i.e., sugar) in sugar-free compound coating without depriving the sweet taste [27].
The full amino acid profile in seaweed proteins [27], particularly the red and green seaweed,
which contains up to 47% protein in dry mass [159], makes them perfect candidates to
substitute flours in large quantities to reduce the available carbohydrates.

Figure 2. Examples of seaweeds application in various strategies to lower glycemic impact in cereal foods.

The addition of exogenous proteins to the cereal products can limit the starch avail-
ability and digestibility by forming protein—starch interactions network surrounding
starch granules, which builds the barrier to digestive enzymatic access [182–184]. Fur-
ther treatment on seaweed protein including hydrolysis [185], low-temperature drying
and denaturing [186] could further improve the bioactivity. Similarly, the addition of
lipids to cereal products can affect glycemic potency by interacting with starch to form a
network surrounding the starch that limits enzymatic accessibility and also starch gran-
ule swelling [187]. Under rising temperatures, the exogenous seaweed lipids and starch
can form lipid-amylose complexes which have been demonstrated to resist starch diges-
tion [188,189]. A previous study showed olive oil formed a complex with amylose in wheat
bread and significantly reduced the postprandial glycemic response as compared to baked bread
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without oil [190]. Thus, we can expect that the combination of seaweed lipids with high-amylose
rice, flour, or other cereal products may also significantly impact glycemic potency.

4.2. Reducing Post-Consumption Digestion Rate

Reduction of post-consumption digestion rate can be achieved by blocking the brush
border enzyme α-amylase α-glucosidase. Dietary fibers in seaweed are one of the most
common ingredients applied to cereal food products to limit starch digestion rate through
this mechanism (Figure 2). With different solubility, molecular weight, ionic groups, viscos-
ity, and gelling capacity, different seaweed dietary fibers can provide different functions
required to govern the starch digestibility in cereals. Agar and carrageenans from red sea-
weeds and laminarin (β-glucans) from brown seaweeds (e.g., Undaria pinnatifida and Fucus
vesiculosus) have been used as gelling and thickening agents in food ingredients [55,137,139].
They may form a continuous hydrated network surrounding the starch granules [191] and
interact with the starch granule surface to create a barrier for the enzymatic access (α-
amylase and α-glucosidase) to starch granules. Thus, the barriers restrict the amylose
leaching during the gelatinization [140,186,187]. A similar blocking effect has been found
in brown seaweed fibers alginate [112,113] and fucoidan [132,135]. The soluble fiber may
further increase the viscosity of digesta [103] after ingestion to reduce the rate of glucose
release from digestion in the intestinal phase [192,193]. The rich cellulose and hemicellulose
content in all seaweeds may bind α-amylase to inhibit the depolarization of starch, as
observed in wheat bran [194].

In addition to dietary fibers, other nutrients found in seaweeds have been identified
as α-amylase and α-glucosidase inhibitors and do not affect the viscosity of food products.
They include brown seaweed phospholipids, fucosterol [167], two polyphenols, phlorotan-
nis (from brown seaweeds) [170], and bromophenols (from red and brown seaweeds) [172],
and fucoxanthin (from brown seaweeds) [180,195]

4.3. Reduce the Rate of Post-Digestion Glucose Absorption

The rate of post-digestion glucose absorption can be attenuated by delaying the gastric
emptying time. Dietary fibers derived from seaweeds can increase the viscosity of food,
which leads to slowing down the gastric emptying rate to slow down the rate of glucose
absorption and release into the bloodstream [107,189,191] (Figure 2). For example, during
post-ingestion alginate can form solid intragastric gels in digesta to distend the stomach and
delay gastric emptying and glucose absorption [115,196]. Fucoidan’s negative charge may
help to regulate and manipulate the SGLT1 to slow down the post-digestion absorption of
glucose in the intestinal lumen [125].

It is postulated that the addition of lipids and proteins in cereal foods can delay gastric
emptying time [197]. Previous acute nutritional human trials demonstrated consuming
pancakes with added unsaturated fatty acids (e.g., sunflower oil, olive oil, butter, and
medium-chain triglyceride oil) significantly delayed the gastric emptying time and reduced
postprandial glycemic response than consuming pancakes without added oil [197]. Co-
ingestion of olive oil or grapeseed oil [198], and rapeseed oil [199] ameliorating the GI
of cereal foods including rice porridge and bread. Particularly, when both proteins and
lipids are co-ingested with the cereal foods, the glycemic impact was more significantly
attenuated [199]. In fact, compared to lipids, protein has a more significant effect on slowing
down gastric emptying rate [200] by forming protein clots in the acidic stomach [201].

4.4. Increase the Rate of Postprandial Glucose Clearance

The blood glucose update can be interfered with by several functional nutrients
found in seaweeds (Figure 2). Fucoidan from brown algae Cucumaria frondose [131] and
Acaudina molpadioides [140] may increase blood glucose clearance through two mechanisms:
promoting insulin production by activating the PI3K/PKB pathway and inhibiting DPP
IV [141,142]; activating GLUT4 translocation [140]. Consuming proteins with carbohydrates
in a context meal may also promote insulin secretion [202,203]. The peptides extracted



Foods 2022, 11, 714 15 of 24

from red seaweed Palmaria palmate can significantly inhibit DPP-IV to increase insulin
production [160]. Polyphenols, such as phlorotannins and bromophenols can increase
the insulin-mediated glucose clearance by skeletal muscle by activating the PI3K/PKB
pathway [172,173]. Fucoxanthin has also shown the potential of regulating GLUT4 to
increase blood glucose clearance [204].

4.5. Future Perspective in Clinical Evidence and Application

The limited evidence from the acute postprandial glycemic study of seaweeds gave
mixed results, which require cautious interpretation (Table 3). When consuming Undaria
pinnatifida (Wakame) with 200 g rice, a significant reduction in postprandial glucose (after
30 min) and iAUC of postprandial glucose response was reported in people with predia-
betes [157]. In another study, consuming 70 g Undaria pinnatifida (Wakame) with a meal did
not significantly change the postprandial glucose excursion in healthy adults, however, a
significant reduction in postprandial glucose at 30 min was reported after these healthy
adults consumed 70 g Undaria pinnatifida sporophylls (Mekabu) with the same meal [158].
However, the preload studies failed to exhibit significant efficacy. The study compared
two doses Fucus vesiculosus powder (0.5 g and 2.0 g) preload to cellulose as a placebo
reported no significant improvement between treatments [144]. Therefore, comparing the
soluble fiber rich Fucus vesiculosus powder with other fiber that also has attenuating effect
on postprandial glycaemia could be the reason for lacking statistically significant difference.
Similarly, the combination of Ascophyllum nodosum and Fucus vesiculosus (0.5 g) preload
showed no significant reduction in postprandial glucose but a significant reduction in
iAUC of postprandial insulin response [156]. Due to the small sample size and the possible
carry-over effect in a cross-over design, it is difficult to interpret and draw conclusions
from the limited number of acute clinical trials. Thus, more high-quality clinical trials are
required to determine the effective seaweed and cereal foods combination and optimal
dose. Moreover, the nutrients content, bioactivity, and bioaccessibility vary significant
between seaweeds and within seaweeds between harvesting seasons. The administration
should be carefully evaluated to maximize the efficacy of various seaweeds. For example, a
combination of protein rich red seaweeds and fiber rich brown seaweeds could add value
to the hypoglycemic property.

The common method of incorporating seaweed ingredients is by dispersing them
in powder form or the form of extracts as part of the formulation of traditional cereal
products [205]. However, a high quantity of soluble fiber may compete with the other
ingredients for water absorption and result in a harder food texture [192], which may lower
the sensory quality of the cereal products. Therefore, the type and the concentration of
soluble fiber used in cereal products should be evaluated carefully to balance the required
function without compromising consumer liking. Successful application of seaweeds
powder in cereal-based products, such as bread, noodles, cake, cookies, biscuits, and
extruded maize. For example, Himanthalia elongata was used as a source of dietary fiber to
enhance the phytochemical content of breadsticks at doses of 5–15% [205]. To maintain the
sensory qualities, the recommended concentration of seaweed-derived products should
remain between 0.5–8% in wheat bread, 3–30% in wheat noodles, 5–20% in pasta, 2.5–20%
in cakes, 5–60% in biscuits, 3–9% in cookies, and 3.5% in extrudes maize [205].

5. Conclusions

Many of the common cereal food in the Asian diet is in the moderate to high GI
categories including rice grain, wheat flour, and bakery products that are often made with
sugars and refined flour. There is a trend of increasing high GI cereal food consumption
in low- and mid-income countries as urbanization accelerate. With the prevalence of
diabetes surges, food industries and mindful consumers must incorporate sustainable and
functional nutrients from seaweeds as unconventional ingredients into cereal foods to
lower the glycemic potency. This review discussed the potential of seaweeds, which have
never been a staple food in the Western diet and the diet in inland regions, despite their
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popularity in a few coastal regions, and the applications based on the synergetic approaches
of adding unconventional ingredients.

Seaweeds are a high-quality and nutritious food source by virtue of the high functional
dietary fiber and polysaccharides, high content of essential and functional amino acids,
high-quality lipids (i.e., omega-3 fatty acids), polyphenols, and carotenoids. Traditionally,
seaweeds are used by their technological properties (i.e., gelling, thickening, and stabiliz-
ing), such as agar, alginates, and carrageenan as hydrocolloids. Many studies have focused
on the supplementary value of either individual seaweeds extract (dietary fiber, omega-3
fatty acids, protein, polyphenols, carotenoids, and minerals) or individual seaweed species
in improving the glycemia in people at higher risk of diabetes. To ameliorate acute post-
prandial blood glucose, reformulate the high GI or glycemic potency of staple food, such as
cereal food products, can be achieved by multiple strategies with the addition of multiple
seaweed-derived ingredients. As the contents of bioactive and technological compounds
vary between seaweed species, the modification does not need to be limited to one seaweed.
Instead, multiple seaweed-derived ingredients can work synergistically (i.e., rich functional
dietary fibers from brown seaweeds and protein content from red and green algae) to
combine the different peculiar compositions of different seaweed species. The strategy’s
effectiveness will ultimately depend on how well consumers accept the new textural and
sensorial features of the food, whether glycemic impact can be concealed with minimal
dietary habit change. The food industry should exploit seaweeds’ nutritional benefits by
developing tasty ingredients, reformulated products, and appropriate marketing strategies
to reach consumers.
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