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Abstract: In this study, a Bayesian-based decision fusion technique was developed for the first time to
quickly and non-destructively identify codfish using near infrared (NIRS) and Raman spectroscopy
(RS). NIRS and RS spectra from 320 codfish samples were collected, and separate partial least squares
discriminant analysis (PLS-DA) models were developed to establish the relationship between the
raw data and cod identity for each spectral technique. Three decision fusion methods: decision
fusion, data layer or feature layer, were tested and compared. The decision fusion model based on
the Bayesian algorithm (NIRS-RS-B) was developed on the optimal discrimination features of NIRS
and RS data (NIRS-RS) extracted by the PLS-DA method whereas the other fusion models followed
conventional, non-Bayesian approaches. The Bayesian model showed enhanced classification metrics
(92% sensitivity, 98% specificity, 98% accuracy) that were significantly superior to those demonstrated
by any of other two spectroscopic methods (NIRS, RS) and the two data fusion methods (data layer
fused, NIRS-RS-D, or feature layer fused, NIRS-RS-F). This novel proposed approach can provide an
alternative classification for codfish and potentially other food speciation cases.

Keywords: codfish; authenticity; Raman spectrum; near infrared spectrum; Bayes information fusion

1. Introduction

Seafood is rich in protein and is popular among consumers for its high nutritional
value and delicious taste. Meanwhile, seafood is one of the foods most vulnerable to
adulteration mainly due to the significant alterations of the species morphological charac-
teristics that occur during the different types of processing, which render the visual species
impossible [1]. Consumers’ demands of certain fish (e.g., cod over pollock) increased
the potential of seafood fraud such as species substitution, adulteration, origin confusion
and mislabeling [2,3]. Therefore, several efforts, including new regulations, have been
introduced in the last decades by different countries and organizations around the world
to combat seafood fraud [4].

Cod or codfish is a commercially important species of seafood worldwide. The cod
usually refers to fish of the family Gadidae and to related species within the Gadiformes
order [5]. It is reported that cod species with higher value are often replaced by other
species with lower price [6]. For example, a study in the UK and Ireland tested 226 cod
products from various commercial retailers, and found 28.4% of Irish and 7.4% of UK
samples to be mislabeled [7]. Indication of origin is very important in the fish sector
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because its declaration is in many countries mandatory by law. With seafood speciation and
raised awareness regarding origin, the development of cod identification technology is of
great significance to protect the interests of consumers, improve the risk control measures
of import ports and respond to public concerns.

Analytical technology has become a key element of fish identification, with an in-
creasing number of tools developed to detect or reduce the existence of fraud in global
seafood supply chains. Sensory, microbial, physical and instrumental methods have been
evaluated for identity assessment of seafood [8–10]. DNA testing is the most suitable
method for authenticity testing, and many DNA-based methods have been developed to
detect fish species [1,11]. However, these methods are clearly time-consuming, destructive,
unable to achieve rapid detection on site or require trained personnel [12]. In parallel,
several spectroscopic techniques combined with chemometrics have been employed [13,14].
These studies have demonstrated the potential of vibration spectroscopy for rapid and
non-destructive identity assessment on seafood.

The application of near infrared and Raman spectroscopy in the field of seafood
has attracted more and more attention. For example, the ability of visible/near-infrared
(VIS/NIR) spectroscopy was evaluated to predict the cold storage time of salmon meat
and skin, and a double-layer stacked denoising autoencoder neural network (SDAE-NN)
algorithm was introduced to establish the prediction model. The determination coefficient
of test sets (R2 test) and root mean square error of test sets (RMSEP) have been calculated
based on SDAE-NN; for the salmon meat (skin), the R2 test can reach 0.98 (0.92), and
the RMSEP can reach 0.93 (1.75), respectively. [15]. In addition, Raman spectroscopy was
applied using a 532 nm laser for the classification of 12 frozen types of frozen fish fillets.
Hierarchical cluster analysis of their spectra showed that groups could be identified. The
accuracy of the spectral classification on the species level as shown in the dendrogram was
high, at 95.8% [16].

Both Raman and near infrared spectroscopy are fast and non-destructive food iden-
tification and detection techniques [17,18]. However, spectral and spatial interpretation
remains challenging for the identification of seafood origin using single spectral techniques.
This is mainly due to the low sensitivity of near infrared spectroscopy and Raman scatter-
ing intensity, which are easily affected by optical system parameters and other factors. To
remedy these disadvantages, spectral data fusion technology using the complementary
relationship between the single spectral in qualitative detection of molecular groups can
also be explored. Data fusion can be carried out at three levels: data layer fusion, feature
layer fusion and decision layer fusion. Data and feature layer fusion have been widely
used in traceability and quality identification of aquatic products [19]. However, decision
level fusion calculates a separate model from each data source and combines the results
of each separate model to obtain the final decision. The decision level fusion can comple-
ment the results of each of the other spectral methods and make the detection result more
comprehensive and accurate [20]. In addition, there is a lack of research on simultaneous
identification of cod species and origin.

Partial least squares discriminant analysis (PLS-DA) is an established regression-based
algorithm coupled with discriminant analysis to allow classification. The regression results
of PLS are essentially transformed into a set of intermediate linear potential variables that
can be used to predict dependent variables. The dependent variable is the given class label,
which is used to indicate whether a given sample belongs to a given class. The model based
on the above principles can be used to predict the class of new samples [21]. This is the
first work to propose a method based on Raman and NIR PLS-DA features combined with
a Bayesian decision fusion model to perform the rapid identification and simultaneous
analysis of codfish species and geographical origin.



Foods 2022, 11, 4100 3 of 17

2. Materials and Methods
2.1. Codfish Samples Preparation

The codfish samples (all belonging to the Gadiformes, Gadidae family) used in this study
originate from major producing countries in the world. The codfish samples were collected
from the direct purchases of aquatic product import and export enterprises, which had
a high reputation and were registered by the Chinese customs, to ensure the authenticity of
the source of samples. All cod caught offshore were treated with ship-frozen preservation,
deboned, and cut by high-pressure waterlines, and transported to the end user, maintaining
the cold chain to ensure consistency of freshness.

The samples were mainly from the main cod exporting countries (Figure 1) and
processed from belly meat segmented into different-identity codfish. A total of 320 samples
(five codfish for each identity, total 40 codfish, all samples divided into 30 mm × 30 mm
× 10 mm) were collected, of which 40 samples were from each identity, including eight
kinds of codfish with different identities: Atlantic cod from Denmark (ACD), Atlantic cod
from Iceland (ACI), Atlantic cod from Norway (ACN), Atlantic cod from Russia (ACR),
Haddock cod from Iceland (HDI), Pacific cod from Russia (PCR), Pollock from Russia (PR)
and Pollock from America (PA), respectively. All codfish samples were collected from
a local fishing company in each region and stored in a −18 ◦C refrigerator. The key steps
illustrating the experimental procedure are summarized in Figure 2 and explained in detail
in the following sections.
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2.2. Spectrometer and Spectral Data Acquisition
2.2.1. Near Infrared Spectrometer

Codfish samples were put into thermal insulation bags with ice cubes and quickly
taken to the laboratory. A laboratory-based near infrared spectrometer was used to obtain
NIRS of codfish samples in reflectance mode. The treated homogenised cod tissue sample
was placed in an aluminum cup, and spectral data were collected by the probe. The near
infrared spectroscopy system (Vertex 70, Bruker, Germany) consisted of a nexus optical
platform, high-resolution NIRS optical system, interferometer and 24 bits DigiTectTM
detector. The data were recorded at room temperature (25 ± 1 ◦C) in the wavenumber
range of 4000–11,000 cm−1 at a 1.93 cm−1 interval at 8 cm−1 resolution, 64 scans. The
Fourier transform was automatically applied to the signal to transform the time-based
series to frequency. A calibration procedure was performed on the instrument before each
sample NIR spectrum collection. Furthermore, each of the samples was measured with the
spectrometer three times using a linear movement to obtain mean spectra.
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2.2.2. Raman Spectrometer

The RS of samples were recorded in the range from 250 to 2500 cm−1 with a Raman
setup (laser microscopy confocal Raman spectrometer, Nikon ECLIPSE Ti-U, Tokyo, Japan).
Raman scattering was excited by a frequency-doubled Nd/YAG laser at a wavelength of
532 nm with a laser power of about 2 mW incident on the sample. The dispersive spectrom-
eter has an entrance slit of 50 µm and a focal length of 800 mm. The Raman-scattered light
was detected by a high-performance charged couple device (CCD) camera. The acquisition
time per spectrum was 10 s. To compensate for the use of a microscopy-based instru-
ment instead of standard point-and-shoot to acquire the Raman spectrum, a uniformly
homogenised cod tissue sample was produced and measured at three different points.

For the calibration of the Raman spectrometer, optical path collimation was used. This
was achieved by ensuring that measured wavelengths were consistent with the values of
standard spectral lines. Every day before the Raman measurements, the confocal system
was calibrated using a silicon plate (520.7 cm−1) provided by the instrument manufacturer
to ensure the accuracy of Raman displacement. Then, RS from codfish samples were
acquired at a steady level room temperature and humidity. Furthermore, each of the
samples was measured with the spectrometer three times to obtain mean spectra.

2.3. Data Processing and Multivariate Analysis
2.3.1. Spectrum Preprocessing

All collected spectral data were converted and exported as comma-separated value
(CSV) files. For NIRS data, due to the image noise level at the beginning and end of the ac-
quired spectral wavelength bands, the spectral information of a total of 2593 wavenumbers
from 4000 to 9000 cm−1 was selected for subsequent analysis. The spectral information
of a sample collected by a near infrared spectrometer is usually affected by background
information and noise interference, and these factors can affect the accuracy of the data
analysis. Different pretreatment methods are used to remove or reduce noise and enhance
spectral features, which is convenient for more efficient data mining of spectral data. In this
research, seven preprocessing algorithms, including normalization (NOR) (model: range
normalization), mean centering (MC), multiplicative scatter correction (MSC), standard
normal variation (SNV), first derivative (FD), baseline correction (BA), and SNV with MC
were employed to preprocess the NIRS [22–25]. Similarly, for RS data, the spectrum infor-
mation of a total of 669 wavenumbers from 1000 to 2000 cm−1 was selected for subsequent
analysis. Seven methods including NOR (model: range normalization), Savitzky-Golay
smoothing (SG) (model: smoothing point: 15, order:2, derivative: 0), SNV, BA, SNV with
NOR, BA with NOR, SG with NOR were used to preprocess the RS. All the average spectral
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data were saved in a matrix form (320 × 2593 or 320 × 669) for chemometric analysis,
of which 320 rows represented the 320 samples, and 2593/669 columns represented the
2593/669 wavenumbers. The spectrum preprocessing methods were implemented using
Unscrambler X 10.4 (CAMO Software AS, Oslo, Norway).

2.3.2. Selection of Important Wavenumbers

In this investigation, a vast array of NIRS or RS data were generated. The average in-
terval of wavenumbers in NIRS and shift in RS were 1.93 cm−1 and 1.49 cm−1, respectively.
Hence, it was necessary to select optimal wavelengths to simplify and improve the predic-
tive models [26,27]. In the current work, three variable selection methods were employed to
extract feature wavebands. Iteratively retaining informative variables (IRIV) uses random
combinations of variables to take into account the interactions between variables; only the
strong information variables and weak information variables are retained, and the analysis
of several iterations is carried out at the same time until the remaining variables have no
information variables and interference variables [28]. Competitive adaptive reweighted
sampling (CARS) obtains variables based on the principle of “survival of the fittest”, and
extracts feature wavenumbers after repeated cyclic Monte Carlo sampling [29]. Successive
projections algorithm (SPA) selects feature variables with minimal redundancy to solve
the collinearity problems. In the SPA process, a projection operation in a vector space is
applied to select subsets of variables with a minimum collinearity [30]. The IRIV, CARS and
SPA algorithms were implemented in Matlab 2020a (MathWorks Inc., Natick, MA, USA).

2.3.3. Development of Classification Models

To avoid bias in selecting the subset and estimating the performance of a developed
model, the calibration and prediction set were comprised of 75% and 25% of the total
samples, respectively. The sample split was random, making sure that both sets of data
included at least some samples of each subgroup. Partial least squares discriminant analysis
(PLS-DA) [31,32] as a supervised linear machine learning technique was utilized to classify
the codfish identity. All the samples were divided by the random-grouping method into the
training set of 240 samples and the prediction set of 80 samples. The prediction of codfish
identity accuracy was performed by applying PLS-DA models based on two different
spectral profiles (NIRS, RS) in the full or feature wavebands range.

In the PLS-DA model, the sample category is represented by a binary code group.
Each bit is called a node, and each node is represented by “1” as belonging to this class,
and “0” as belonging to other classes. There are eight kinds of codfish in this study, so
class variables can be represented by eight nodes in the process of model building. PLS
regression was performed on each node of all samples to obtain the predicted value of each
node. The model obtained searched for directions with the maximum separation among
categories, improving the class separability.

2.3.4. Bayes Information Fusion Method

The Bayesian method fully integrates historical prior information and current sample
information to carry out statistical inference and parameter estimation [33,34]. The Bayes
formula in probability theory is applied to realize the re-decision of NIRS discriminant and
RS discriminant. Taking the identification of codfish as an example, the system’s possible
decision is A1~A8. Two kinds of spectroscopic methods are used to distinguish codfish;
the discriminant condition of the NIRS method is B, and the discriminant condition of the
Raman spectroscopic method is C. Since A, B and C are independent of each other, the prior
probability P(Ai) of codfish belonging to all kinds of Ai is equal. In the information fusion
method based on PLS-DA, the values of all nodes of each sample of PLS-DA are taken
as the probability that the sample belongs to each category, and the probability is input
into the Bayesian discriminant formula as the prior probability value. In this process, the
information of all nodes of PLS-DA is retained, which is one of the reasons that information
fusion contributes to the improvement of the discrimination effect of traceability model in
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the subsequent result analysis. Here, the posterior conditional probabilities of all kinds of
decision Ai (i = 1–8) can be expressed as:

P(Ai | BˆC) =
P(B | Ai)P(C | Ai)

8
∑

k=1
P(B | Ak)P(C | Ak)

(1)

By default, the value of the PLS-DA node is a regression value that may appear to be
less than 0 or greater than 1, which is obviously not the range of probability values. To
tackle this, we followed a probability-based approach: we set the probability that the node
value is less than 0 as 0 and calculated the relative probability of other node values to ensure
that the sum of the probabilities of cod identity discrimination is 1. The processed node
values were substituted into the Bayesian formula to calculate the a posteriori probability.
After the posterior probability was obtained through Bayesian information fusion, the
classification of cod samples was judged according to the following two criteria: (1) the
target category has the maximum posterior probability, (2) the difference between the target
category and other categories must be greater than a certain threshold; in this case, 0.01.

2.4. Model Performance Evaluation

To evaluate the performance of the models, the parameters including sensitivity (the
true positive results as a fraction of the true positives plus false negatives), specificity (the
true negative results as a fraction of false positives plus true negatives) and accuracy (true
positives plus true negatives divided by total sample) of calibration (SEC, SPC, ACC), cross
validation (SECV, SPCV, ACCV) and prediction (SEP, SPP, ACP) were calculated [35]. The
optimal model was developed considering the specificity, sensitivity and class accuracy
led to a maximum. The PLS-DA and model performance evaluation were carried out in
PLS-TOOLBOX Solo 8.7 (Eigenvector Research Inc., Wenatchee, WA, USA). The Bayesian
fusion algorithm was carried out in Microsoft Excel 2010.

3. Results and Discussion
3.1. Analysis of NIRS Modeling Results
3.1.1. Analysis of the NIRS Features

Similar morphological features of codfish samples were found within the acquired
wavenumber region; note that the magnitude of spectra absorbance fluctuates with the
identity difference of the cod. NIRS is mainly generated from molecular vibration transition
from ground state to a high energy level caused by anharmonicity of the molecular vibration,
which contains the chemical bonding information for organic compounds [36]. The peaks
and valleys in the NIRS region are mainly caused by the frequency doubling and combined
absorption of stretching and bending vibration of hydrogen-containing groups. Figure 3a
implied that the differences in identity have induced significant alterations to the samples
in a way that can be detected by spectral information. Among them, the absorbance
of the peaks and valleys in the three bands of 4000–6000 cm−1, 6500–7000 cm−1 and
8000–8500 cm−1 are more significant than those in other bands, which indicates that NIRS
analysis can be used to classify eight kinds of codfish. The Principal Component Analysis
(PCA) loading plot also confirmed this (Figure 3a). Most variation in the spectral data was
described by the first three principal components. PC1 (96.4% of captured variance) is the
main direction along which the samples separated (Figure 3b). It should be noted that the
eight types of codfish cannot be well distinguished by PCA unsupervised learning alone.
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The overtones of different molecule bonds following NIRS exposure absorb at specific
frequencies that are characteristic of their structure. The NIRS of the cod samples (Figure 4a),
showed the first and second overtone of the OH stretching vibrations (6920 and 5145 cm−1)
due to water. The first and second double frequency of C-H in the region 5555–6250 cm−1,
7140–9000 cm−1, and the first double frequency of N-H in the region 6250–7140 cm−1

can be attributed to protein. At 8387 cm−1, there is an absorption band connected to the
second overtone stretched by the C-H aliphatic group, which is attributed to fat. SNV
with transformations of the spectra (Figure 4b) highlighted further peaks at 4500, 5994,
7309 cm−1 originated from protein fraction absorption, i.e., N-H first and second overtone
and the combination of N-H and C=O signal [37]. There are minute differences between
samples (Figure 3a contains overlays of all NIRS for the 320 samples); therefore, multi-
variable analysis and chemometrics can be considered to solve the invisible differences of
human eyes.
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Figure 4. Mean spectra curves of codfish samples. (a) NIRS original spectrum, (b) NIRS pretreated by
standard normal variation with mean centering (NIRS-SNV-MC). Note: NIRS, near infrared spectrum.
The mean spectrum and corresponding standard deviation of each measurement group are displayed
in different colors, and the standard deviation is indicated by the shading accompanying each mean
spectrum line.

3.1.2. Selection of Pretreatment Methods for NIRS

To eliminate the influence of noise and minimize the miscellaneous scattering, seven
standard signal processing methods were employed to pretreat cod original NIRS. The
seven preprocessed spectral data were taken as the input of PLS-DA classification model,
and the performance of the classification model is shown in Table 1. PLS-DA calibration
models were built to correlate the corrected data across full wavelengths with codfish labels,
of which the calibration model based on SNV with MC preprocessing yielded acceptable
results, with a SEC of 89.81%, SPC of 92.19%, ACC of 89.64% for the calibration set, and
SEP of 89.53%, SPP of 90.84%, and ACP of 87.95% for the prediction set. From the results,
we can also see that the effect of FD preprocessing is not as prominent as the original
spectral modeling. FD and baseline methods amplify the noise in the spectrum, which can
explain the poor performance of the models. Hence, SNV with MC was selected as the
optimal pretreatment method. Generally, the results were improved by the SNV with MC
preprocessing of raw spectra, which may be because the SNV pretreatment reduced the
multiplicative effect of scattering [38]; meanwhile, MC pretreatment corrected the relative
baseline shift and shift phenomenon between cod samples [39]. Figure 4b demonstrates the
differences in NIRS of cod with different identities after pretreatment.

3.1.3. Extraction of Effective Wavenumbers

Selection of important wavelengths and minimization of the number of wavebands
are very advantageous for building a more stable and comprehensive calibration model.
Figure 3b demonstrates that different kinds of cod samples have spectra with overlapping
areas that will affect model classification efficiency, so there is a need to reduce spectral
data dimensions. Eighty-three wavenumbers (predominately located in 4179–4401, 4671,
4794, 4841–5057, 5157, 5296–5512, 5743, 6106–6981, 7020–7398, 7853–7903, 8067, 8086,
8868–8999 cm−1) were obtained by IRIV method for the prediction of codfish identity
(Figure 5a). Figure 5b presents the running process of the selection of feature wavenumbers
by CARS algorithm, setting it to run 100 times. Figure 5b (the top figure) shows the
process of screening the number of characteristic variables, which is divided into two
parts; the first stage is rapid reduction (rough selection) and the second stage is very slow
(selection). Figure 5b (the middle figure) shows the variation trend of RMSECV. When
the minimum RMSECV value is 1.0951, ninety-three characteristic wavenumbers (4000,
4050, 4162–4499, 4557,4559, 4615–4970, 5059, 5138–5518, 5604, 5606, 5984, 5990, 6285–6762,
6924–7060, 7141, 7851–7923, and 8218–8297 cm−1) are selected, accounting for 3.58% of
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2593 total wavenumbers. Each line in Figure 5b (the bottom figure) represents the changing
trend of the regression coefficient, and * indicates the position with the smallest RMSECV.
In addition, nine characteristic wavebands (4000, 4353, 4661, 5340, 6611, 7059, 7126, 7759,
8447 cm−1) are extracted by SPA algorithm.

Table 1. Performance comparison of PLS-DA models with different pretreatment methods for codfish
NIR/Raman spectrum in the full waveband range (variables).

Pretreatment Method Number of
Variables LVs

Calibration Set Cross-Validation Set Prediction Set

SEC SPC ACC SECV SPCV ACCV SEP SPP ACP

NIR-None 2593 6 86.26 85.88 86.07 85.00 85.54 85.27 85.00 85.38 85.18

NIR-NOR 2593 6 86.68 85.83 86.25 84.59 85.23 84.91 85.00 85.00 85.00

NIR-MC 2593 6 85.84 88.33 87.08 84.16 87.78 85.98 88.75 88.21 88.48

NIR-MSC 2593 7 87.51 89.23 88.36 87.10 88.91 88.01 83.75 88.21 85.98

NIR-SNV 2593 7 87.51 89.29 88.39 87.10 88.91 88.01 83.75 88.21 85.98

NIR-FD 2593 6 90.81 85.88 88.36 74.18 86.83 80.51 68.75 85.88 77.32

NIR-BA 2593 5 87.19 85.25 84.55 85.20 85.60 83.15 84.53 84.96 83.66

NIR-SNV with MC 2593 7 89.81 92.19 89.64 89.34 91.57 89.08 89.53 90.84 87.95

Raman-None 669 5 78.39 73.44 76.99 72.74 72.94 74.23 66.25 74.57 71.79

Raman-NOR 669 7 82.13 86.49 85.00 73.17 86.16 81.13 60.47 87.61 75.80

Raman-SG 669 8 80.40 85.30 82.86 75.00 84.34 79.67 68.75 83.58 76.16

Raman-SNV 669 7 77.93 82.98 80.45 67.93 82.26 75.09 53.75 81.43 67.59

Raman-BA 669 6 83.50 84.70 83.01 77.77 84.44 79.97 68.91 84.85 76.43

Raman-SNV with NOR 669 7 75.58 86.02 80.45 64.33 85.22 75.09 47.97 84.64 67.59

Raman-BA with NOR 669 6 88.76 87.19 87.98 78.33 88.03 83.18 76.25 89.10 82.68

Raman-SG with NOR 669 6 77.51 82.09 79.79 74.99 81.29 78.15 60.00 83.40 71.70

Note: LV = Latent Variable. MC: Mean centered. SEC: Sensitivity of Calibration set. SPC: Specificity of Calibration
set. ACC: Accuracy of Calibration set. SECV: Sensitivity of Cross validation set. SPCV: Specificity of Cross
validation set. ACCV: Accuracy of Calibration set. SEP: Sensitivity of prediction set. SPP: Specificity of prediction
set. ACP: Accuracy of prediction set. BA: Baseline. NOR: Normalize. SG: Savitzky-Golay smoothing. All numbers
are expressed as percentages.

3.1.4. Modeling Based on Selected Optimal Wavenumbers

The selected feature wavenumbers were assessed and compared to verify the validity
of the selected wavelengths in rapid determination of codfish identity. Table 2 shows
the PLS-DA model established by selecting feature wavenumbers by IRIV, CARS and
SPA algorithms. As shown in Table 2, although the number of wavenumbers was greatly
decreased by the SPA method, the spectral data in the calibration set were reduced to
small matrixes as 240 × 9 (samples × variables); the model was showing some over-fitness.
This might be because the SPA algorithm lost some useful information related to codfish
identity during the extraction of the important wavebands and thus the robustness of the
model was reduced. The relatively more accurate model for predicting codfish identity was
established using the PLS-DA model based on key variables extracted by the IRIV method;
the SECV and SPCV were close to the SEC and SPC of the calibration model, and the ACC
value was higher than 90.00% (SEC =98.34%, SECV = 91.26%, SPC = 97.96%, SPCV = 96.3%,
ACC = 98.15%, ACCV = 93.78%). These results indicated that the key wavebands identified
by IRIV were informative and relevant to the identity of codfish. The number of variables
was significantly reduced (by 96.8%) by IRIV, indicating further that the IRIV algorithm
was effective in eliminating the redundant information. To further verify the credibility of
the simplified IRIV-PLS-DA model, the measured and predicted values of the 80 samples
in the prediction set were compared, and the SEP, SPP, ACP were obtained, with 85.00%,
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96.25%, 90.63%, respectively. Therefore, it was feasible to use feature wavelengths selected
by the IRIV algorithm to represent the original NIRS data (83 vs. 2593) for building the
evaluation model of the codfish identity.
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Table 2. Performance (%) of PLS-DA models based on preprocessing spectra in the selected feature
wavenumbers (i.e., variables).

Modelling Profile Variable
Amounts LVs

Calibration Set Cross-Validation Set Prediction Set
SEC SPC ACC SECV SPCV ACCV SEP SPP ACP

SNV-MC-CARS-NIRS 93 13 95.85 97.24 96.55 91.68 96.08 93.87 83.75 96.55 89.64
SNV-MC-IRIV-NIRS 83 17 98.34 97.96 98.15 91.26 96.3 93.78 85.00 96.25 90.63
SNV-MC-SPA-NIRS 9 7 84.20 89.25 86.34 89.35 89.10 86.01 86.88 87.90 86.25
BA-NOR-CARS-RS 64 8 88.75 88.68 88.72 73.35 87.55 80.45 65.00 86.78 75.89
BA-NOR-IRIV-RS 134 8 88.29 91.36 90.42 76.40 91.10 84.35 65.78 89.41 77.86
BA-NOR-SPA-RS 9 9 81.03 82.45 81.43 74.10 80.13 76.94 60.16 80.10 70.27

Note: All numbers are expressed as percentages. LVs, Latent Variables. SNV-MC, standard normal variation
with mean centering. BA-NOR, baseline correction with normalization (spectrum preprocessing algorithm).
CARS, competitive adaptive reweighted sampling. IRIV, iteratively retaining informative variables. SPA, suc-
cessive projections algorithm (spectrum feature selection algorithm). NIRS, near infrared spectrum. RS, Raman
spectrum. ACC, accuracy of calibration. ACCV, accuracy of cross-validation. ACP, accuracy of prediction.
SEC, sensitivity of calibration. SECV, sensitivity of cross-validation. SEP, sensitivity of prediction. SPC, specificity
of calibration. SPCV, specificity of cross-validation. SPP, specificity of prediction. All numbers are expressed
as percentages.



Foods 2022, 11, 4100 11 of 17

3.2. Analysis of RS Modeling Results
3.2.1. Analysis of the Spectral Features

Figure 6a shows similar morphological features of codfish samples within the ex-
amined Raman shift region, but the magnitude of spectra intensity fluctuates with the
identity difference of the cod. There are significant differences in RS of eight species of
codfish, especially at the peaks and valleys of 1007 cm−1, 1262 cm−1, 1278 cm−1, 1319 cm−1,
1459 cm−1 and 1662 cm−1, indicating that Raman intensity of eight species of codfish can
also be classified by using RS. All these particular spectral bands reflected by the measured
spectra allow the detection and classification of codfish identity and origin.
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Figure 6. Mean spectra curves of codfish samples. (a) Raman original spectrum, (b) RS pretreated by
baseline correction with normalization (RS-BA-NOR). Note: RS, Raman spectrum. BA, baseline. NOR-
normalization. The mean spectrum and corresponding standard deviation of each measurement
group are displayed in different colors, and the standard deviation is indicated by the shading
accompanying each mean spectrum line.

To specify, the characteristics of the RS of cod, including near 1269, 1306, 1443, 1470,
1660, and 1750 cm−1, could be assigned to the C=O stretching vibration, CH2 scissoring
vibration, C-C stretching vibration, CH2 twisting vibration, and CH in plane deforma-
tion vibration observed, and they are attributed to fat [40]. The 1004 cm−1 is linked
to phenylalanine ring stretching vibration, 1230–1350 cm−1 linked to amide III region,
1600–1700 cm−1 linked to amide I region, and it is attributed to protein. The amide III
region (1230–1350 cm−1) is a conformationally sensitive band region. This band region can
provide vibration information on the main conformation of the polypeptide chain, includ-
ing C-N stretching vibration, N-H in-plane bending vibration, C-C stretching vibration and
C = O in-plane bending vibration [41]. The amide I region (1600–1700 cm−1) provides more
information for the resolution of the protein secondary structure. This band region not only
contains the information on C = O stretching vibration, but also provides information on
C-N stretching vibration, C-C-N bending vibration and N-H in-plane bending vibration in
the polypeptide group [42]. In addition, the water broad Raman band between 3100 and
3500 cm−1 which is attributable to O-H stretching motions [40]. The spectral interference
associated with hydrogen bonding is greatly reduced in RS compared to NIRS. By compar-
ing the characteristic peak positions and relative peak intensities of codfish samples in the
above important RS bands, the specific effects of identity on cod RS can be explained.

3.2.2. Selection of Pretreatment Methods for RS

To improve the accuracy and robustness of the spectrum, several RS pretreatment
methods were utilized. PLS-DA calibration models were built to correlate the corrected
data across full wavelengths with codfish labels, of which the calibration model based on
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BA with NOR preprocessing yielded acceptable results, with SEC, SPC, ACC all around
88% for the calibration set, and SEP of 76%, SPP of 89%, and ACP of 83% for the prediction
set. In this research, the BA combined with a NOR transform correction algorithm was
selected for the preprocessing of RS information (Figure 6b). In terms of function, BA
was mainly used to eliminate the effects of solid particle size, surface scattering and light
range variations on the diffuse reflection spectrum [43]. NOR was mainly used to calibrate
spectral changes caused by small optical path differences [44].

3.2.3. Extraction of Effective Wavenumbers

For the RS, the same characteristic wavenumbers selection methods to simplify the
model were adopted. The selected feature wavenumbers were assessed and compared to
verify the validity of the selected wavelengths and rapid determination of codfish iden-
tity. Figure 7a,b demonstrates the selected wavenumbers of IRIV and CARS algorithms,
respectively. Table 2 shows the PLS-DA model established by selecting characteristics
wavenumbers by the IRIV, CARS and SPA algorithms. As shown in Table 2, 134 charac-
teristics wavebands obtained by the IRIV method, 64 characteristics wavebands selected
by the CARSA method, and nine characteristics wavebands obtained by the IRIV method
are used for cod identity prediction. In terms of the SPA method, the results showed that
9 (1009, 1005, 1339, 1444, 1661, 1012, 1247, 1450, 1740 cm−1) optimal wavenumbers were
identified for RS.
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3.2.4. Modeling Based on Optimal Wavenumbers

In terms of the results, the relatively more accurate model for assessing codfish
identity was established using the PLS-DA model based on key variables extracted by
the IRIV method (accounting for 20.03% of 669 total wavebands); the SEC = 88.29%,
SECV = 76.40%, SPC = 91.36%, SPCV = 91.10%, ACC = 90.42%, ACCV = 84.35%). Although
the number of wavelengths was greatly decreased by the SPA method, the spectral data
in the calibration set were reduced to small matrixes as 240 × 9 (samples × variables);
the model was overfitting. These results indicated that the key wavebands identified by
IRIV were informative and relevant to the identity of codfish. The number of variables
was significantly reduced (by 79.97%) by IRIV, indicating further that the IRIV algorithm
was effective in eliminating the redundant information. To further verify the credibility of
the simplified IRIV-PLS-DA model, the measured and predicted values of the 80 samples
in the prediction set were compared, and the SEP, SPP, ACP were obtained, with 65.78%,
89.41%, 77.86%, respectively. It is worth noting that, compared with the full RS wavelength
models, the prediction accuracy of the simplified models generally declined. The reason
may be that these feature selection algorithms have lost some key waveband information.
Therefore, in the subsequent data fusion pipeline, the results of the NIRS characteristic
band classification model and the RS full band classification model were fused by the
Bayesian method.

From the classification results, the accuracy of the NIRS modeling classification is
higher than that of RS. The reason may be that the RS equipment used in this study is the
microscope dispersion spectrometer. However, in the sample detection, the laser frequency
of the RS is the key. We only use 532 nm, and fluorescence affects the spectral signal of
the sample to a certain extent. Using lasers at 785 nm and 830 nm might overcome the
fluorescence problem; most food samples have fluorescence, which may mask other peaks
and create problems in the identification. This may be the reason for the low performance
of the RS classification model.

3.3. Analysis of Bayesian Fusion Data Results

The process of obtaining the fusion classification results started from the earlier exper-
iments, where the node of predicted values of the NIRS and the RS PLS-DA model were
obtained, respectively. According to the node value, the probability of each cod sample
belonging to a different identity was calculated. Following recalculation with the new
probability value, the new post-fusion discriminant result was obtained. In the process of
analysis, we noticed that as long as a single spectral technique can distinguish correctly,
accurate results can still be obtained with the Bayes information fusion. The Bayes informa-
tion fusion belongs to decision level fusion, as mentioned earlier. However, for the samples
that are wrongly classified by both spectral techniques, the fusion method was unable to
correctly identify them. For such samples, the causes need to be found from the source,
such as whether the spectrum was acquired correctly, or other reasons.

Figure 8 shows the codfish spectrum PLS-DA Bayesian data fusion confusion matrix
of calibration, CV and prediction sets. The discriminant results of the fused model are
shown in Table 3. The results of data fusion showed that the sensitivity, specificity, and
accuracy of prediction set reached 92.50%, 98.93% and 98.12%, respectively, which were
significantly improved compared with single NIRS (85%, 96.25%, 90.63%, respectively) or
RS (76.25%, 89.10%, 82.68%, respectively) classification metrics. Compared with NIRS-RS-D
(81.25%, 96.59%, 88.93%, respectively) and NIRS-RS-F (85%, 96.79%, 90.89%, respectively),
the model performance of NIRS-RS-B discrimination was also improved. Without doubt,
after Bayesian fusion, the classification model of integral differential rate performed better
than a single spectral data classification model.
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Figure 8. Discrimination result (confusion matrix) of NIR and Raman spectrum Bayesian information
fusion model for: (a) calibration set, (b) cross-validation set, (c) prediction set.

Table 3. Comparison of data fusion performance (%) at different modes for codfish identification.

Data Fusion Mode
Calibration Set Cross-Validation Set Prediction Set

SEC SPC ACC SECV SPCV ACCV SEP SPP ACP

Bayesian information fusion 96.67 99.40 99.06 93.33 99.05 98.33 92.50 98.93 98.12

Feature layer fusion 98.76 98.44 98.60 93.78 97.13 95.45 81.25 96.59 88.93

Data layer fusion 98.76 98.20 98.48 92.51 97.28 94.88 85.00 96.79 90.89

Note: All numbers are expressed as percentages. ACC, accuracy of calibration. ACCV, accuracy of cross-validation.
ACP, accuracy of prediction. SEC, sensitivity of calibration. SECV, sensitivity of cross-validation. SEP, sensitivity
of prediction. SPC, specificity of calibration. SPCV, specificity of cross-validation. SPP, specificity of prediction.
As complimentary methods, NIRS and RS provide complimentary chemical and structural information of the
cod samples, which, as demonstrated, has the potential to better illustrate the differences of different cod species
and origins. This method can get the correct discriminant result even with samples that were misclassified
using each spectral method separately after the application of the Bayes probability formula. In other words,
the Bayesian fusion classification model improved the accuracy of classification beyond what a single spectral
method classification had achieved. All these results indicate that the models could be suitable for the prediction
of codfish identity.

4. Conclusions

The current codfish identification management and traceability system is based on
the industry integrity of enterprises, and the producers ensure the authenticity of the
identification content. However, more and more adulteration incidents prove that it is
not enough to rely solely on enterprises or industries to perform their due diligence. In
this research, a novel Bayesian information fusion model was presented merging the
NIRS and RS to improve the accuracy of cod identity prediction. In some cases, either
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NIRS or RS could be a valid pre-screening technique, to test codfish identity when speed
and cost of analysis matter. However, as validated by an external prediction set as well as
internally, the Bayesian fusion model outperforms both techniques in all the metrics studied.
Experimental results also show that the NIRS-RS Bayesian fusion approach produces
superior results in comparison with those obtained by the NIRS-RS-D or NIRS-RS-F. The
NIRS-RS-B approach reliably classified codfish with over 92% sensitivity, 98% specificity,
and 98% accuracy. Hence, the Bayesian fusion of information-based discrimination methods
and discrimination models provides a new strategy and possible approach to develop novel
methodologies with high efficiency and low cost for identification of codfish.

Meanwhile, the Bayesian fusion algorithm is a relatively new approach to merge the
data from different sources (spectrum, chromatography, mass spectrometry et al.) at the
decision level to improve the prediction performance. Further work should also be under-
taken to clarify whether spectral classification is affected by seasonal variations, treatment
methods and different storage conditions, to broaden the application of classification results.
These important findings can help improve the fight against commercial fraud, extending
the possibility to authenticate fish identity also in, e.g., processed products. In the future,
we will focus on how to further improve the computational speed of the algorithm and
apply our Bayesian model approach to other image fusion and signal processing fields.
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