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Abstract: The variety of characteristics of red pepper makes it difficult to analyze at the production
field through hyperspectral imaging. The importance of pretreatment to adjust the moisture content
(MC) in the process of predicting the quality attributes of red pepper powder through hyperspectral
imaging was investigated. Hyperspectral images of four types of red pepper powder with different
pungency levels and MC were acquired in the visible near-infrared (VIS-NIR) and short-wave infrared
(SWIR) regions. Principal component analysis revealed that the powders were grouped according to
their pungency level, color value, and MC (VIS-NIR, Principal Component 1 = 95%; SWIR, Principal
Component 1 = 91%). The loading plot indicated that 580–610, 675–760, 870–975, 1020–1130, and
1430–1520 nm are the key wavelengths affected by the presence of O-H and C-H bonds present in red
pigments, capsaicinoids, and water molecules. The R2 of the partial least squares model for predicting
capsaicinoid and free sugar in samples with a data MC difference of 0–2% was 0.9 or higher, and
a difference of more than 2% in MC had a negative effect on prediction accuracy. The color value
prediction accuracy was barely affected by the difference in MC. It was demonstrated that adjusting
the MC is essential for capsaicinoid and free sugar analysis of red pepper.

Keywords: red pepper powder; hyperspectral imaging; multivariate analysis; moisture adjustment

1. Introduction

Red pepper (Capsicum annuum L.) is a single crop belonging to the Solanaceae family.
It has a spicy taste and red color [1] and it is often dried and processed into a powder
and used as a spice for food additives [2]. Preference for the quality of red pepper is
ultimately determined by the taste components (mixed with spicy, sweet, and other flavor
components) contained in red pepper powder. Homologs of capsaicinoids, which are
components of hot pepper, include capsaicin, dihydrocapsaicin, nordihydrocapsaicin, and
glucose and fructose, which are reducing sugars, and are particularly closely related to the
overall preference of red pepper powder. In particular, sweet flavor is negatively correlated
with capsaicin content and stinging pain [3].

It is cultivated in different varieties and even in the same variety, and the capsaicinoid
and sugar contents differ depending on the cultivation conditions, such as sunlight, pre-
cipitation, soil characteristics, or the difference in harvest time [4]. The survey report of
the Consumers Federation of Korea (2013) noted that 80% of consumers responded that
a label on the taste of red pepper powder is necessary, which affects product purchases.
Therefore, real-time quality monitoring is required to label objective information on prod-
ucts [5]. High-performance liquid chromatography (HPLC) and gas chromatography/mass
spectrometry (GC/MS) have been used to measure the content of capsaicinoid in red pep-
per [6–9]. However, these methods have some disadvantages as they are time-consuming,
destructive, and lack capable real time detection systems. Among alternative methods,
hyperspectral imaging (HSI) technology, which combines spectroscopy and cameras, can
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simultaneously provide spectral and spatial information regarding the external and internal
qualities of agricultural products and are advantageous as they are fast, non-destructive,
and cost-effective [10,11]. To enhance the applicability of HSI, chemometric methods such
as principal component analysis (PCA) and partial least squares (PLS) regression are widely
used for spectral analysis of foods with complex characteristics, because they offer better
flexibility in conditions such as multicollinearity and when the number of variables exceeds
the number of samples [12].

Previously, various spectroscopic trials and chemometrics were performed to analyze
quality characteristics including capsaicinoids, free sugars, and moisture content of red
pepper and red pepper powder [13–15]. Because the water content and particle distribution
of the powder affect the light penetration depth and reflective ability, which influence
spectroscopic signals such as any physical interference and chemical signals [16–18], it
has been conjectured that ensuring uniformity can improve the measurement accuracy of
components such as capsaicinoid in red pepper powder [19]. Compared with sieving to
make the particle size of red pepper powder uniform, it is practically difficult to apply the
manufacturing process to ensure that the water content is the same in the field. Therefore,
by confirming the prediction accuracy according to the range of the difference in moisture
content between samples, no previous study has shown the need for moisture control in
the spectroscopic analysis of red pepper powder or established the moisture distribution
conditions for sample preparation.

In this study, the moisture content of red pepper powder with different levels of spici-
ness produced in Gochang-gun, Shintaein-eup, Gwanchon-myeon, and Jeongeup-si was
adjusted to 7, 8, 9, 10, 11, and 12%, respectively. By extracting Vis-NIR (400–1000 nm) and
SWIR (900–1700 nm) image spectrum information and performing multivariate analysis,
the capsaicinoid content, free sugar content, and color prediction accuracy of red pepper
powder were determined according to the range of moisture content difference (7–8%,
7–9%, 7–10%, 7–11%, and 7–12%). It was hypothesized that this process would be able to
prove the extent of which the moisture content difference has a high reliability for each
quality prediction model. This study provides a basis for application in the field of red
pepper powder production by overcoming the limitations of hyperspectral image analysis,
which is strongly influenced by the bonding of water molecules. It can be a useful reference
for determining the range of moisture content in samples in hyperspectral analysis studies
of various agricultural foods, as well as red pepper powder.

2. Materials and Methods
2.1. Sample Preparation

Red peppers produced in Gochang-gun (GC), Sintaein-eup (ST), Kwanchon-myeon
(KC), and Jeongeup-si (JU) regions, Jeollabuk-do, Korea, in 2021 were purchased as samples.
Red peppers were ground after hot air drying (50–60 ◦C), and the particle size of the red
pepper powder was uniformly prepared with a particle size of 425–850 µm using a standard
sieve. Samples were prepared based on the particle size of red pepper powder for seasoning,
which is most commonly used in Korea, according to Korean Industrial standards (KS). To
ensure that the moisture content of each sample was 7%, 8%, 9%, 10%, 11%, and 12%, the
following process was performed. KS presents less than 13% as the appropriate moisture
content of red pepper powder, and the average moisture content of red pepper powder
sold on the market is 7–12%.

First, the moisture contents of the GC, ST, KC, and JU powder samples were measured
using the atmospheric pressure drying method in a drying oven. The samples were dried
at 100 ◦C for 4 h, and the moisture content was calculated using the weight differences
before and after drying. The moisture contents of the GC, ST, KC, and JU were 11.12%,
11.36%, 10.12%, and 11.09%, respectively. To adjust the initial moisture content to 12%,
it was necessary to seal the samples in plastic bags and humidify by spraying additional
10.75 mL, 7.81 mL, 22.57 mL, and 11.08 mL of water on 950 g of GC, ST, KC, and JU samples.
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75 g of the red pepper powder whose moisture content was adjusted to 12% was
dried in a dry oven set at 55 ◦C, and the weight of the red pepper powder was measured
every 15 min. A graph was prepared as shown in Figure 1. The moisture content was
calculated as the change between the initial weight and the weight after drying, and red
pepper powder samples with moisture contents of 7%, 8%, 9%, 10%, 11%, and 12% were
prepared. According to the production area and moisture content of the samples, Gochang
samples were GC7, GC8, GC9, GC10, GC11, and GC12, Shintaein samples were ST7, ST8,
ST9, ST10, ST11, ST12. Kwanchon samples were KC7, KC8, KC9, KC10, KC11, and KC12
and Jeongeup samples were named JU7, JU8, JU9, JU10, JU11, and JU12.
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Figure 1. Weight change of red pepper powder according to drying time and calculated
moisture content.

2.2. Determination of Quality Indicators

To analyze the capsaicinoid and free sugar content of the samples, pretreatment was
required to make the particle size uniform. The samples were finely ground using a food
mixer (SNSG-1002SS, Hanil Electric, Seoul, Korea), filtered through a 30 mesh sieve (pore
size, 0.6 mm), and then used for analysis.

2.2.1. Moisture Content Measurement and American Spice Trade Association (ASTA) Color

The moisture content of the red pepper powder was measured by drying for 6 h in a
vacuum oven dryer (OV-11, Jeio Tech, Daejeon, Republic of Korea) set at 70 ◦C, according
to ASTA analytical method 2.1. The ASTA color value measurement method was based
on AOAC official method 971.26, and acetone was filled in 0.1 g of the sample, shaken for
1 min, and left in the dark for 16 h to prepare a test solution. The absorbance of the test
solution was measured at 460 nm using a UV spectrophotometer (Thermo Fisher Scientific,
Vantaa, Finland), and the results were substituted into the equation below to calculate the
ASTA color value.

ASTA value =
A × 16.4

W
(1)

A: absorbance at 460 nm; W: sample weight (g).

2.2.2. Capsaicinoid

Capsaicin and dihydrocapsaicin contents were analyzed by referring to the methods
of Ku et al. [20] and Namgung et al. [21]. The extraction method for capsaicinoid analysis
was as follows: Methanol (10 mL) and a boiling chip were added to 2 g of the sample and
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heated on a dry heating block (MaXtable H10, Daehan, Incheon, Korea) set at 90 ◦C for 1 h,
and then cooled to room temperature. The extract was filtered with Whatman No. 1 and
then filtered again with a 0.2 µm syringe filter. Capsaicinoid content was analyzed using
an HPLC system (Agilent 1260 infinity II, Agilent Technology, Santa Clara, CA, USA). An
XTerraTMRP18 (5 µm, 4.6 × 150 mm id., Waters, Milford, MA, USA) column was used,
and the mobile phase (A: acetic acid, B: acetonitrile) was applied in a gradient method
(A: B = 60:40, 38:62, and 20:80) at a rate of 1 mL/min. The column temperature was set at
35 ◦C and the injection volume was 10 µL. A variable-wavelength detector was used, and
the absorbance was measured at 280 nm. Capsaicin and dihydrocapsaicin were used as
standards to prepare calibration curves.

2.2.3. Free Sugar

The free sugar content of the red pepper powder was analyzed by high-performance
liquid chromatography (HPLC, Agilent 1260 infinity II, Agilent Technology, CA, USA).
40 mL of 80% ethanol was added to 2 g of the sample, extracted for 1 min with a vortex
mixer, filtered through a 0.2 µm membrane filter, and 20 µL was injected into the 1260 II
Infinity HPLC-Refractive Index (RI) detector for analysis. Fructose, glucose, and sucrose
(Sigma-Aldrich, St. Louis, MO, USA) dissolved in 80% ethanol were used as the standards.
For the mobile phase, a solvent mixture of acetonitrile and water at a ratio of 75:25 (v/v)
was separated in the isocratic mode at a flow rate of 1 mL/min. The column temperature
was set to 30 ◦C, and the temperature of the RI detector was set to 35 ◦C. All analysis
processes were performed by referring to the methods of Ku et al. [2].

2.2.4. Statistics Analysis

All experimental measurements of 24 samples were performed three times, and the
results are presented as means and standard deviations (n = 72, mean ± SD). The results
were analyzed by ANOVA and Duncan’s multiple range test (p < 0.05) using the SPSS
software package (version 20, IBM SPSS Statistics, Inc., Chicago, IL, USA).

2.3. Hyperspectral Image Analysis
2.3.1. Hyperspectral Image Acquisition and Data Extraction

Hyperspectral images in the VIS-NIR region (400–1000 nm) were acquired using the
line scan method (pushbroom) using a SPECIM FX10 spectrometer (Spectral Imaging Ltd.,
Oulu, Finland) equipped with three halogen light sources. It was operated by obtaining the
reflection intensity from the sample, and image data with a spectral resolution of 1.3 nm
were acquired for a total of 448 bands. A white plate made of polytetrafluoroethylene and
the sample were scanned together, and the acquired image was normalized using the IDL
Virtual Machine Application program (8.8.0, L3Harris Geospatial, Boulder, CO, USA).

HSI data of the red pepper powders were acquired using an ImSpector N17E (Specim,
Spectral Imaging Ltd., Oulu, Finland) in the short-wave infrared (SWIR) region, 900–1700 nm.
The light source consisted of two halogen lamps (1400 nm long-pass filter). The system
consisted of an NIR camera with an indium gallium arsenide (InGaAs) sensor operated
in reflectance mode with line-by-line scanning (pushbroom) to obtain intensity images
at 5 nm intervals through a 30 µm slit (256 images per scene). A white plate was used
as the reference material and was scanned before each sample was scanned. The sam-
ples were scanned line-by-line along the Y-axis and moved along the X-axis to obtain a
three-dimensional (3D) hypercube containing both spatial and spectral information.

The powder (3.5 g) was placed in a transparent Petri dish (5 cm diameter) and spread
flat to cover the bottom of the Petri dish. To reduce the diffuse reflection that may have been
caused by the particle surface, the surface of the sample was compressed with a presser
to make it as level as possible. Fifty hyperspectral images were acquired per sample for a
total of 1200 images. All the hyperspectral imaging systems were operated using Microsoft
Windows. To obtain the necessary information from the acquired images, image spectrum
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data for the inner area of the Petri dish were obtained using the region of interest function
of the ENVI (version 5.4, Exelis Visual Information Solutions, Boulder, CO, USA) program.

2.3.2. Chemometrics

Chemometrics is a method of high-level interpretation of one-dimensional data ob-
tained through chemical analysis using computers, mathematics, and statistics and was
used in this study to link quality-related factors and measurement technology. Multivariate
statistical analysis consists of unsupervised learning, which finds data patterns or rela-
tionships between data when the characteristics of the data are unknown, and supervised
learning, which predicts results by finding the optimal model by learning through an
algorithm set with input and output values [22].

In this study, principal component analysis (PCA), a representative unsupervised
learning method, was performed to visualize the overall clustering tendency according to
the sourness and moisture content of the red pepper powder samples. Two-dimensional and
three-dimensional PCA score plots were derived from the spectral data in the 400–1000 nm
and 900–1700 nm regions. As the number of principal components increases, overfitting
occurs, and the reliability of the predictive model decreases [23], so the maximum principal
component was set to 7. Principal component analysis was performed using Unscrambler
statistics program (version 10.5, CAMO, Trondheim, Norway).

To predict capsaicinoid content, partial least squares regression (PLSR) analysis, a
supervised learning method, was attempted. The PLS statistical method combines the
functions of principal component analysis and multiple regression analysis and aims to
predict the independent variable by expressing the relationship between the predictor
variable X (spectral data) and the independent variable Y (measured capsaicinoid content)
in a linear model [24]. The predicted value of Y was calculated using the following equation:

Y = βX + b (2)

β: vector of regression coefficient; b: model offset.
The PLS model showed more stable characteristics than the principal component

model, considering only the independent variables. Of the total spectral data, 70% were
used to develop the calibration model, and the remaining 30% were used for testing to
verify the developed model. To evaluate the performance of all developed PLS models,
the coefficient of determination (Rc

2) in the calibration model, coefficient of determina-
tion (Rv

2) in the cross-validation model, root mean square error of calibration (RMSEC),
cross-validation model, and root mean square error of validation (RMSEV) value were con-
sidered. Table 1 shows the PLS model names developed in this study and the data samples
(spectral and physicochemical data) inserted into each model. The entire model developed
using samples with uniform moisture content was named Model A, and the entire model
developed with samples having different moisture contents was named Model B.

Table 1. Developed partial least square model.

Model Name N Inserted Data

Model A

A7 200 GC7, ST7, KC7, JU7

A8 200 GC8, ST8, KC8, JU8

A9 200 GC9, ST9, KC9, JU9

A10 200 GC10, ST10, KC10, JU10

A11 200 GC11, ST11, KC11, JU11

A12 200 GC12, ST12, KC12, JU12
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Table 1. Cont.

Model Name N Inserted Data

Model B

B7-8 400 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8

B7-9 600 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9

B7-10 800 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10, JU10

B7-11 1000 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10,
JU10, GC11, ST11, KC11, JU11

B7-12 1200 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10,
JU10, GC11, ST11, KC11, JU11, GC12, ST12, KC12, JU12

3. Results and Discussion
3.1. Quality Indicators Analysis and Correlation between Physicochemical Properties

Table 2 shows the analysis results of physicochemical characteristics of red pepper
powder. The moisture content showed an error of 0.42–8.00% compared to the intended
moisture content, but it was confirmed that the sample was prepared with an increase in
moisture content with an R2 of 0.99 or more. The capsaicinoid content of the red pepper
powders is listed in Table 1, indicating that the capsaicin content of all samples was higher
than the dihydrocapsaicin content. The pungent substances in red pepper are capsaicin
homologs, and the main components of capsaicinoids are capsaicin, dihydrocapsaicin,
and nodihydrocapsaicin, each at approximately 70%, 21–40%, and 2–12% composition,
respectively [25]. For total capsaicinoid content, GC ranged from 156.80–165.57 mg/kg, ST
ranged from 252.14–269.10 mg/kg, KC ranged from 510.44–544.65 mg/kg, and JU ranged
from 676.04–731.92 mg/kg. According to the Korean Industrial Standard, GC and ST are
classified as ‘Slight Hot’ and KC and JU as ‘Medium Hot’. There was a slight difference
in the capsaicin, dihydrocapsaicin, and total capsaicinoid content depending on the water
content, but no significant differences were observed.

Park et al. [26] and Choi et al. [3] stated that fructose and glucose account for 70% of
the total sugars in red pepper, and the sweetness of red pepper is in the order of fructose,
glucose, and sucrose. All red pepper powders were composed of free sugars in the order of
fructose > glucose > sucrose content, and the free sugar content was not affected by the
water or capsaicinoid content of red pepper powder.

The American Spice Trade Association (ASTA) color values were calculated as 83.90–86.92 for
JU, 75.95–79.14 for GC, 62.93–65.75, ST, and 57.72–59.65 for KC. JU, GC, ST, and KC were dark
red. The ASTA color, which is a criterion for the color of red pepper powder [2] and the pigment
content of red pepper powder are known to fluctuate depending on the variety, cultivation area,
and drying method, such as sun drying and hot air drying [27–29]. Therefore, it is difficult to
determine the degree of spiciness and sweetness by observing the appearance of red pepper
powder with the naked eye without analysis.

The pungency components, including capsaicin, dihydrocapsaicin, and capsaicinoid,
showed a low correlation with moisture content, ASTA value, and free sugars (fructose,
glucose, sucrose, and total free sugar) indicating that there was no significant effect on
pungency level. Therefore, when predicting the pungency level of red pepper powder
using spectral information, it is proven that pungency components can show independent
spectral characteristics without mutual influence between physicochemical characteristics.
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Table 2. Physicochemical properties of red pepper powder according to pungency level and moisture contents.

Sample
(1)

Moisture Content (%) ASTA Value
Capsaicinoid (mg/kg) Free Sugar (%)

Capsaicin Dihydrocapsaicin Total Fructose Glucose Sucrose Total

GC7 7.24 ± 0.06 b(2) 77.33 ± 0.16 f 98.04 ± 2.66 a 64.84 ± 1.37 a 162.89 ± 4.00 a 6.86 ± 0.02 ab 3.19 ± 0.08 ab 0.95 ± 0.02 i 11.00 ± 0.12 ab

GC8 8.29 ± 0.05 e 76.37 ± 0.88 f 96.84 ± 2.65 a 63.62 ± 0.97 a 160.46 ± 3.59 a 6.88 ± 0.04 ab 3.17 ± 0.09 ab 0.98 ± 0.01 ij 11.03 ± 0.09 ab

GC9 9.35 ± 0.05 h 77.27 ± 0.88 f 99.30 ± 0.65 a 66.26 ± 0.38 a 165.57 ± 1.03 a 7.09 ± 0.05 bc 3.23 ± 0.05 b 1.00 ± 0.02 jk 11.32 ± 0.06 b

GC10 10.39 ± 0.04 k 77.25 ± 0.31 f 94.41 ± 1.02 a 63.58 ± 0.28 a 158.99 ± 1.17 a 6.92 ± 0.06 ab 3.10 ± 0.04 ab 1.01 ± 0.01 jk 11.03 ± 0.09 ab

GC11 11.54 ± 0.05 m 79.14 ± 0.44 g 94.35 ± 2.07 a 63.85 ± 1.76 a 158.20 ± 3.80 a 6.95 ± 0.25 ab 3.03 ± 0.16 ab 0.99 ± 0.03 jk 10.97 ± 0.44 ab

GC12 12.35 ± 0.08 p 75.95 ± 2.99 f 93.51 ± 0.63 a 63.28 ± 0.76 a 156.80 ± 1.26 a 6.72 ± 0.03 a 2.98 ± 0.04 ab 1.00 ± 0.02 jk 10.69 ± 0.09 a

ST7 7.13 ± 0.02 a 64.52 ± 0.19 de 159.22 ± 2.17 d 105.91 ± 1.79 bc 265.13 ± 3.96 cd 9.09 ± 0.14 ij 5.11 ± 0.08 j 0.62 ± 0.03 a 14.82 ± 0.24 hi

ST8 8.16 ± 0.02 d 64.39 ± 0.63 de 160.98 ± 4.65 d 108.13 ± 3.55 c 269.10 ± 8.16 d 9.14 ± 0.14 ij 5.13 ± 0.06 j 0.66 ± 0.02 bc 14.94 ± 0.21 hi

ST9 9.41 ± 0.04 h 62.93 ± 0.48 c 157.00 ± 1.57 cd 105.67 ± 0.61 bc 262.68 ± 2.14 bcd 8.82 ± 0.15 efghi 4.84 ± 2.00 ghi 0.64 ± 0.01 ab 14.30 ± 0.25 defgh

ST10 10.34 ± 0.05 k 63.49 ± 0.42 cd 159.82 ± 0.25 d 108.12 ± 0.36 c 267.94 ± 0.56 d 9.15 ± 0.21 ij 5.00 ± 1.57 ij 0.68 ± 0.01 c 14.83 ± 0.28 hi

ST11 11.30 ± 0.06 l 65.75 ± 0.96 e 149.91 ± 3.58 b 102.24 ± 2.39 b 252.14 ± 5.97 b 8.96 ± 0.12 hij 4.82 ± 1.59 fghi 0.67 ± 0.03 bc 14.46 ± 0.22 fghi

ST12 12.05 ± 0.02 o 65.30 ± 0.41 e 150.40 ± 1.74 bc 102.73 ± 1.38 bc 253.13 ± 3.12 bc 9.17 ± 0.13 ij 4.93 ± 1.92 hij 0.68 ± 0.01 c 14.79 ± 0.22 hi

KC7 7.56 ± 0.13 c 59.91 ± 0.71 b 280.00 ± 5.44 g 251.80 ± 5.38 fg 531.80 ± 10.81 fg 9.79 ± 0.10 k 5.39 ± 0.08 k 0.74 ± 0.01 e 15.92 ± 0.17 j

KC8 8.64 ± 0.06 f 59.65 ± 0.38 b 285.14 ± 3.05 gh 257.28 ± 2.30 hi 542.42 ± 5.34 gh 9.27 ± 0.41 j 5.06 ± 0.24 j 0.74 ± 0.04 de 15.07 ± 0.69 i

KC9 9.18 ± 0.02 g 59.45 ± 0.38 b 286.09 ± 3.84 h 258.56 ± 3.00 hi 544.65 ± 6.84 h 8.55 ± 0.13 def 4.59 ± 0.08 de 0.70 ± 0.01 cd 13.84 ± 0.21 de

KC10 10.19 ± 0.04 j 59.50 ± 0.36 b 278.72 ± 10.04 fg 251.81 ± 9.08 fg 530.53 ± 19.12 fg 8.58 ± 0.06 defg 4.57 ± 0.02 de 0.71 ± 0.01 cde 13.87 ± 0.06 def

KC11 11.37 ± 0.03 l 57.72 ± 0.35 a 267.65 ± 4.85 e 242.79 ± 3.87 d 510.44 ± 8.72 e 8.53 ± 0.08 de 4.44 ± 0.05 d 0.74 ± 0.01 e 13.72 ± 0.13 d

KC12 12.08 ± 0.04 o 59.27 ± 0.37 b 272.20 ± 2.01 ef 247.76 ± 1.69 def 519.96 ± 3.70 ef 8.91 ± 0.05 fghij 4.65 ± 0.05 defg 0.79 ± 0.02 f 14.35 ± 0.12 efgh

JU7 7.54 ± 0.03 c 85.24 ± 0.49 hi 459.26 ± 5.14 k 262.04 ± 2.81 ij 721.30 ± 7.95 k 8.83 ± 0.09 efghi 4.74 ± 0.06 efgh 1.01 ± 0.03 jk 14.58 ± 0.16 ghi

JU8 8.36 ± 0.02 e 85.66 ± 0.44 ij 465.90 ± 5.59 k 266.02 ± 3.13 j 731.92 ± 8.71 k 8.93 ± 0.03 ghij 4.77 ± 0.06 efgh 1.03 ± 0.01 k 14.73 ± 0.08 hi

JU9 9.56 ± 0.04 i 85.47 ± 0.98 i 438.91 ± 2.58 j 250.88 ± 1.95 efg 689.79 ± 4.53 j 8.69 ± 0.29 defgh 4.58 ± 0.22 de 1.01 ± 0.04 jk 14.29 ± 0.53 defgh

JU10 10.24 ± 0.03 j 86.92 ± 0.64 j 430.31 ± 3.54 i 245.73 ± 1.82 de 676.04 ± 5.37 i 8.43 ± 0.56 d 4.61 ± 0.33 def 0.92 ± 0.01 h 13.96 ± 0.90 defg

JU11 11.66 ± 0.03 n 85.95 ± 0.67 ij 461.74 ± 6.55 k 264.00 ± 3.25 j 725.75 ± 9.79 k 8.55 ± 0.21 def 4.46 ± 0.11 d 1.03 ± 0.01 k 14.04 ± 0.28 defg

JU12 12.55 ± 0.08 q 83.90 ± 0.38 h 443.85 ± 5.30 j 253.51 ± 2.77 gh 697.36 ± 8.07 j 7.40 ± 0.19 c 3.82 ± 0.09 c 0.88 ± 0.03 g 12.10 ± 0.26 c

(1) GC, red pepper powder produced in Gochang-gun; ST, red pepper powder produced in Sintaein-eup; KC, red pepper powder produced in Kwanchon-myeon; JU, red pepper powder
produced in Jeongeup-si. (2) Mean ± standard deviation (n = 3) with different superscript letters is significantly different at 5% level.



Foods 2022, 11, 4086 8 of 16

3.2. Spectral Characteristics

Figure 2 shows the hyperspectral mean spectra obtained from the GC, KC, ST, and JU
red pepper powders with different pungency levels and moisture contents. Red pepper
powder is composed of 50–60% carbohydrates, 10–15% crude protein, 10% crude fat, and
5% ash [30]. Therefore, as a result of observing the spectra, the shapes of all spectra were
similar, except for the difference in the overall reflection intensity depending on the sample.
In the observation of the characteristics of the average reflectance spectrum in the VIS-
NIR region without any chemometrics analysis (Figure 2A), the reflectance intensity was
relatively low in the sample with high moisture content, whereas differences in reflectance
by pungency level, ASTA color, and free sugar were not observed.

Red pepper powder absorbs light at approximately 1130, 1200, 1425–1440, and 1515 nm
in the SWIR band (Figure 2B), which is similar to the results reported by Mo et al. [4].
Each peak represents the 2nd overtone region of the CH bond (1200 nm), 1st overtone
combination of CH and OH bonds (1425 nm) and 1st overtone of the NH bond (1520 nm),
respectively [31–34].

In the band of approximately 1410–1540 nm, which is common in GC, ST, KC, and JU,
the reflectance intensity was low in samples with high moisture content, and it seems that
the absorption phenomenon was strengthened by a large number of OH bonds. However,
since it is difficult to quantify the sweetness and spiciness of red pepper only by observ-
ing the average spectrum, additional chemometrics analysis is required. Therefore, by
attempting multivariate analysis of hyperspectral data, there is a possibility of evaluating
the quality of red pepper powder and expressing it numerically.
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Figure 2. Cont.



Foods 2022, 11, 4086 9 of 16
Foods 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

  

  

(B) Mean spectra of red pepper powders in SWIR band (900–1700 nm) 

Figure 2. Mean spectra of red pepper powders in the Vis-NIR (A) and SWIR (B) wavelength ranges 

according to pungency levels and moisture contents. 

3.3. Chemometrics 

3.3.1. Principal Component Analysis 

The original reflectance spectral data matrix was reduced to a system of coordinate 

axes, where samples were located according to principal component analysis (PCA) scores 

instead of intensities in the wavelength space [35]. Therefore, samples with similar 

spectral properties tend to project to the same location in principal component space. A 

clear differentiation according to capsaicinoid content and moisture content is indicated 

in the PCA score plots shown in Figure 3, which are expressed in two dimensions and 

three dimensions by the principal component factors based on the hyperspectral spectra. 

In the score plot, GC is shown in blue, ST in green, KC in yellow, and JU in orange; the 

higher the moisture content, the darker the color. PC−1, PC−2, and PC−3 contributed 95%, 

3%, and 1% of the hyperspectral image data of red pepper powder obtained in the VIS-

NIR region, respectively (Figure 3A, B). As indicated by the dotted circle, it is clearly 

classified according to the production area of red pepper powder, which may mean that 

it is classified according to the degree of spiciness or ASTA color; therefore, additional 

interpretation is needed through the loading plot result. In addition, the distribution of 

darker markers closer to the upper left corner of the score plot indicates that PCA analysis 

using hyperspectral data in the VIS−NIR region can visually show the difference in the 

moisture content of red pepper powder. 

PCA results of the SWIR region showed that the first principal component (PC1) and 

the second principal component (PC2) accounted for 91% and 6% of the spectral variance, 

respectively. Because the first two principal components can explain 97% of the data, this 

data reveals the high feasibility of discrimination among red pepper powders. In the two-

dimensional plot, it was sequentially distributed according to the moisture content, which 

can be the basis for the hyperspectral spectrum to represent the relative moisture content 

2000

2500

3000

3500

4000

4500

5000

5500
8
8

8

9
0

9

9
3

7

9
7

3

1
0

1
3

1
0

5
8

1
1

0
7

1
1

5
7

1
2

1
0

1
2

6
2

1
3

1
5

1
3

6
8

1
4

1
9

1
4

6
8

1
5

1
5

1
5

5
9

1
6

0
1

1
6

3
9

1
6

7
3

R
ef

le
ct

a
n

ce

Wavelength (nm)

GC7

GC8

GC9

GC10

GC11

GC12

2000

2500

3000

3500

4000

4500

5000

5500

8
8

8

9
0

9

9
3

7

9
7

3

1
0

1
3

1
0

5
8

1
1

0
7

1
1

5
7

1
2

1
0

1
2

6
2

1
3

1
5

1
3

6
8

1
4

1
9

1
4

6
8

1
5

1
5

1
5

5
9

1
6

0
1

1
6

3
9

1
6

7
3

R
ef

le
ct

a
n

ce

Wavelength (nm)

ST7

ST8

ST9

ST10

ST11

ST12

2000

2500

3000

3500

4000

4500

5000

5500

8
8

8

9
0

7

9
3

2

9
6

4

1
0

0
0

1
0

4
1

1
0

8
4

1
1

3
0

1
1

7
7

1
2

2
6

1
2

7
5

1
3

2
3

1
3

7
2

1
4

1
9

1
4

6
4

1
5

0
8

1
5

4
9

1
5

8
8

1
6

2
4

1
6

5
8

1
6

8
8

R
ef

le
ct

a
n

ce

Wavelength (nm)

KC7

KC8

KC9

KC10

KC11

KC12
2000

2500

3000

3500

4000

4500

5000

5500

8
8

8

9
0

7

9
3

2

9
6

4

1
0

0
0

1
0

4
1

1
0

8
4

1
1

3
0

1
1

7
7

1
2

2
6

1
2

7
5

1
3

2
3

1
3

7
2

1
4

1
9

1
4

6
4

1
5

0
8

1
5

4
9

1
5

8
8

1
6

2
4

1
6

5
8

1
6

8
8

R
ef

le
ct

a
n

ce

Wavelength (nm)

JU7

JU8

JU9

JU10

JU11

JU12

Figure 2. Mean spectra of red pepper powders in the Vis-NIR (A) and SWIR (B) wavelength ranges
according to pungency levels and moisture contents.

3.3. Chemometrics
3.3.1. Principal Component Analysis

The original reflectance spectral data matrix was reduced to a system of coordinate
axes, where samples were located according to principal component analysis (PCA) scores
instead of intensities in the wavelength space [35]. Therefore, samples with similar spectral
properties tend to project to the same location in principal component space. A clear
differentiation according to capsaicinoid content and moisture content is indicated in
the PCA score plots shown in Figure 3, which are expressed in two dimensions and
three dimensions by the principal component factors based on the hyperspectral spectra.
In the score plot, GC is shown in blue, ST in green, KC in yellow, and JU in orange; the
higher the moisture content, the darker the color. PC−1, PC−2, and PC−3 contributed
95%, 3%, and 1% of the hyperspectral image data of red pepper powder obtained in the
VIS-NIR region, respectively (Figure 3A,B). As indicated by the dotted circle, it is clearly
classified according to the production area of red pepper powder, which may mean that
it is classified according to the degree of spiciness or ASTA color; therefore, additional
interpretation is needed through the loading plot result. In addition, the distribution of
darker markers closer to the upper left corner of the score plot indicates that PCA analysis
using hyperspectral data in the VIS−NIR region can visually show the difference in the
moisture content of red pepper powder.

PCA results of the SWIR region showed that the first principal component (PC1) and
the second principal component (PC2) accounted for 91% and 6% of the spectral variance,
respectively. Because the first two principal components can explain 97% of the data, this
data reveals the high feasibility of discrimination among red pepper powders. In the
two-dimensional plot, it was sequentially distributed according to the moisture content,
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which can be the basis for the hyperspectral spectrum to represent the relative moisture
content distribution of red pepper powder. In the three-dimensional plot, separate grouping
was performed according to the sample and moisture content. Therefore, PCA analysis
using hyperspectral data in the SWIR region can be a method that can effectively show
the difference in the distribution of moisture content and other quality characteristics of
red pepper powder. This plot only demonstrates the qualitative differences between the
examined samples without referring to their quantitative attributes [35].
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3.3.2. Loading Plot

The first two PCs accounted for 97% or more of the spectral variation in the tested
samples; therefore, these five PCs can be used as alternatives to the variables for the
classification of red pepper powder (Figure 4). In this study, to identify the key wavelengths
that are highly correlated with each PC for VIS−NIR and SWIR systems, the PC loadings
were plotted against their spectral ranges, and all characteristic wavelengths were marked.
PC loading can be used to identify wavelengths highly correlated with each PC [36]. In
addition, the PCA results of the spectral data of all tested red pepper powder spectra
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loadings are the regression coefficients for each wavelength in each principal component,
indicating which wavelength has a dominant effect on identification.
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As a result of observing the PCA loading plot of VIS-NIR data (Figure 4A), PC1
explained 95% of the total variance in the samples. Key wavelengths (675–760 nm) were
shown from this component, and key peaks were observed in the 580–610 nm, 675 nm, and
870–970 nm bands from PC2. Among the key wavelengths (580–610, 675–760, 870–975 nm)
shown by PCA loadings, a peak observed in the red region (675 nm) might also be related to
the presence of carotenoids [37]. The high absorbance observed at 625–740 nm is associated
with red absorbing pigments, mainly chlorophyll absorption [38,39]. Absorption at 750 and
974 nm is due to water absorption bands related to O–H stretching second overtones [40,41].
Owing to the obvious difference in ASTA color value and moisture content between the
samples in Table 1, VIS–NIR spectroscopic images can be used to compare the moisture
content and color of red pepper powder.

As a result of observing the PCA loading plot of the SWIR data, PC–1 showed a promi-
nent peak only at 1460 nm, and PC-2 showed peaks at 1020–1130 nm and 1430–1520 nm
(Figure 4B). Capsaicin and dihydrocapsaicin are alkaloids with molecular formulas of
C18H27NO3 and C18H29NO3, respectively, and the capsaicin molecule can be divided into
three regions: aromatic rings, amide bonds, and hydrophobic side chains [42]. The chemical
bonds that are read include O–H str. 1st overtone was detected in the wavelength range
of 1395–1452 nm and this chemical bond in the form of the C–H stretch 1st overtone is
due to the presence of aromatic and alkene functional groups, which are also known to
be constituents of capsaicin [34]. The 2nd overtone occurred because of the presence of a
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hydroxyl group (-OH) derived from several sources of antioxidants in red chili, such as
capsanthin and capsaicin.

Therefore, it is foreseen that wavelengths at water absorption bands and capsaicinoid
absorption bands are important for discrimination of pungency level and moisture content
within each red pepper powder.

3.3.3. Prediction of Quality Attribute in Red Pepper Powder

The prediction results of capsaicinoid, free sugar, and ASTA color by PLS modeling in
VIS-NIR and SWIR are shown in Figures 5 and 6. The average Rp

2 of Model A in VIS-NIR
for capsaicinoid was 0.98, and the average R2 value decreased to approximately 0.92 in
B7-10, B7-11 and B7-12 models, respectively: A decrease in Rp

2 of approximately 5.9%
occurred. The SWIR Rp

2 values of the B7-10, B7-11, and B7-12 prediction models for the
capsaicinoid were 0.85–0.87, a decrease of approximately 8.7% from the average Rp

2 value
of A7–A12. Referring to Figure 4A, the loading peaks at 590 nm and 670 nm, which can
explain the red color, were about 0.04 higher than those at 750 nm and 970 nm related
to moisture. On the other hands, there is a peak that stands out more than other bands
at 1450 nm where the vibration of OH bond in water molecules is revealed in Figure 4B.
Therefore, the SWIR spectra were more sensitive to the moisture content of the sample
compared to VIS-NIR spectra, which hindered the prediction of capsaicinoid content by
difference of water contents.

The modeling results for free sugars are as follows. In Figure 5, the prediction Model A
with uniform moisture content had an Rp

2 value of 0.96 or more. However, Rp
2 decreased

in the order of B7-8 (0.94), B7-9 (0.90), B7-10 (0.90), B7-11 (0.85), and B7-12 (0.80) models.
In Figure 6, it can be observed that the average Rp

2 of Model A is 0.951, whereas that of
Model B is 0.839, a decrease of about 12%. As shown in Figure 5, the fact that the Rp

2 value
did not decrease sequentially can be interpreted as a slight error according to the resolution
of the SWIR system itself and the number of measurement bands. As a result, it means that
the adjustment of the water content of the sample has a significant effect on the accuracy of
the PLS model in predicting the free sugar content in both the VIS-NIR and SWIR regions.

The training, and prediction model of the ASTA color value in VIS-NIR maintained an
Rc

2, Rcv
2 and Rp

2 of 0.97 or more regardless of the moisture content distribution. In the
SWIR region, it was observed that the R2 values of the B7-11 and B7-12 models slightly
decreased below 0.95 in the ASTA prediction model, but the prediction accuracy was still
high. Although capsanthin, zeaxanthin, cryptoxanthin, and betacarotene are responsible
for the red color in red pepper powders [43], the use of VIS-NIR region, which was based on
the external color values of red peppers was better for developing the prediction model of
ASTA color value than the use of SWIR region, which was based on the chemical structure
of red peppers by water molecules (OH bond). Therefore, the hyperspectral imaging system
is more useful and convenient for estimating ASTA values because there is less need to
adjust the moisture content of the sample.
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Figure 6. Prediction accuracy of capsaicinoid (A), free sugar (B) and ASTA color (C) of red pepper
powders using SWIR wavelength range in accordance with moisture content. RMSEC, root mean
square error of calibration; RMSECV, root mean square error of cross-validation.

4. Conclusions

The present study predicted the capsaicinoid and free sugar content through hyper-
spectral imaging and PLS analysis of red pepper powder with different moisture contents
and different pungency levels. There is an explicit tendency for the RMSE value to increase
as the difference in moisture content of the modeling sample increases for all predicted
quality attributes. Finally, a difference of more than 2% in MC had a negative effect on
prediction accuracy for capsaicinoid and free sugar. Therefore, this study demonstrated
that it is essential to adjust the moisture content difference of red pepper powder samples
to be used for modeling within 2% using a hyperspectral imaging system. It is expected
that this will be used as a basis for the development of automated systems for the rapid
grading of pungency levels and sweetness.
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