Next Issue
Volume 12, January-1
Previous Issue
Volume 11, December-1
 
 

Foods, Volume 11, Issue 24 (December-2 2022) – 177 articles

Cover Story (view full-size image): Coffee quality is achieved by good practices. This study aimed to evaluate coffees from different altitudes fermented with the self-induced anaerobic method (SIAF) and processed via the natural (N) and pulped natural (PN) process. Molecular, chemical, and sensory analyses were performed. Leuconostoc predominated both processes and all altitudes. Hanseniaspora and Pichia predominated both processes at 800 and 1200 m. Acids were higher in N coffees for all altitudes. Acetic, malic acid, and alcohols were the most abundant. Higher sensory scores were obtained in N (mainly at 1400 m—88.13). Floral and spices were perceived in all samples. ABTS capacity in roasted coffee increased with altitude in PN; meanwhile, the opposite was observed in N. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 12753 KiB  
Article
Microbiome-Metabolomics Insights into the Milk of Lactating Dairy Cows to Reveal the Health-Promoting Effects of Dietary Citrus Peel Extracts on the Mammary Metabolism
by Yuchao Zhao, Shiqiang Yu, Shuyue Zhang, Yuqin Li, Yan Tu, Ming Liu and Linshu Jiang
Foods 2022, 11(24), 4119; https://doi.org/10.3390/foods11244119 - 19 Dec 2022
Cited by 1 | Viewed by 1661
Abstract
The effects of dietary supplementation with citrus peel extract (CPE) on milk biochemical parameters, milk bacterial community, and milk metabolites were evaluated. Eight lactating cows were allocated to a replicated 4 × 4 Latin square. Experimental treatments included the control diet (CON), and [...] Read more.
The effects of dietary supplementation with citrus peel extract (CPE) on milk biochemical parameters, milk bacterial community, and milk metabolites were evaluated. Eight lactating cows were allocated to a replicated 4 × 4 Latin square. Experimental treatments included the control diet (CON), and CON supplemented with CPE at 50 g/d (CPE50), 100 g/d (CPE100), and 150 g/d (CPE150). Supplementing with CPE linearly decreased milk interleukin-6 and malondialdehyde concentrations and linearly increased lysozyme activity and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Compared with CON, the milk of CPE150 cows had fewer abundances of several opportunistic pathogens and psychrotrophic bacteria, such as Escherichia-Shigella, Sphingobacterium, Alcaligenes, Stenotrophomonas, and Ochrobactrum. Supplementing with CPE significantly altered the metabolic profiling in the milk. The metabolites of flavonoids were enriched in the milk of cows fed CPE150, while some proinflammation compounds were decreased compared with CON. Correlation analysis showed that the change in the bacterial community might partly contribute to the alteration in the expression of milk cytokines. In conclusion, CPE exerts health-promoting effects (e.g., antioxidant, anti-microbial, and anti-inflammatory) in the mammary metabolism of cows due to its flavonoid compounds, which also provide additional value in terms of milk quality improvement. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

11 pages, 519 KiB  
Article
Comparison of Milk Odd- and Branched-Chain Fatty Acids among Human, Dairy Species and Artificial Substitutes
by Silvia Carta, Fabio Correddu, Gianni Battacone, Giuseppe Pulina and Anna Nudda
Foods 2022, 11(24), 4118; https://doi.org/10.3390/foods11244118 - 19 Dec 2022
Cited by 3 | Viewed by 1986
Abstract
The aim of the study was to compare odd and branched-chain fatty acids (OBCFA) of milk from sheep, goat, cow, buffalo, donkey, human, and formula milk. Ruminant, monogastric, and human milks have different concentrations of these fatty acids (FA). To highlight the differences [...] Read more.
The aim of the study was to compare odd and branched-chain fatty acids (OBCFA) of milk from sheep, goat, cow, buffalo, donkey, human, and formula milk. Ruminant, monogastric, and human milks have different concentrations of these fatty acids (FA). To highlight the differences on OBCFA, a total of 282 individual milk samples were analyzed by gas chromatography. The OBCFA were found higher in ruminant than non-ruminant milks (p < 0.05). Among ruminants, sheep milk had the highest OBCFA (4.5 g/100 g of total FAME), whereases the lowest values were found in formula milk (0.18 g/100 g of total FAME). Regarding individual linear odd-chain FA (linear-OCFA), C11:0 was found higher in donkey milk than others, while sheep and buffalo milks had the greatest concentration of C15:0. Among BCFA, the iso-BCFA were higher than anteiso-BCFA in all considered milks. The isoC17:0 showed the highest concentration in all milks except for donkey and buffalo, which showed higher concentration of isoC16:0 than others. In conclusion, ruminant milks are different in terms of these FA compared to human milk and its substitutes. However, the greatest differences were found with formula milk, suggesting that this product needs the implementation of these FA to be more similar to human milk composition. Full article
Show Figures

Figure 1

18 pages, 362 KiB  
Review
A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials
by Aswathi Soni, Phil Bremer and Gale Brightwell
Foods 2022, 11(24), 4117; https://doi.org/10.3390/foods11244117 - 19 Dec 2022
Cited by 7 | Viewed by 2658
Abstract
The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are [...] Read more.
The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are either referred to or estimated. The D-value is the time required at a given temperature to reduce the bacterial population by 90%. The D-value can vary depending on various factors such as the food matrix, the bacterial strain, and the conditions it has previously been exposed to; the intrinsic properties of the food (moisture, water activity, fat content, and pH); the method used to expose the microorganism to the thermal treatment either at the laboratory or commercial scale; the approach used to estimate the number of survivors; and the statistical model used for the analysis of the data. This review focused on Bacillus cereus, Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, and Clostridium perfringens owing to their pathogenicity and the availability of publications on their thermal resistance. The literature indicates a significant variation in D-values reported for the same strain, and it is concluded that when designing thermal processing regimes, the impact of multiple factors on the D-values of a specific microorganism needs to be considered. Further, owing to the complexity of the interactions involved, the effectiveness of regimes derived laboratory data must be confirmed within industrial food processing settings. Full article
(This article belongs to the Section Food Microbiology)
14 pages, 695 KiB  
Article
Dairy Products: A Potential Source of Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium Strains
by Marlena Gołaś-Prądzyńska, Magdalena Łuszczyńska and Jolanta Grażyna Rola
Foods 2022, 11(24), 4116; https://doi.org/10.3390/foods11244116 - 19 Dec 2022
Cited by 4 | Viewed by 1893
Abstract
This study attempts to present the antimicrobial resistance, virulence and resistance genes of Enterococcus faecalis and Enterococcus faecium isolated from raw goat’s and sheep’s milk and cheese. Strains were identified by PCR. The dominant species was E. faecalis (77.8%) and was most often [...] Read more.
This study attempts to present the antimicrobial resistance, virulence and resistance genes of Enterococcus faecalis and Enterococcus faecium isolated from raw goat’s and sheep’s milk and cheese. Strains were identified by PCR. The dominant species was E. faecalis (77.8%) and was most often isolated from raw goat’s milk. The percentage of antimicrobial-resistant E. faecalis isolates was higher than that of E. faecium isolates, the former most frequently resistant to lincomycin (98%), tetracycline (63%) and streptomycin (16%). Fourteen (22.3%) E. faecalis and 2 (11.1%) E. faecium isolates were identified as multidrug-resistant (MDR). All MDR E. faecalis strains also had virulence genes, whereas one of the two E. faecium strains had them. The most prevalent virulence genes in E. faecalis isolates were asa1 (69.8%) and gelE (57.1%). The most prevalent resistance genes found in both bacterial species were tet(M) (43.2%) and vgaA (22.2%). Enterococci from dairy products are confirmed to be a potential source of the spread of antimicrobial resistance, MDR strains, and virulence and resistance genes. This study highlights several aspects of the virulence and pathogenicity of E. faecalis and E. faecium isolated from dairy products—aspects which are indications for their ongoing monitoring. Full article
(This article belongs to the Special Issue Antibiotic Resistance from Farm-to-Fork: Prevention and Containment)
Show Figures

Figure 1

34 pages, 2926 KiB  
Article
The Crick-Eatery: A Novel Approach to Evaluate Cricket (Acheta domesticus) Powder Replacement in Food Products through Product Eating Experience and Emotional Response
by Isaac Ho, Adelynn Peterson, Jack Madden, Kylie Wai, Ruta Lesniauskas, Jeff Garza, Attila Gere, Samir Amin and Amy Lammert
Foods 2022, 11(24), 4115; https://doi.org/10.3390/foods11244115 - 19 Dec 2022
Cited by 6 | Viewed by 2008
Abstract
This study was conducted to evaluate three different food products containing cricket powder for consumer acceptability, emotional response, satiety, and plate waste. US untrained consumers (n = 108), from the San Luis Obispo, CA area, were recruited to evaluate three food products [...] Read more.
This study was conducted to evaluate three different food products containing cricket powder for consumer acceptability, emotional response, satiety, and plate waste. US untrained consumers (n = 108), from the San Luis Obispo, CA area, were recruited to evaluate three food products (sausage, pasta, and brownies) as components in a three-course meal that either contain cricket powder (CP) or not (Control). The CP sausage was found to have lower liking scores than the Control for the attributes tested (p < 0.05). The CP pasta was found to be higher in overall liking than the Control (p < 0.05). The CP Brownies were rated highly across the attributes, except for texture and aftertaste (p < 0.05). Though the CP products were found to be as acceptable as the Controls, the use of cricket powder may have affected the texture and flavor profile of both the CP sausage and brownies. The participants selected more positive emotions terms for both the CP and Control products than negative emotions. Negative terms selected, such as worried, decreased once the products were consumed (p < 0.05). Plate waste and subjective satiety may also be indicators of consumer acceptability. Significant correlations were found between appearance liking and satiety as well as taste liking and plate waste for both the Control and CP products/dishes (p < 0.05). Based on this work, future acceptance of insect-based products may be encouraged by evaluating the products throughout an eating experience. Full article
Show Figures

Figure 1

13 pages, 1330 KiB  
Article
Prevalence and Virulence Determinants of Staphylococcus aureus in Wholesale and Retail Pork in Wuhan, Central China
by Zhihao Zhu, Xiaoying Liu, Xingyu Chen, Geng Zou, Qi Huang, Xianrong Meng, Xiaoying Pei, Zhou Chen, Rui Zhou, Dongliang Hu, Mei Liu and Shaowen Li
Foods 2022, 11(24), 4114; https://doi.org/10.3390/foods11244114 - 19 Dec 2022
Cited by 6 | Viewed by 1760
Abstract
Staphylococcus aureus is one of the major foodborne pathogens and can cause serious foodborne illness in humans by foods contaminated with S. aureus enterotoxins. In recent years, livestock-associated S. aureus has been a major public health concern for humans and has emerged in [...] Read more.
Staphylococcus aureus is one of the major foodborne pathogens and can cause serious foodborne illness in humans by foods contaminated with S. aureus enterotoxins. In recent years, livestock-associated S. aureus has been a major public health concern for humans and has emerged in various countries globally. China is one of the largest producers of pigs and pork in the world. However, there are few studies on the detailed genotypic and pathogenic characterization of pork-associated S. aureus in China. In this study, the prevalence, antimicrobial resistance, and genotypic characteristics of S. aureus in raw pork in Wuhan, China, were investigated through multilocus sequence typing (MLST), staphylococcal protein A gene (spa) typing, and whole-genome sequencing analysis. A total of 518 S. aureus isolates (16.9%) were isolated from 3067 retail and wholesale pork samples. The prevalence of S. aureus in retail pork (22.7%) was significantly higher than in wholesale pork (15.1%), while the proportion of multidrug-resistant (MDR) isolates in wholesale pork (12.9%) was significantly higher than in retail pork (6.2%). Among the isolates, 10.8% were resistant to three or more antibiotics, with higher rates of resistance to penicillin (88.8%) and erythromycin (58.1%). A total of 28 sequence types (STs) were identified in the 518 isolates, and the predominant type was ST7 (57.5%), followed by ST5 (9.1%). In addition, based on the whole-genome sequences of 39 representative strains, 17 spa types were identified among the isolates, of which t899, t091, and t437 were the most common. Furthermore, 19 staphylococcal enterotoxin (SE) and SE-like (SEl) toxin genes were detected in the isolates, of which selw was the most common type (100%), followed by sei, sem, seo, seu, and selv (46.2%); sey (35.9%); and sea, seg, and sen (33.3%). This study found for the first time that ST7-t091-selw and ST9-t899-SCCmecXII-selw were the predominant genotypes of S. aureus in pork in China, which indicated the spreading of S. aureus with multiple virulence factors, especially with new SE/SEl types in pigs and pork, is a serious new challenge for food safety. Good hygiene and good production practices to prevent interspecies transmission and cross-contamination of S. aureus in the pig–pork chain are of great significance to public health. Full article
(This article belongs to the Special Issue Food-Borne Disease Prevention and Risk Assessment 2.0 Edition)
Show Figures

Figure 1

26 pages, 3397 KiB  
Article
Functional Fermented Milk with Fruit Pulp Modulates the In Vitro Intestinal Microbiota
by Tais Fernanda Borgonovi, Mateus Kawata Salgaço, Gislane Lelis Vilela de Oliveira, Lucas Amoroso Lopes de Carvalho, Daniel Guariz Pinheiro, Svetoslav Dimitrov Todorov, Kátia Sivieri, Sabrina Neves Casarotti and Ana Lúcia Barretto Penna
Foods 2022, 11(24), 4113; https://doi.org/10.3390/foods11244113 - 19 Dec 2022
Cited by 7 | Viewed by 2500
Abstract
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem [...] Read more.
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem (SHIME®) to evaluate the viability of lactic acid bacteria (LAB), microbiota composition, presence of short-chain fatty acids (SCFA), and ammonium ions. The probiotic LAB viability in FM was affected by the addition of the fruit pulp. Phocaeicola was dominant in the FMPF and FMB samples; Bifidobacterium was related to FM formulations, while Alistipes was associated with FMPF and FMB, and Lactobacillus and Lacticaseibacillus were predominant in FMC. Trabulsiella was the central element in the FMC, while Mediterraneibacter was the central one in the FMPF and FMB networks. The FM formulations increased the acetic acid, and a remarkably high amount of propionic and butyric acids were detected in the FMB treatment. All FM formulations decreased the ammonium ions compared to the control; FMPF samples stood out for having lower amounts of ammonia. The probiotic FM with fruit pulp boosted the beneficial effects on the intestinal microbiota of healthy humans in addition to increasing SCFA in SHIME® and decreasing ammonium ions, which could be related to the presence of bioactive compounds. Full article
Show Figures

Figure 1

12 pages, 3896 KiB  
Article
Structural Transitions of Alpha-Amylase Treated with Pulsed Electric Fields: Effect of Coexisting Carrageenan
by Junzhu Li, Jiayu Zhang, Chen Li, Wenjing Huang, Cheng Guo, Weiping Jin and Wangyang Shen
Foods 2022, 11(24), 4112; https://doi.org/10.3390/foods11244112 - 19 Dec 2022
Cited by 2 | Viewed by 1341
Abstract
Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under [...] Read more.
Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under PEF processing was investigated using intrinsic fluorescence, surface hydrophobicity, circular dichroism, etc. Meanwhile, the influence of coexisting carrageenan on the structural transition of α-amylase during PEF processing was evaluated. When the electric field strength was 20 kV/cm, α-amylase showed the unique characteristics of an MG state, which retained the secondary structure, changed the tertiary structure, and increased surface hydrophobicity (from 240 to 640). The addition of carrageenan effectively protected the enzyme activity of α-amylase during PEF treatment. When the mixed ratio of α-amylase to carrageenan was 10:1, they formed electrostatic complexes with a size of ~20 nm, and carrageenan inhibited the increase in surface hydrophobicity (<600) and aggregation (<40 nm) of α-amylase after five cycles of PEF treatment. This work clarifies the influence of co-existing polysaccharides on the intermediate state of proteins during PEF treatment and provides a strategy to modulate protein structure by adding polysaccharides during food processing. Full article
(This article belongs to the Special Issue Food Protein: Structure, Digestion, and Functional Properties)
Show Figures

Graphical abstract

16 pages, 5756 KiB  
Review
Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review
by Xiuxiu Teng, Chunli Li, Arun S. Mujumdar and Min Zhang
Foods 2022, 11(24), 4111; https://doi.org/10.3390/foods11244111 - 19 Dec 2022
Cited by 3 | Viewed by 2323
Abstract
Three-dimensional printing technology enables the personalization and on-demand production of edible products of individual specifications. Four-dimensional printing technology expands the application scope of 3D printing technology, which controllably changes the quality attributes of 3D printing products over time. The concept of 5D/6D printing [...] Read more.
Three-dimensional printing technology enables the personalization and on-demand production of edible products of individual specifications. Four-dimensional printing technology expands the application scope of 3D printing technology, which controllably changes the quality attributes of 3D printing products over time. The concept of 5D/6D printing technology is also gradually developing in the food field. However, the functional value of food printing technology remains largely unrealized on a commercial scale due to limitations of printability and printing efficiency. This review focuses on recent developments in breaking through these barriers. The key factors and improvement methods ranging from ink properties and printer design required for successful printing of personalized foods (including easy-to-swallow foods, specially shaped foods, and foods with controlled release of functional ingredients) are identified and discussed. Novel evaluation methods for printability and printing precision are outlined. Furthermore, the design of printing equipment to increase printing efficiency is discussed along with some suggestions for cost-effective commercial printing. Full article
Show Figures

Figure 1

14 pages, 2556 KiB  
Article
Citric Acid Induces the Increase in Lenthionine Content in Shiitake Mushroom, Lentinula edodes
by Mengting Hong, Dan Han, Jinjin Qiao, Xiaolin Zhou, Hanshou Yu and Liang Shi
Foods 2022, 11(24), 4110; https://doi.org/10.3390/foods11244110 - 19 Dec 2022
Cited by 1 | Viewed by 1554
Abstract
Shiitake mushroom, Lentinula edodes, is the second largest edible fungus in the world, with a characteristic aroma. 1,2,3,5,6-pentathioheterocycloheptane, commonly known as lenthionine, is the main source of this aroma. Lenthionine has high commercial value, and if we explore the possible induction mechanism [...] Read more.
Shiitake mushroom, Lentinula edodes, is the second largest edible fungus in the world, with a characteristic aroma. 1,2,3,5,6-pentathioheterocycloheptane, commonly known as lenthionine, is the main source of this aroma. Lenthionine has high commercial value, and if we explore the possible induction mechanism of citric acid in lenthionine synthesis, we can provide a reference for the effective application of citric acid as an inducer. In this paper, the single-factor treatment of Lentinula edodes with variable citric acid concentration and treatment duration showed that the best citric acid concentration for L. edodes was 300 μM, and the best treatment duration was 15 days. Additionally, the optimal design conditions were obtained using the response surface method (RSM); the treatment concentration was 406 μM/L, the treatment duration was 15.6 days, and the lenthionine content was 130 μg/g. γ-Glutamyl transpeptidase (LEGGT) and cystine sulfoxide lyase (LECSL) are the key enzymes involved in the biosynthesis of lanthionine. The expression levels of LEGGT and LECSL genes increased significantly under citric acid treatment. Additionally, the lenthionine content of the silenced strains of LEGGT and LECSL was significantly decreased. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 3732 KiB  
Article
Insights into Characteristic Volatiles in Wuyi Rock Teas with Different Cultivars by Chemometrics and Gas Chromatography Olfactometry/Mass Spectrometry
by Yue Zhang, Suyoung Kang, Han Yan, Dongchao Xie, Qincao Chen, Haipeng Lv, Zhi Lin and Yin Zhu
Foods 2022, 11(24), 4109; https://doi.org/10.3390/foods11244109 - 19 Dec 2022
Cited by 5 | Viewed by 1798
Abstract
Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In [...] Read more.
Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in “floral & fruity”, “green & fresh”, “roasted and caramel”, “sweet”, and “herbal” attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-β-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 3220 KiB  
Article
Effect and Correlation of Rosa roxburghii Tratt Fruit Vinegar on Obesity, Dyslipidemia and Intestinal Microbiota Disorder in High-Fat Diet Mice
by Jiuchang Li, Jun Zhang, Yulong Zhang, Yuanyuan Shi, Dandan Feng, Yunyang Zuo and Ping Hu
Foods 2022, 11(24), 4108; https://doi.org/10.3390/foods11244108 - 19 Dec 2022
Cited by 8 | Viewed by 2093
Abstract
To investigate the effect of Rosa roxburghii Tratt fruit vinegar (RFV) on the intervention of obesity and hyperlipidemia and its potential mechanism, a high-fat diet (HFD)-induced obesity model in mice was established and gavaged with RFV, saline and xuezhikang for 30 consecutive days, [...] Read more.
To investigate the effect of Rosa roxburghii Tratt fruit vinegar (RFV) on the intervention of obesity and hyperlipidemia and its potential mechanism, a high-fat diet (HFD)-induced obesity model in mice was established and gavaged with RFV, saline and xuezhikang for 30 consecutive days, respectively. The results showed that RFV supplementation significantly reduced fat accumulation, and improved dyslipidemia and liver inflammation in HFD mice. RFV intervention for 30 days significantly improved the diversity of gut microbiota and altered the structure of gut microbiota in HFD mice. Compared with the model group (MC), the ratio of Firmicutes to Bacteroidetes at least decreased by 15.75% after RFV treatment, and increased the relative abundance of beneficial bacteria (Proteobacteria, Bacteroidetes, Lactobacillaceae, Bacteroides, Akkermansia,) and decreased the relative abundance of harmful bacteria (Ruminococcaceae, Erysipelotrichaceae, Ruminococcaceae _UCG-013, Lachnospiraceae, Allobaculum, Actinobacteria). Spearman’s correlation analysis revealed that Erysipelotrichaceae, Allobaculum, Lachnospiraceae, Ruminococcaceae, Ruminococcaceae_UCG-013, uncultured_bacterium_f_Lachnospiraceae and Desulfobacterota were positively correlated (p < 0.05) with the body weight of mice, while Proteobacteria was negatively correlated (p < 0.05) with the body weight of mice. The two main bacteria that could promote dyslipidemia in obese mice were Actinobacteria and Firmicutes, while those that played a mitigating role were mainly Bacteroidetes. It is concluded that RFV plays an important role in the intervention of obesity and related complications in HFD mice by regulating their gut microbiota. Full article
Show Figures

Graphical abstract

15 pages, 3166 KiB  
Article
Changes in Milk Fat Globules and Membrane Proteins Prepared from pH-Adjusted Bovine Raw Milk
by Yanjun Sun, Yrjö H. Roos and Song Miao
Foods 2022, 11(24), 4107; https://doi.org/10.3390/foods11244107 - 19 Dec 2022
Cited by 3 | Viewed by 2508
Abstract
Milk fat globules (MFGs) have tri-layer biological membrane structures, and their compositions are gaining more interest for their physiological benefits. In this study, the changes in MFGs and milk fat globule membrane (MFGM) proteins after cream separation from different pH bovine raw milk [...] Read more.
Milk fat globules (MFGs) have tri-layer biological membrane structures, and their compositions are gaining more interest for their physiological benefits. In this study, the changes in MFGs and milk fat globule membrane (MFGM) proteins after cream separation from different pH bovine raw milk were investigated. Raw milk samples were adjusted to pH 5.30 and 6.30 using citric acid at 25 °C. The effect of pH and centrifugation on the structure of MFGs was evaluated by means of particle size, zeta potential and confocal laser scanning microscopy (CLSM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyze the proteins in the obtained fractions. It was found that both pH and centrifugation could affect the particle size of all samples. As the volume distribution (Dv; Dv (10), Dv(50)and Dv (90)) decreased, the corresponding specific surface area (SSA) increased, and span and uniformity values showed the same trend. The decrease in the zeta potential of MFG correlated with the Dv(50), which was further confirmed by CLSM observation. More butyrophilin (BTN) and periodic acid Schiff 6/7 (PAS 6/7) were lost in cream samples at pH 5.30. The findings could provide valuable knowledge for the application of MFGs ingredient in the food industry since their structures and compositions could affect their potential functional and physiological properties. Full article
Show Figures

Figure 1

17 pages, 5583 KiB  
Article
Correlation of Taste Components with Consumer Preferences and Emotions in Chinese Mitten Crabs (Eriocheir sinensis): The Use of Artificial Neural Network Model
by Wei Ding, Qi Lu, Licheng Fan, Mingyu Yin, Tong Xiao, Xueqian Guo, Long Zhang and Xichang Wang
Foods 2022, 11(24), 4106; https://doi.org/10.3390/foods11244106 - 19 Dec 2022
Cited by 1 | Viewed by 1371
Abstract
This study took a consumer sensory perspective to investigate the relationship between taste components and consumers’ preferences and emotions. Abdomen meat (M), hepatopancreas (H), and gonads (G) of Chinese mitten crabs, one from Chongming, the Jianghai 21 variety (C-JH), and two from Taixing, [...] Read more.
This study took a consumer sensory perspective to investigate the relationship between taste components and consumers’ preferences and emotions. Abdomen meat (M), hepatopancreas (H), and gonads (G) of Chinese mitten crabs, one from Chongming, the Jianghai 21 variety (C-JH), and two from Taixing, the Jianghai 21 (T-JH) and Yangtze II varieties (T-CJ), were used to evaluate flavor quality. The results indicated that in the abdomen meat, differences in taste components were mainly shown in the content of sweet amino acids, bitter amino acids, K+, and Ca2+; M-C-JH had the highest EUC value of 9.01 g/100 g. In the hepatopancreas, bitter amino acids were all significantly higher in H-C-JH (569.52 mg/100 g) than in the other groups (p < 0.05). In the gonads, the umami amino acid content was significantly higher in G-T-JH than in the other groups (p < 0.05) (EUC values: G-T-JH > G-C-JH > G-T-CJ). Consumer sensory responses showed that different edible parts of the crab evoked different emotions, with crab meat being closely associated with positive emotions and more complex emotional expressions for the hepatopancreas and gonads. In comparison, consumers were more emotionally positive when consuming Yangtze II crab. H-C-JH evoked negative emotions due to high bitter taste intensities. Multifactor analysis (MFA) showed arginine, alanine, glycine, proline, K+, and Ca2+ were found to have a positive correlation with consumer preference; an artificial neural network model with three neurons was built with good correlation (R2 = 0.98). This study can provide a theoretical foundation for the breeding of Chinese mitten crabs, new insights into the river crab industry, and the consumer market. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

19 pages, 3003 KiB  
Article
The Ability of the Yeast Wickerhamomyces anomalus to Hydrolyze Immunogenic Wheat Gliadin Proteins
by Paula Xiomara Méndez, José Antonio Uña, Soledad Vega-Fernández and María Ángeles Santos
Foods 2022, 11(24), 4105; https://doi.org/10.3390/foods11244105 - 19 Dec 2022
Cited by 3 | Viewed by 1831
Abstract
Gliadins proteins make up around 30% of total wheat flour proteins. They are involved in many immune disorders affecting an increasing number of people who eat foods made with wheat flour. The triggering factor is the accumulation in the gut of immunogenic peptides [...] Read more.
Gliadins proteins make up around 30% of total wheat flour proteins. They are involved in many immune disorders affecting an increasing number of people who eat foods made with wheat flour. The triggering factor is the accumulation in the gut of immunogenic peptides derived from incomplete degradation of gliadins by gastric proteases. Previous research has revealed the effectiveness of sourdough-fermentation technology or related lactic acid bacteria in reducing wheat flour allergenic proteins. However, there are no single yeast cultures for producing reduced allergenicity wheat products. This study evaluated sourdough-related yeast Wickerhamomyces anomalus strains for their ability to hydrolyze gliadin proteins. All yeast strains were able to degrade gliadins and use them as carbon and nitrogen sources. The proliferation of the yeast strains depended on the gliadin addition; complete hydrolysis was observed after 24 h. The strain showing higher proteolytic activity fermented, acceptably wheat flour dough. The gliadin content of the leavened dough was reduced by 50%. Bread made from the W. anomalus-fermented dough showed a 78% reduction in immunogenic α-gliadins. 50% of the decrease was attributed to the proteolytic activity of the yeast cells, and the other 35% to the baking process. These results show the potential of the yeast W. anomalus as a starter for reducing immunogenicity wheat products. Full article
(This article belongs to the Special Issue Yeasts as a Tool to Improve Health Quality in Food Industry)
Show Figures

Graphical abstract

19 pages, 2446 KiB  
Article
Effect of Oxidative Modification by Peroxyl Radical on the Characterization and Identification of Oxidative Aggregates and In Vitro Digestion Products of Walnut (Juglans regia L.) Protein Isolates
by Jinjin Zhao, Miaomiao Han, Qingzhi Wu, Xiaoying Mao, Jian Zhang and Zhenkang Lu
Foods 2022, 11(24), 4104; https://doi.org/10.3390/foods11244104 - 19 Dec 2022
Cited by 1 | Viewed by 1397
Abstract
Walnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new [...] Read more.
Walnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new findings. SDS-PAGE and spectral analysis were used to identify structural changes in the protein after oxidative modification, and LC-MS/MS was used to identify the digestion products. The findings demonstrated that as the AAPH concentration increased, protein carbonyl content increased from 2.36 to 5.12 nmol/mg, while free sulfhydryl content, free amino content, and surface hydrophobicity decreased from 4.30 nmol/mg, 1.47 μmol/mg, and 167.92 to 1.72 nmol/mg, 1.13 μmol/mg, and 40.93 nmol/mg, respectively. Furthermore, the result of Tricine-SDS-PAGE in vitro digestion revealed that protein oxidation could cause gastric digestion resistance and a tendency for intestinal digestion promotion. Carbonyl content increased dramatically during the early stages of gastric digestion and again after 90 min of intestine digestion, and LC-MS/MS identified the last digestive products of the stomach and intestine as essential seed storage proteins. Oxidation causes walnut proteins to form aggregates, which are then re-oxidized during digestion, and proper oxidative modification may benefit intestinal digestion. Full article
Show Figures

Figure 1

19 pages, 5503 KiB  
Article
Drying Characteristics and Quality Analysis of Medicinal Herbs Dried by an Indirect Solar Dryer
by Anfal Al-Hamdani, Hemanatha Jayasuriya, Pankaj B. Pathare and Zahir Al-Attabi
Foods 2022, 11(24), 4103; https://doi.org/10.3390/foods11244103 - 19 Dec 2022
Cited by 7 | Viewed by 2728
Abstract
Considering the solar radiation status in Oman, a low-cost, indirect, stand-alone, forced-convective solar dryer was developed to dry medicinal herbs, which are sensitive to direct sun. The hot air flow was obtained using a solar-panel-powered blower and air passing through a black-body solar [...] Read more.
Considering the solar radiation status in Oman, a low-cost, indirect, stand-alone, forced-convective solar dryer was developed to dry medicinal herbs, which are sensitive to direct sun. The hot air flow was obtained using a solar-panel-powered blower and air passing through a black-body solar collector. This drying process could extend the shelf life of herbs while preserving their medicinal and nutritional (physicochemical) properties and adhering to food safety and hygiene practices. This study investigated the benefits of an indirect solar drying technique on the retention of quality attributes of mint and basil used in medicinal applications. Herbs used during drying could be subjected to changes in their physicochemical properties such as color, water activity (Aw), total soluble solids (TSS), phenol content, antioxidant capacity, and moisture content (MC), and, thus, results were compared with fresh herb samples. The dryer chamber-maintained temperature and relative humidity regimes of 30–50 °C and 21–95% and the expected final moisture content (wet basis) was 10%. The dryer showed improved physicochemical quality parameters and the retention of green color with parameter ranges of Aw 0.44–0.63, phenol content (increase) 1705–8994 mg/100 g DM, and antioxidant capacity (increase) 0.61–0.67 µmol/g DM, respectively. This study showed the ability of developed solar dryers to preserve the physicochemical properties of medicinal herbs during drying and can extend to other food products. Full article
Show Figures

Figure 1

19 pages, 1706 KiB  
Article
Protein Characteristics and Bioactivity of Fish Protein Hydrolysates from Tra Catfish (Pangasius hypophthalmus) Side Stream Isolates
by Hang Thi Nguyen, Huynh Nguyen Duy Bao, Huong Thi Thu Dang, Tumi Tómasson, Sigurjón Arason and María Gudjónsdóttir
Foods 2022, 11(24), 4102; https://doi.org/10.3390/foods11244102 - 19 Dec 2022
Cited by 3 | Viewed by 3194
Abstract
Enzymatic hydrolysis is a novel method to recover highly potent bioactive fish protein hydrolysates (FPHs) from fish processing side-streams. The common way of producing FPHs directly from fish side-streams may be inappropriate due to the excess of lipids and pro-oxidants, especially in lipid-rich [...] Read more.
Enzymatic hydrolysis is a novel method to recover highly potent bioactive fish protein hydrolysates (FPHs) from fish processing side-streams. The common way of producing FPHs directly from fish side-streams may be inappropriate due to the excess of lipids and pro-oxidants, especially in lipid-rich streams, as obtained from Tra catfish. This study aimed to optimise the hydrolysis conditions for a commercial enzyme (Alcalase® 2.4 L) (enzyme concentrate, temperature, and time) in FPH production from the fish protein isolate obtained from Tra catfish dark muscle (DM-FPI) using the pH-shift method. The degree of hydrolysis (DH), protein recovery (PR), and antioxidant properties, including DPPH radical scavenging activity (DPPH-RSA) and total reducing power capacity (TRPC), were measured to evaluate the effects of the hydrolysis conditions on the FPHs. Optimal hydrolysis was obtained at an enzyme/substrate protein ratio of 3% (v/w) and a hydrolysis temperature of 50 °C for 3 h. The FPHs obtained from different substrates, including DM-FPI, abdominal cut-off (ACO) FPI, and head and backbone blend (HBB) FPI, had similar DHs under these optimum conditions, ranging from 22.5% to 24.0%. However, the FPH obtained from abdominal cut-off isolate (ACO-FPH) showed the highest PR of 81.5 ± 4.3% and the highest antioxidant properties, with a DPPH-RSA of 86.1 ± 1.6% and a TRPC of 6.4 ± 0.4 equivalent mg vitamin C/g protein. The resulting FPHs present a natural source of antioxidants with great potential for food applications, especially the ACO-FPH. In addition, all FPHs had excellent amino acid profiles, indicating strong potential for their use as supplements. Tra catfish protein-rich side-streams can thus be processed into high-value bioactive FPHs using Alcalase for human consumption. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

11 pages, 8820 KiB  
Article
Coupled Gold Nanoparticles with Aptamers Colorimetry for Detection of Amoxicillin in Human Breast Milk Based on Image Preprocessing and BP-ANN
by Ziqian Ye, Jinglong Du, Keyu Li, Zhilun Zhang, Peng Xiao, Taocui Yan, Baoru Han and Guowei Zuo
Foods 2022, 11(24), 4101; https://doi.org/10.3390/foods11244101 - 19 Dec 2022
Cited by 3 | Viewed by 1455
Abstract
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that [...] Read more.
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk. Full article
Show Figures

Graphical abstract

17 pages, 3875 KiB  
Article
Bayesian Fusion Model Enhanced Codfish Classification Using Near Infrared and Raman Spectrum
by Yi Xu, Anastasios Koidis, Xingguo Tian, Sai Xu, Xiaoyan Xu, Xiaoqun Wei, Aimin Jiang and Hongtao Lei
Foods 2022, 11(24), 4100; https://doi.org/10.3390/foods11244100 - 19 Dec 2022
Cited by 3 | Viewed by 1934
Abstract
In this study, a Bayesian-based decision fusion technique was developed for the first time to quickly and non-destructively identify codfish using near infrared (NIRS) and Raman spectroscopy (RS). NIRS and RS spectra from 320 codfish samples were collected, and separate partial least squares [...] Read more.
In this study, a Bayesian-based decision fusion technique was developed for the first time to quickly and non-destructively identify codfish using near infrared (NIRS) and Raman spectroscopy (RS). NIRS and RS spectra from 320 codfish samples were collected, and separate partial least squares discriminant analysis (PLS-DA) models were developed to establish the relationship between the raw data and cod identity for each spectral technique. Three decision fusion methods: decision fusion, data layer or feature layer, were tested and compared. The decision fusion model based on the Bayesian algorithm (NIRS-RS-B) was developed on the optimal discrimination features of NIRS and RS data (NIRS-RS) extracted by the PLS-DA method whereas the other fusion models followed conventional, non-Bayesian approaches. The Bayesian model showed enhanced classification metrics (92% sensitivity, 98% specificity, 98% accuracy) that were significantly superior to those demonstrated by any of other two spectroscopic methods (NIRS, RS) and the two data fusion methods (data layer fused, NIRS-RS-D, or feature layer fused, NIRS-RS-F). This novel proposed approach can provide an alternative classification for codfish and potentially other food speciation cases. Full article
(This article belongs to the Special Issue Advanced Analytical Methods for Determining the Origin of Foods)
Show Figures

Figure 1

7 pages, 867 KiB  
Conference Report
Food Toxicology and Food Safety: Report of the 3rd International Electronic Conference on Foods: Food, Microbiome, and Health—A Celebration of the 10th Anniversary of Foods’ Impact on Our Wellbeing
by Dirk W. Lachenmeier, Paula A. Oliveira, Agata Urszula Fabiszewska, Cristina Maria Dias Soares and Jong H. Kim
Foods 2022, 11(24), 4099; https://doi.org/10.3390/foods11244099 - 19 Dec 2022
Viewed by 2210
Abstract
The purpose of the conference session summarized in this article was to bring together international experts on food toxicology and food safety and share the current scientific knowledge on these topics. The presentations covered a wide range of interdisciplinary issues, including (i) the [...] Read more.
The purpose of the conference session summarized in this article was to bring together international experts on food toxicology and food safety and share the current scientific knowledge on these topics. The presentations covered a wide range of interdisciplinary issues, including (i) the impact of diet on body weight and health outcomes including results from animal models of carcinogenesis, (ii) methods for microbial oil extraction, (iii) food processing and its impact on food safety and health, (iv) novel compounds to avoid mycotoxin contamination of agricultural products, and (v) the safety of cannabidiol in food supplements based on Cannabis sativa extracts. Some of the conclusions of the presentations included that correct food choices may impact on the risk of non-communicable diseases such as cancer, that food processing may have an influence on health, by either reducing or increasing risks, and that research regarding novel compounds is important, which may have preventive but also detrimental effects on health. Full article
Show Figures

Figure 1

14 pages, 2807 KiB  
Article
Effects of Storage Method on the Quality of Processed Sea Cucumbers (Apostichopus japonicus)
by Shuang Li, Yan Zhou, Liming Sun, Yanjie Wang, Shuang Song, Chunqing Ai and Jingfeng Yang
Foods 2022, 11(24), 4098; https://doi.org/10.3390/foods11244098 - 19 Dec 2022
Cited by 1 | Viewed by 1463
Abstract
This research aimed to establish an effective storage method to maintain the quality of processed sea cucumbers. In this study, sea cucumbers were stored by various methods including the storage of live sea cucumbers (seawater treatment, oxygen treatment, and ascorbic acid treatment) and [...] Read more.
This research aimed to establish an effective storage method to maintain the quality of processed sea cucumbers. In this study, sea cucumbers were stored by various methods including the storage of live sea cucumbers (seawater treatment, oxygen treatment, and ascorbic acid treatment) and the storage of dead sea cucumbers (frozen treatment). The sea cucumber quality was monitored after storage and boiling. The weightlessness rate and WHC of the frozen group increased to 86.96% ± 0.83% and 93.29% ± 0.32%, respectively. Frozen sea cucumbers shrunk with the meat’s textural properties deteriorated. During the live sea cucumber storage, the tissue protein degraded from day 3 to day 7 which led to the promotion of TVB-N. Among these, the oxygen group showed the smallest TVB-N increase from day 0 (3.78 ± 0.60 mg 100 g−1) to day 7 (10.40 ± 0.12 mg 100 g−1). The oxygen group exhibited the most moderate change in weightlessness rate (4.24% ± 0.45%) and the most moderate texture parameters decline, such as the hardness of 32.52%, chewiness of 78.98 ± 5.10 N, and adhesion of 0.84 ± 0.00. The oxygen method showed the best condition of sea cucumber after 5 days of storage. Full article
Show Figures

Figure 1

16 pages, 1496 KiB  
Article
Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites
by Jianhua Dou, Jie Wang, Zhongqi Tang, Jihua Yu, Yue Wu, Zeci Liu, Junwen Wang, Guangzheng Wang and Qiang Tian
Foods 2022, 11(24), 4097; https://doi.org/10.3390/foods11244097 - 19 Dec 2022
Cited by 11 | Viewed by 2019
Abstract
Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato [...] Read more.
Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L−1) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development. Our results showed that 100 µmol·L−1 melatonin significantly promoted the accumulation of soluble sugar in tomato fruit by increasing the activities of sucrose synthase (SS), sucrose phosphate synthase (SPS), and acid convertase (AI). The application of 100 µmol·L−1 melatonin also increased the contents of ten amino acids in tomato fruit as well as decreased the contents of organic acids. In addition, 100 µmol·L−1 melatonin application also increased the accumulation of some secondary metabolites, such as six phenolic acids, three flavonoids, and volatile substances (including alcohols, aldehydes, and ketones). In conclusion, melatonin application improves the internal nutritional and flavor quality of tomato fruit by regulating the accumulation of primary and secondary metabolites during tomato fruit ripening. In the future, we need to further understand the molecular mechanism of melatonin in tomato fruit to lay a solid foundation for quality improvement breeding. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 4678 KiB  
Article
Impact of Flaxseed Gums on the Colloidal Changes and In Vitro Digestibility of Milk Proteins
by Thierry Hellebois, Jennyfer Fortuin, Claire Gaiani and Christos Soukoulis
Foods 2022, 11(24), 4096; https://doi.org/10.3390/foods11244096 - 18 Dec 2022
Cited by 2 | Viewed by 1481
Abstract
Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions [...] Read more.
Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions remains underexplored. The aim of the present work was to investigate the colloidal interplay between flaxseed gum (golden or brown) and milk proteins (sodium caseinate or whey protein isolate) under simulated in vitro digestion conditions and its relationship with the attained in vitro protein digestibility. The presence of flaxseed gum in the milk protein food models and in the oral food boluses obtained was associated with the occurrence of segregative microphase separation. Flaxseed gum exhibited a prominent role in controlling the acid-mediated protein aggregation phenomena, particularly in the sodium caseinate gastric chymes. The addition of FG in the food models was associated with a higher amount of intact total caseins and β-lactoglobulin at the end of the gastric processing step. Monitoring of the intestinal processing step revealed a very advanced cleavage of the whey proteins (>98%) and caseins (>90%). The degree of the milk protein hydrolysis achieved at the end of the intestinal processing was significantly higher in the systems containing flaxseed gum (i.e., 59–62%) than their gum-free protein counterparts (i.e., 46–47%). It was postulated that the electrostatic milk protein complexation capacity and, to a lesser extent, the thickening effect of flaxseed gum influenced the in vitro digestibility of the milk proteins. Full article
Show Figures

Figure 1

18 pages, 2534 KiB  
Article
Nutritional Quality of Gluten-Free Bakery Products Labeled Ketogenic and/or Low-Carb Sold in the Global Market
by Nicola Gasparre, Antonella Pasqualone, Marina Mefleh and Fatma Boukid
Foods 2022, 11(24), 4095; https://doi.org/10.3390/foods11244095 - 18 Dec 2022
Cited by 8 | Viewed by 3897
Abstract
Gluten-free and ketogenic bakery products are gaining momentum. This study aims to develop a better understanding of the nutritional quality of gluten-free bakery products labeled ketogenic and/or low-carb. For this reason, the products available on the global market that were labeled ketogenic and/or [...] Read more.
Gluten-free and ketogenic bakery products are gaining momentum. This study aims to develop a better understanding of the nutritional quality of gluten-free bakery products labeled ketogenic and/or low-carb. For this reason, the products available on the global market that were labeled ketogenic and/or low-carb (n = 757) were retrieved and compared to standard gluten-free products (n = 509). Overall, nutritionally, no significant differences were found among ketogenic and/or low-carb products due the high intra-variability of each type, but they differed from standard products. Compared to standard products, all ketogenic and/or low carb, irrespective of categories, showed lower carbohydrates that derived chiefly from fibers and, to a lesser extent, from sugars. They also had higher protein contents (p < 0.05) compared to standard products. Fats was higher (p < 0.05) in ketogenic and/or low-carb baking mixes, savory biscuits, and sweet biscuits than in their standard counterparts. Saturated fats were higher (p < 0.05) in low-carb savory biscuits and breads, as well as in ketogenic sweet biscuits than in the same standard products. Overall, median values of the nutrients align with the definition of the ketogenic diet. Nevertheless, several products did not align with any of the ketogenic definitions. Therefore, consumers need to carefully read the nutritional facts and not rely on mentions such as low-cab and ketogenic to make their decision of purchase/consumption. Full article
Show Figures

Graphical abstract

18 pages, 5323 KiB  
Article
Health Effects of Whole Grains: A Bibliometric Analysis
by Xun Wei, Wei Yang, Jianhui Wang, Yong Zhang, Yaxuan Wang, Yan Long, Bin Tan and Xiangyuan Wan
Foods 2022, 11(24), 4094; https://doi.org/10.3390/foods11244094 - 18 Dec 2022
Cited by 3 | Viewed by 2551
Abstract
Whole grains have been recommended in the diet in most countries, with numerous publications focusing on their health effect. A systematic analysis of these publications on different research methods, regions and perspectives will contribute to an understanding of the innovation pattern in this [...] Read more.
Whole grains have been recommended in the diet in most countries, with numerous publications focusing on their health effect. A systematic analysis of these publications on different research methods, regions and perspectives will contribute to an understanding of the innovation pattern in this field. This bibliometric study analyzes the global publication characteristics, hotspots and frontiers of whole grain health benefit research, and discusses the trends and prospects of this topic. The overall number of publications is on the rise, with the United States contributing the most publications. The most cited literature shows that observational studies, systematic reviews and meta-analysis are the most widely used methods. The main focus in this area is on dietary fiber and bioactive substances, while the latter has received increased attention in recent years in particular. With the increasingly prominent problems of hidden hunger and chronic disease, the development of whole grain foods and their optimum intake have gradually become hot topics. In addition to the need to reveal the mechanism of whole grain health effects, consensus needs to be reached on standards and definitions for whole grain foods, and attention should be paid to the retention of taste and healthy nutrients in processing. Full article
Show Figures

Figure 1

15 pages, 2273 KiB  
Article
Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments
by Raffaele Romano, Fabiana Pizzolongo, Lucia De Luca, Eugenio Cozzolino, Massimo Rippa, Lucia Ottaiano, Pasquale Mormile, Mauro Mori and Ida Di Mola
Foods 2022, 11(24), 4093; https://doi.org/10.3390/foods11244093 - 17 Dec 2022
Cited by 2 | Viewed by 1721
Abstract
Rocket species are rich in nutrients with well-known bioactive activity, but their content depends on several factors, such as plant–UV radiation interaction. In this work, we measured the production of nutritional elements in wild rocket (Diplotaxis tenuifolia L.) leaves as a function [...] Read more.
Rocket species are rich in nutrients with well-known bioactive activity, but their content depends on several factors, such as plant–UV radiation interaction. In this work, we measured the production of nutritional elements in wild rocket (Diplotaxis tenuifolia L.) leaves as a function of exposure to UV-B radiation by adopting a combined approach. The wild rocket plants were grown under three greenhouse cover films (A, B, and C) having different transmittivity to UV-B and the fresh-cut leaves were exposed to UV-B in postharvest for 45, 150, 330, and 660 s. The content of chlorophyll, carotenoids, phenolic compounds, ascorbic acid, and the antioxidant activity were determined. Chlorophyll, carotenoids, and total phenolic content were significantly increased by the combination of Film C and treatment with UV-B for 45 s. The predominant phenolic compounds were kaempferol, isorhamnetin, and quercetin. Film C also elicited an increase in ascorbic acid (the most abundant antioxidant compound in the range 374–1199 per 100 g of dry matter) and antioxidant activity. These findings highlighted an increase in bioactive compound content in the wild rocket when it was cultivated under Film C (diffused light film with a tailored UV-B transmission dose) and treated with UV-B radiation for 45 s postharvest, corresponding to an energy dose of 0.2 KJ m−2. Full article
Show Figures

Figure 1

3 pages, 189 KiB  
Editorial
The Potential of Food By-Products: Bioprocessing, Bioactive Compounds Extraction and Functional Ingredients Utilization
by Michela Verni and Federico Casanova
Foods 2022, 11(24), 4092; https://doi.org/10.3390/foods11244092 - 17 Dec 2022
Cited by 2 | Viewed by 1486
Abstract
Achieving sustainability in the agro-food sector can only be possible with the valorization of food industry waste and side streams, products with an extremely high intrinsic value but often discarded because they are unfit for further processing that meets consumer expectations [...] Full article
15 pages, 3434 KiB  
Article
Evaluation of the Characteristics of Sheep’s and Goat’s Ice Cream, Produced with UF Concentrated Second Cheese Whey and Different Starter Cultures
by Arona Pires, David Gomes, João Noronha, Olga Díaz, Angel Cobos and Carlos Dias Pereira
Foods 2022, 11(24), 4091; https://doi.org/10.3390/foods11244091 - 17 Dec 2022
Cited by 6 | Viewed by 1574
Abstract
Second cheese whey (SCW) is the by-product resulting from the manufacture of whey cheeses. In the present work, sheep (S) and goat (G) SCW concentrated by ultrafiltration (UF) were used in the production of ice creams. Concentrated liquid SCW samples with inulin added [...] Read more.
Second cheese whey (SCW) is the by-product resulting from the manufacture of whey cheeses. In the present work, sheep (S) and goat (G) SCW concentrated by ultrafiltration (UF) were used in the production of ice creams. Concentrated liquid SCW samples with inulin added as a prebiotic were fermented with yoghurt, kefir and probiotic commercial cultures before being frozen in a horizontal frozen yoghurt freezer. The physicochemical, microbiological and sensory properties of the products were evaluated over 120 days of frozen storage. The products presented significant differences regarding these properties, specifically the higher total solids and protein contents of sheep’s ice creams, which were higher compared to their goat ice cream counterparts. Sheep’s ice creams also presented higher hardness and complex viscosity, which increased with storage. These ice creams also presented higher overrun and lower meltdown rates. The color parameters of the ice creams showed significant differences between formulations resulting from storage time. In all cases, Lactobacilli sp. cell counts were higher than log 6 CFU/g at the first week of storage. In the case of sheep’s ice creams these values were maintained or increased until the 30th day, but decreased until the 60th day. Lactococci sp. counts surpassed log 7 CFU/g in all products, and these values were maintained until the end of storage, except in the case of G-Yoghurt and G-Kefir. Concerning the products containing probiotics, the sum of Lactococci sp. and Lactobacilli sp. counts was of the order log 8–9 CFU/g until the 60th day of storage, indicating that the probiotic characteristics of ice creams were maintained for at least 2 months. All products were well accepted by the consumer panel. Sheep’s SCW ice creams were better rated regarding aroma, taste and texture. However, only the ranking test was able to differentiate preferences among formulations. Full article
(This article belongs to the Special Issue Novel and Green Processing Technology Applied in Dairy Products)
Show Figures

Figure 1

19 pages, 2390 KiB  
Article
Considering Two Aspects of Fish Welfare on African Catfish (Clarias gariepinus) Fillet throughout Postmortem Condition: Efficiency and Mechanisms
by Nima Hematyar, Aiman Imentai, Jiří Křišťan, Swapnil Gorakh Waghmare and Tomáš Policar
Foods 2022, 11(24), 4090; https://doi.org/10.3390/foods11244090 - 17 Dec 2022
Cited by 2 | Viewed by 1516
Abstract
Knowledge about fish welfare and its impact on fish fillet quality is still insufficient. Therefore, the influence of two aspects of fish welfare (slaughtering method: bled and unbled fish; fish stock densities: 90, 120, and 150 kg·m−3) on African catfish fillet [...] Read more.
Knowledge about fish welfare and its impact on fish fillet quality is still insufficient. Therefore, the influence of two aspects of fish welfare (slaughtering method: bled and unbled fish; fish stock densities: 90, 120, and 150 kg·m−3) on African catfish fillet quality during postmortem conditions was investigated. The aim of study was to determine (i) the efficiency of bleeding on oxidation progress and (ii) the influence of stock density on fillet quality. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) showed a higher protein loss in the unbled than in the bled groups, especially in the heavy myosin chain (MHC) band. However, density did not show any influence on protein profile. Western blot analysis showed fewer oxidized carbonyls in the bled than in the unbled groups; higher oxidation development, microbial growth, and lower hardness were observed in unbled fillets. Additionally, hardness was higher at 90 and 120 kg·m−3 densities in bled fillet compared to 150 kg·m−3. The first three days of storage showed a higher oxidation rate in unbled fillets than in bled fillets, confirming the contribution of hemoglobin to oxidation development with different mechanisms of protein oxidation. The obtained results revealed the same fillet quality in all aspects at either 90 or 120 (kg·m−3) stock densities, which would suggest 120 kg·m−3 for the fishery industry. However, higher stocking density in this study would not be appropriate for fish welfare. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop