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Abstract: Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external
environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in
stressful environments or during illness. Sickness sleep plays an important role in maintaining energy
homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich
beverage, has multiple health benefits, including lowering stress and regulating energy metabolism
and natural sleep. However, the role of tea in regulating sickness sleep has received little attention.
The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of
energy homeostasis in injured organisms remains to be elucidated. This review examines the current
research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy
homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The
potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on
the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep
regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.

Keywords: sickness sleep; tea; energy metabolism; damage repair; energy homeostasis

1. Introduction

Sleep, a spontaneous and reversible resting state in mammals, is essential in optimiz-
ing energy conservation or allocation, regulating core molecular and cellular processes,
and enhancing brain functions [1–3]. Both quality and quantity are fundamental compo-
nents of sleep. Poor sleep quality contributes to chronic diseases such as kidney disease,
hypertension, obesity, and diabetes mellitus [4–6]. Meanwhile, lack of sleep can induce
substantial short- and long-term memory impairment and is a risk factor for anxiety and
depression [7–10].

There are two types of sleep: natural sleep and sickness sleep. Sickness sleep is the
sensation of being sleepy and fatigued under stress, infection, or disease conditions. In
lower animals, sickness sleep, known as stress-induced sleep (SIS), has a non-negligible role
in supporting recovery from injury [11]. In Caenorhabditis elegans, ALA neuron-dependent
SIS is important to increase survival after cellular stress [12]. Increasing sleep increases
survival after oxidative challenge in Drosophila [13]. Sleep plays an equal role in recovery
from exhaustion and illness in higher organisms. In mice, deeper resting leads to a faster
recovery [14]. In a symptom assessment of 59 burnt-out employees taking extended sick
leave, sleep was found to play an important role both in symptom improvement and in
return to work [15].
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Energy homeostasis is essential for the normal physiological activities of the body.
Damage repair is induced by stress and promotes sleep; however, it also results in a dise-
quilibrium of energy homeostasis due to increased energy requirements. Cellular energy
charge and glycogen levels, induced by energy metabolism, may operate as signaling
mechanisms. This may be when energy stores reallocate energy away from high-energy
demands and gene expression during the waking state toward biological processes favoring
sleep [16].

As one of the most widely consumed non-alcoholic beverages, tea has numerous
recognized health benefits, such as resistance to stress and sleep regulation [17,18]. Tea
effectively improves resistance to various stresses, including heat, oxidative, and ultra-
violet (UV) stress [19–21]. Oolong tea consumption has been reported to improve stress
symptoms and alleviate the elevated plasma lipid peroxidation levels caused by nighttime
stress in study subjects [22]. Green tea has anti-stress effects, in which theanine, Epigallo-
catechin (EGC), and arginine synergistically eliminate the antagonistic effects of caffeine
and Epigallocatechin gallate (EGCG) on adrenal hypertrophy induced by psychosocial
stress in mice [23]. Sleep duration and quality are affected by the frequency and amount
of tea consumed [24–28]. A recent study that investigated the effects of tea on alleviating
acute alcohol intoxication (AAI) in mice found that tea reduced AAI and regulated sleep by
inhibiting oxidative stress and inflammation [29].

Obesity and diabetes are caused by the imbalance of the body’s energy homeostasis.
Tea has been found to reduce obesity and ease diabetes. Oolong tea extract reduces
lipid accumulation by regulating lipid metabolism and intestinal flora distribution, thus
inhibiting high-diet-induced obesity in mice [30]. Green tea components are involved in
protein interactions and cell signaling pathways that regulate energy metabolism, including
glycogen synthesis and glucose reabsorption, thereby reducing glycogen accumulation and
improving the pathological features in diabetic mice [31].

Previous studies have illustrated the role of tea in regulating stress injury response,
healthy sleep, and energy homeostasis; whether and how tea regulates sickness sleep under
stress or illness remains unclear. Therefore, this review covers recent discoveries on the
effect of tea on sickness sleep and explores whether the chemical properties and consump-
tion of tea can influence energy homeostasis and sickness sleep in stressful environments.
This review also explores the potential link between tea consumption and the effects of
sleep under stress.

2. Tea and Sleep
2.1. Tea

Tea has originated in China and since spread worldwide. People in more than 160 coun-
tries and regions habitually drink tea. Based on the degree of fermentation during process-
ing, tea is classified into six types: green, yellow, white, oolong, dark, and black. Tea is rich
in active ingredients, including polyphenols, amino acids, alkaloids, aromatic substances,
and sugars [32]. Table 1 lists the degree of fermentation, key processes, and recent studies
related to the respective health benefits of tea. It is worth noting that despite the different
processing processes of the six tea types, the health benefits are all centered on their antibac-
terial and antiviral activities; neuroprotection; protection against cancer, obesity, diabetes,
and cardiovascular diseases; and sleep regulation [33].
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Table 1. The main health benefits of the six major tea types.

Types of Tea Degree of
Fermentation

Key Processing
Technology Major Health Benefits

Green tea Non-fermented Fixing

Antibacterial [34]
Suppressing the amyloid beta levels and alleviating cognitive
impairment in 5XFAD mice [35]
Reducing lipid peroxidation and increasing total antioxidant
capacity, and reducing oxidative damage [36]
Significantly lowering the risk of developing liver cancer and
improving the effect on body mass index, liver enzymes, and
lipoprotein [37]
Preventing obesity [38,39]

Black tea Fully fermented Fermentation

Exerting antibacterial activity against major
periodontopathogens, attenuating the secretion of IL-8, and
inducing hBD secretion in oral epithelial cells [40]
Preventing radiation-induced increase of ACE activity and
oxidative stress in the aorta [41]
Limiting the formation of glycation products [42]

Yellow tea Slightly fermented Yellowing
Antioxidant and preventing gastric injury [43]
Reducing blood glucose levels, increasing glucose tolerance,
and preventing fatty liver in diabetes mice [44]

Oolong tea Semi-fermented Rotating

Neurodegenerative and neurite outgrowth-promoting [45]
Inhibiting cancer cell proliferation [46]
Providing cardio-protective benefits during hypoxic conditions
[47]
Prolonging lifespan and improving health span by curtailing
the age-related decline in muscle activity and the accumulation
of age pigment in C. elegans [48]

White tea Slightly fermented Withering Inhibiting PhlP-induced aberrant crypt foci by altering the
expression of carcinogen-metabolizing enzymes in rats [49]

Dark tea Post-fermented Pile fermentation

Decreasing risks of coronary heart disease and diabetes [50]
Scavenging of DPPH and ABTS free radicals [51]
Regulating the glycolipid metabolic disorders [52]
Decreasing body weight and serum triglycerides for SD rats [53]

2.2. Sleep

Sleep is primarily classified as either natural or sickness, of which natural sleep is
regulated by the interaction of circadian and homeostatic mechanisms [11]. In mammals
and avian species, natural sleep is identified based on altered brain electrical activity,
recorded on an electroencephalogram (EEG); it comprises non-rapid eye movement sleep
(NREMS) and rapid eye movement sleep (REMS) [54]. During NREMS, the EEG pattern
shows slow oscillations, referred to as slow waves, and the muscle tone and brain activity
are at rest [55–57]. Conversely, REMS (also termed fast-wave sleep) is characterized by
reduced amplitude and faster frequency in cortical EEG [56]. Mammals breathe irregularly
and with relaxed muscles in REMS, which have specific effects on the respiratory system
and motor neurons [58,59].

As non-mammalians do not have differentiated EEG, sleep is usually defined according
to the following behavioral states: spontaneous circadian motion quiescence, decreased
reactivity, increased arousal threshold, and rapid reversibility [60,61]. In zebrafish, the
sleep state is characterized by a reversible circadian rhythm and an increased arousal
threshold [62,63]. In Drosophila, sleep is typically characterized as an inactive period
spanning 5 min or more and heightened arousal thresholds [64,65]. Developmentally timed
sleep (DTS) in C. elegans is the 2–3 h of quiescence during the transition between larval
stages [60].
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2.3. Sickness Sleep

Sickness sleep occurs in stressful environments or diseases as a sensation of being
sleepy and fatigued. Sleepiness is common following traumatic injury, particularly trau-
matic brain injury, with more severe injuries resulting in greater sleepiness in humans [66].
Inflammation has been suggested as a potential contributor to the development of fa-
tigue [67]. Stress activates sleep-related brain regions and induces sleep-like inactivity in
mice [68]. Murine gammaherpesvirus 68 alters sleep, activity, and temperature in a manner
suggestive of fatigue in mice [69]. Sickness sleep is easier to induce in non-mammals
and is called SIS. The sleep duration in Drosophila melanogaster increases following asep-
tic injury [70]. Long-term radiofrequency radiation exposure enhances the heat stress
response and affects the expression of the circadian clock and neurotransmitter genes,
thereby prolonging sleep duration [71]. SIS in C. elegans can be triggered by conditions of
cellular stress, including noxious heat, cold, hyperosmolarity, ultraviolet irradiation, and
mechanical injury [72], and exhibits behavioral quiescence similar to DTS [73]. Sleep is a
conserved evolutionary behavior of organisms, whether mammals or non-mammals, to
adapt to changes in the external environment [74].

3. Tea Effects on Sleep

Previous studies have found that people suffer from insomnia and fatigue after con-
suming a high intake of green tea [75]. Short sleep duration was associated with a higher
intake of black tea [76]. However, other studies have suggested that tea can calm nerves
and promote sleep [25,77]. For example, after consuming black tea with γ-aminobutyric
acid (GABA), the sleeping time with sodium pentobarbital was significantly prolonged,
and the quality was improved in mice [78]. Green tea extracts can improve sleep distur-
bances and stabilize mood in humans [79,80]. Fragrant compounds in oolong tea have
tranquilizing effects on the brains of mice [81]. Different active ingredients in tea have
various implications for sleep (as shown in Figure 1).
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Tea polyphenols play an essential role in regulating sleep and mood [82]. After
consuming polyphenols, sleep duration is prolonged, and the quality is significantly
improved in humans [83]. Meanwhile, tea polyphenols treatment effectively enhances
cognitive impairment, memory impairment, and anxiety-like behaviors in sleep-disordered
mice [82,84].

Theanine, the main amino acid in tea, promotes sleep. Studies have shown that fol-
lowing treatment with L-theanine, the Pittsburgh Sleep Quality Index (PSQI) subscale
scores for sleep latency and satisfaction are improved in participants with no major psy-
chiatric illness [85,86]. L-theanine increases sleep duration and shorten sleep latency in
mice [87], while L-theanine/GABA mixture significantly increases NREMS and REMS in
the mice [88].

Caffeine, the primary alkaloid in tea, is used to combat high sleep pressures. After
10 days of caffeine intake, a significant reduction in the gray matter volume in the medial
temporal lobe was observed [89]. Oral caffeine administration significantly increases sleep
latency and decreases the amount of NREMS in mice [90].

Tea contains various aromatic substances. Although natural aromatic components are
not in high concentration in tea, they can be used as sleep aids [91]. One of the aromatic
substances abundantly present in tea is linalool, which has the aroma of lily or magnolia
flowers, and Linalyl acetate has the aroma of green lemons. Studies have shown that
essential oils composed of linalool and linalyl acetate can significantly reduce sleep latency
and prolong sleep duration in mice [92]. Jasmine lactone, an aromatic substance, constitutes
oolong tea’s floral and fruity aroma. Studies have shown that inhalation of cis-jasmone or
methyl jasmonate significantly increases the sleeping time in mice induced by pentobarbital
and has a tranquilizing effect on their brains [81].

4. Does Tea Affect Sickness Sleep and Maintain Energy Homeostasis?

The relationship between sleep and energy is well-discussed, and the energy allocation
model proposes that animal species share a universal sleep function. Sleep conserves energy
by (i) reducing energy requirements for core thermoregulatory defenses and skeletal muscle
tone when the external environment changes and (ii) enhancing energy appropriation for
somatic and CNS-related processes [16,93,94].

Energy homeostasis in animals is maintained through energy metabolism via a dy-
namic balance between consumption and supply. However, animals in complex environ-
ments are subjected to daily stresses, such as solar radiation, pathogenic bacterial infections,
and mechanical damage. Therefore, they suffer from organismal damage and must increase
their energy expenditure for damage repair, thus breaking the energy balance for a short
period. Therefore, animals have evolved sickness sleep behaviors to maintain energy
homeostasis in stressful environments, a strategy for conserving energy consumption and
optimizing energy allocation [2,54,74,95].

Many studies have shown that tea effectively improves stress resistance, including
heat, oxidative, and UV [19–21]. Previous research in the laboratory found that an aqueous
extract of black tea promoted SIS and prolonged the lifespan of C. elegans compared with
the control group under ultraviolet irradiation. This suggests a link between lifespan
and SIS, in which tea may play a role. However, the mechanism by which tea regulates
sickness sleep remains unclear. In this review, a possible mechanism for this phenomenon
is proposed. Tea may promote sickness sleep and maintain energy homeostasis, stimulating
the organism’s health by acting on damage repair and energy metabolism (Figure 2).
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Figure 2. Tea coordinates sickness sleep, and energy homeostasis under stress. (A). Tea may act on
damage repair and energy metabolism to promote sickness sleep and maintain energy homeostasis.
(B). The energy homeostasis of animals is maintained under the dynamic balance of consumption
and supply under stress. Sickness sleep, as a strategy for conserving energy consumption and
optimizing energy allocation, helps to regulate damage repair and energy metabolism to maintain
energy homeostasis under stress.

4.1. Tea Acts on the Brain–Gut Axis to Regulate Sickness Sleep

The active substances of tea are known to act on the brain–gut axis to regulate sleep [96].
This review summarizes the relevant research and hypotheses regarding tea regulation of
sickness sleep under stress via the brain–gut axis (Figure 3).
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Figure 3. Tea regulates sickness sleep through the brain–gut axis. Components of tea act on the
nervous system under stress. These components reduce neuronal ROS levels and cell apoptosis
and promote neuronal growth and differentiation; inhibit glial pathology and reduce inflammation;
and regulate the secretion of neurotransmitters, including ACH, GABA, and 5-HT. Furthermore, tea
affects the intestinal flora, specifically by reducing harmful bacteria and promoting the production of
beneficial bacteria metabolism.
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4.1.1. Tea Acts on the Nervous System to Regulate Sickness Sleep

The nervous system is mainly composed of neurons and glia wrapped around neurons.
Neurotransmitters are released between synapses to convey information that controls sleep
behavior. Neurons regulate sleep and waking [95,97]. Two types of neurons that control
sleep have been identified: sleep-active neurons, such as GABAergic/peptidergic neurons
in the preoptic area of mammals, and sleep-promoting neurons, such as RIM and PVC
neurons in C. elegans [56,98]. Tea effectively protects neuronal tissues and promotes growth
and differentiation under stressful conditions. A previous study showed that oolong tea
extracts had a protective effect against the death of neuronal cells (Neuro-2a and HT22) [99].
This is because oolong tea extracts reduce the accumulation of intracellular reactive oxy-
gen species (ROS) and induce gene expression of cellular antioxidant enzymes. These
extracts also increased average neurite length in Neuro-2a cells. Another study found that
theaflavins enhanced PC12 cell survival following H2O2-induced toxicity and increased cell
viability [45]. This study suggested that the neuroprotective effects of theaflavins against
oxidative stress in PC12 cells are derived from the suppression of oxidant enzyme activity.
Furthermore, green tea protects against hippocampal neuronal apoptosis by inhibiting
the JNK/MLCK pathway [100]. The catechins EGCg and GCg effectively protect nerve
cells against H2O2 or Aβ1-42-induced injury [101,102]. EGCg and its degradation products
induce neuronal differentiation and neurite outgrowth by upregulating synaptophysin
gene expression and reducing DNA methylation [103,104]. Water-soluble flavonoids en-
hance the neuronal differentiation of neural stem cells in a dose-dependent manner and
significantly enhance neurite growth in mice [105].

Glial cells, including astrocytes, oligodendrocytes, and microglia, have neurotransmit-
ter receptors and ion channels wrapped in neurons and play an essential role in regulating
behaviors, such as movement and sleep [106]. Astroglial calcium activity changes dy-
namically across vigilance states and is proportional to sleep requirements. Astrocytic
Gi- and Gq-coupled G-protein-coupled receptor signaling controls NREMS depth and
duration, respectively [107–109]. Depleting microglial cells disrupts the brain tissue’s circa-
dian rhythmicity, increases the duration of NREMS, and reduces hippocampal excitatory
neurotransmission in mice [110,111]. Tea protects glial cells under stress. The pathological
activation of astrocytes and other glia in mice was inhibited by green tea extract [112,113].
Chlorogenic acid increasedω-7 palmitoleic fatty acid, which was associated with an IL-6
decrease, and effectively alleviated inflammation of glial cells in mice [113,114].

Neurotransmitters mainly include acetylcholine, monoamines (dopamine and sero-
tonin), amino acids (excitatory transmitters, such as glutamate, and inhibitory transmitters,
such as GABA), and neuropeptides. Multiple neurotransmitters regulate the sleep-wake
cycle [115]. FMRFamide (Phe-Met-Arg-Phe-NH2), also known as FMRFamide-related
neuropeptides, and their receptors play a conserved and vital role in regulating SIS in
response to cellular stress [11,70]. In C. elegans, heat stress-induced sleep requires ALA
depolarization and the release of FMRFamide-like neuropeptides release encoded by the
flp-13 gene [116]. Tea can regulate neurotransmitter levels [117,118]. Theanine is a deriva-
tive of glutamine that is structurally analogous to glutamate. It inhibits glutamine uptake
in the glutamine-glutamate cycle via SLC38A1. This controls the balance of glutamate
and glutamine in the brain to regulate sleep [119,120]. Additionally, theanine significantly
increased the concentrations of acetylcholine and GABA and decreased the concentration
of serotonin in the brain [87,121]. Polyphenols can prevent the reuptake of monoamine
neurotransmitters and increase cerebral blood flow [122]. Aromatic substances, such as
homeopathic jasmine, jasmine lactone, linalool oxide, and methyl jasmonate, significantly
enhanced the expression of GABA receptors in Xenopus oocytes and increased the content
of 5-HT and GABA in mouse brains [81,92].

4.1.2. Tea Regulates Intestinal Flora to Mediate Sickness Sleep

The intestinal microbiota regulates host sleep and mental states through the microbiota-
gut-brain axis [123]. In antibiotic-induced microbiota-depleted mice, the time spent in
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NREMS was reduced, while the number of REMS episodes increased; this was accom-
panied by frequent transitions from NREMS to REMS [124]. In addition, compared with
healthy individuals, people with poor sleep quality have a higher relative abundance of
Firmicutes and a lower relative abundance of Bacteroidetes in the intestinal flora [125–127].
Bioactive metabolites produced by the intestinal flora play an essential role in sickness
sleep regulation. Lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycans
induce sleep, fever, and anorexia. LTA may play a role in developing disease responses
to gram-positive bacterial infections and in sleep signaling through the commensal gut
microbiota [128].

Tea can effectively improve the proportion of beneficial to harmful microorganisms
and regulate microbial diversity and metabolite production in the gut. Oolong, yellow,
black, and dark teas have been reported to regulate intestinal microbiota. Black tea sig-
nificantly promotes gastrointestinal transit and colonization of beneficial Bifidobacterium,
Lactobacillus, and Bacteroides and inhibits the growth of harmful Firmicutes, Escherichia coli,
and Enterococcus [129–131]. Yellow tea extracts altered the gut microbiota composition and
increased community diversity and richness [132]. Green tea increases the abundance of
Flavonifractor plautii (FP) in the gut microbiota, and LTA from FP was identified as the active
component mediating IL-17 inhibition [133]. Tea compounds affect the growth of bacterial
species involved in inflammatory processes, such as the release of LPS [134]. ECg promotes
the release of LTA from the plasma membrane of Staphylococcal cells [135]. L-theanine
improved intestinal dysbiosis by decreasing the ratio of Firmicutes/Bacteroidetes, along with
increased fecal SCFA concentrations [136].

4.2. Tea Acts on Damage Repair to Mediate Sickness Sleep

Damage repair is considered a biological function of SIS. Sleep regulates repair mecha-
nisms and immune responses in the body and promotes neural repair, metabolite clearance,
and circuit reorganization [137]. In addition, sleep affects both humoral and cellular im-
munities. In mice, it significantly increases the number of monocytes in the blood and
spleen and enhances the ability of monocytes and neutrophils to produce reactive oxygen
species (ROS) [138]. Recent research on the interaction between sleep and damage repair
has found that melatonergic regulators, which regulate circadian rhythms and sleep, inhibit
the DNA damage response and activate the RAS/MAPK signaling pathways [139]. The
antimicrobial peptide (AMP) neuropeptide-like protein (NLP)-29 in C. elegans acts through
the neuropeptide receptor NPR-12 in locomotion-controlling neurons RIM and PVC, which
are presynaptic to RIS neurons and depolarize this to induce sleep [140].

4.2.1. DNA Damage Repair

External carcinogens and endogenous cellular processes cause DNA damage. The
major endogenous sources of DNA damage are errors in DNA replication and spontaneous
chemical changes produced by ROS, carbonyl stress, and hydrolysis of the glycosylic
bonds. Exogenous damage is caused by exogenous agents, such as ultraviolet radiation,
ionizing radiation, and various chemicals [141–144]. In long-term evolution, organisms
have developed a series of DNA damage repair mechanisms, such as DNA repair and DNA
damage response (DDR), to maintain genetic integrity [142,145,146].

The components of tea may play a role in DNA damage repair mechanisms. Regular
intake of tea polyphenols rescued UVB-induced miR-29 depletion and prevented tumor
growth by maintaining reduced DNA hypermethylation [147]. EGCg and its degrada-
tion products ensure normal neuronal differentiation and synaptic growth by reducing
DNA methylation of the synaptophysin promoter [103,104]. In addition, EGCg acts as an
antioxidant that protects embryos from oxidative damage by restoring the expression of
ribosome/tumor-related proteins [148]. The antibacterial activity of green tea catechins
results from various mechanisms, including DNA damage [149].

Previous studies have found a strong association between DNA damage repair and
sleep. For instance, in zebrafish and mice, the activity of the DDR initiator poly polymerase
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1 (Parp1) increases following sleep deprivation, while the activity of the DDR proteins,
Rad52 and Ku80, increases during sleep, revealing that DNA damage triggers sleep [150].
CEP-1, which encodes proteins in the DDR pathway, acts downstream or parallel to ALA
activation to promote SIS in C. elegans [151]. Sleep also promotes the repair of DNA damage.
Participants who worked overnight after sleep deprivation had a lower baseline DNA
repair gene expression and more DNA breaks [152]. Sleep increases chromosome dynamics,
which is necessary to reduce the number of DNA double-strand breaks in zebrafish [153].

4.2.2. Immune Response

To maintain homeostasis, animals have evolved mechanisms that include physical
barriers and behavioral and immune responses to defend against and eliminate pathogen
infection [154]. During an immune response, various cytokines drive immune cells to sites
of infection for clearance and repair. The inflammatory response to treatment with pro-
inflammatory cytokines is mediated by p38 mitogen-activated protein kinase (MAPK) [155–
158]. Systemic inflammation significantly affects metabolism and induces characteristic
sleep responses [159]. Pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNFα) and interleukin-1 (IL-1) are assumed to mediate increased sleep under inflammatory
conditions [160]. TNFα knockout mice had increased REMS, and IL-1 receptor accessory
protein (AcP) is required for NREMS [161].

Tea regulates pro-inflammatory cytokines during inflammatory responses. Studies
have shown that Pu-erh tea and white tea act on the p38/MAPK pathway to mediate
inflammatory responses [162–164]. Tea polyphenols can effectively alleviate inflamma-
tion by downregulating the level of TNFα-converting enzymes and reducing the expres-
sion of pro-inflammatory cytokines, such as IL-1β. L-theanine has been suggested to
inhibit heat stress-induced imbalance in oxidative stress and inflammatory responses
by reducing inflammatory factors, such as TNF-α, IL-6, and IL-1β, via the p38/MAPK
pathway [84,113,114]. In addition, theanine reduced synaptic scaling by downregulating
TNFα-induced AMPA receptor phosphorylation, which upregulated Homer1a expression,
thereby improving sleep [19].

4.3. Tea Acts on Energy Metabolism to Mediate Sickness Sleep

The energy metabolism pathways mainly include lipid metabolism, adenosine
monophosphate-activated protein kinase (AMPK), insulin/IGF-1 signaling (IIS), and the
mammalian/mechanistic target of rapamycin (mTOR) signaling pathways. Studies have
found that individuals with obesity showed lower fat oxidation and higher carbohydrate ox-
idative catabolism during sleep and experienced shorter sleep duration than normal-weight
individuals. This indicates that energy metabolism and sleep are mutually regulated [165].

4.3.1. Lipid Metabolism

Lipid metabolism can regulate sleep in living organisms. Brown adipose tissue and
uncoupling proteins are essential for maintaining energy homeostasis and body temper-
ature. Studies have shown that the pharmacological activation of brown adipose tissue
promotes sleep. Uncoupling protein 1 (UCP1), which promotes thermogenesis in brown
adipocytes, is necessary for increasing NREMS [166]. In C. elegans, the transcription factor
ETS-5 promotes roaming and inhibits quiescence by regulating a complex network of
serotonergic and neuropeptide signaling pathways through fat regulation [167].

Lipid metabolism is also regulated during sleep. Long sleep durations were sig-
nificantly associated with low high-density lipoprotein (HDL) cholesterol levels [168].
Morning-to-evening-regulated pathways of carbohydrate and lipid metabolism are sensi-
tive to sleep loss [169]. Lipid levels in Drosophila are altered considerably during sleep [159].
Recently, weight loss during sleep has become an important issue. Studies have found
that sleep extension can significantly reduce energy intake and result in a negative energy
balance to reduce weight [170].
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Tea has been shown to regulate lipid metabolism. Yellow and oolong tea inhibits
obesity by increasing energy expenditure and fatty acid oxidation [171]. In contrast, green,
white, Fuzhuan, and raw Pu-erh tea inhibit fatty acid synthesis [171]. Among them, green
tea leaf powder reduces body weight and total cholesterol in mice on a high-fat diet (HFD)
by decreasing the expression of fatty acid synthase and sterol regulatory element binding
protein-1c (SREBP-1c) [172]. Pu-erh tea treatment significantly reduces free fatty acid (FFA)
synthesis and increases the expression of genes involved in FFA uptake and β-oxidation in
HFD-induced obese mice [173,174]. L-theanine promotes the metabolic activity of brown
adipose tissue and subcutaneous white fat by enhancing thermogenic gene expression [136].

4.3.2. AMPK

AMPK, an AMP-activated protein kinase that controls cellular metabolic decisions,
is activated by increasing the AMP/ATP ratio in the body under cellular stress, exer-
cise, and hormones. AMPK mediates the interaction between energy and sleep. The
AMPK/SIRT1/PGC-1α pathway regulates the expression of skeletal muscle clock genes
and the circadian locomotor output cycle kaput (Clock) [175]. AMPK knockdown in neu-
ropeptide leucokinin (Lk) neurons inhibits sleep in Drosophila [176]. Salt-inducible kinases
(SIKs) are essential members of the AMPK family. A SIK family kinase 3 (SIK3) deletion
mutation in a well-conserved protein kinase A (PKA) phosphorylation site, S551, caused a
lethargic phenotype in mice, characterized by a reduced wake time and increased NREMS
time and delta density [177,178]. In addition, a gain-of-function sleepy mutation in SIK3
can also increase NREMS power and amount [179]. KIN-29 in C. elegans is a homolog of
SIK, which acts upstream of fat regulation and sleep-controlling neurons to transduce low
cellular energy charges into the mobilization of fat stores, thus promoting sleep [180].

Tea acts on AMPK, which mediates energy metabolism and affects physiological
activities, including lipid and glucose metabolism. Yellow and raw Pu-erh tea significantly
upregulated AMPK (p-AMPK) in HFD-induced obese mice [171]. Green, yellow, and black
tea combined with citrus, can activate the AMP-activated protein kinase (AMPK)/acetyl-
CoA carboxylase (ACC) signaling pathway and upregulate the expression of p-AMPK,
p-ACC, and CPT-1 proteins, thereby inhibiting fat accumulation [181]. The combination of
white tea and jiaogulan significantly suppresses hepatic glucose 6-phosphatase (G6Pase)
expression by activating the AMPK pathway, thereby inhibiting gluconeogenesis [162].
Catechins, which increase AMPK activity and reduce ACC activity in metabolic tissues,
affect lipid metabolism by reducing triglyceride levels and lipid droplet formation [182,183].

4.3.3. IIS Signaling Pathway

The insulin/IGF signaling pathway (IIS), an evolutionarily conserved hormonal path-
way, comprises insulin, insulin-like growth factor (IGF), or insulin-like peptide, insulin
receptor IR/IGFR, serine-threonine kinase AKT, and downstream target forkhead box O
(FOXO) transcription factors. It is vital in regulating energy metabolism, growth, and stress
resistance [184,185].

Tea can regulate energy metabolism by activating downstream targets through the
IIS pathway. Tea polyphenolics reportedly possess blood glucose-lowering properties by
improving insulin sensitivity [186]. One study has shown that green tea extract attenuates
downstream signaling of the insulin-like growth factor receptor [187]. In C. elegans, complex
I inhibition by EGCg and ECg induced a transient drop in cellular ATP levels and a
temporary ROS burst, resulting in SKN-1 and FOXO/DAF-16 activation [188]. Linalool, an
aroma substance in tea, activates downstream sod-3 and hsp-12.6 gene expression through
FOXO/DAF-16 and affects fat accumulation in C. elegans [189]. Tea also regulates the IIS
pathway to play an anti-oxidative stress role. Oolong tea extract enhanced IGF/IR/p-AKT
mechanism in the IIS pathway to aid cellular adaptation against hypoxic challenges [47].

The IIS pathway plays a vital role in sleep regulation. In the treatment of patients
with circadian rhythm sleep-wake disorders, improvements in symptoms were found to
be strongly associated with increased serum concentrations of insulin-like growth factor
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(IGF-1) [190]. In-depth studies have found that the activity of orexin neurons is modulated
by IGF-1, which controls sleep duration and architecture [191]. In Drosophila, insulin-
like peptide 2 (DILP2) is required for starvation-induced changes in sleep depth [192].
The adipokinetic hormone (AKH)-FOXO pathway has been shown to respond to energy
changes and adjust Drosophila’s sleep by remodeling the dorsal projections of the small
ventral lateral neurons [193]. In C. elegans, RIS neurons are activated by the conserved
insulin receptors IR/DAF-2 and FOXO/DAF-16, thereby inducing sleep to conserve energy
during extended food deprivation [194,195].

4.3.4. mTOR Pathway

The mTOR is a serine/threonine kinase. The mTOR signaling pathway, the down-
stream target of AKT in the IIS pathway, plays a vital role in integrating nutrition, energy
metabolism, growth, and proliferation [196,197]. Recently, the mTOR signaling pathway
was found to be closely related to sleep. Both mTOR activity and orexin expression were in-
creased in the hypothalamic sections and cultured hypothalamic neurons of Tsc1GFAPCKO
mice, which showed sleep disorders. Both sleep abnormalities and increased orexin expres-
sion restore mTOR activation [198]. Food deprivation can inhibit SIS through the target of
rapamycin and transforming growth factor-β (TGF-β) nutrient signaling pathways in C.
elegans [199].

Tea affects energy metabolism through the mTOR signaling pathway. Fuzhuan tea
aqueous extract alleviated insulin resistance by activating the insulin signaling Akt/GLUT4,
FOXO1, and mTOR/S6K1 pathways in the skeletal muscles [200]. Studies have shown that
tea may regulate neuro-mechanisms through the mTOR signaling pathway. A study found
that polyphenols significantly improve sleep deprivation-induced contextual memory
deficits, possibly through activating the cAMP-response element binding protein (CREB)
and mTOR signaling pathways [201]. Theanine can upregulate SLC38A1 expression to
activate the intracellular mTOR signaling pathway required to replicate and form neurons
and neuron orientation [202]. In contrast, tea polysaccharides repressed the proliferation
of colon cancer line HCT116 cells by targeting lysosomes to induce cytotoxic autophagy,
which might be achieved through mTOR- transcription factor EB (TFEB) signaling [203].

5. Conclusions and Remarks

This review summarizes the role and mechanisms of tea in regulating sickness sleep.
The potential efficacy of tea in promoting recovery under stress is further discussed, and
the mechanisms by which tea regulates sickness sleep and maintains energy homeostasis
are postulated.

Firstly, the regulation of sickness sleep is related to the brain–gut axis as well as
damage repair. Among them, the brain–gut axis directly regulates sickness sleep, and
damage repair acts as a sleep motive to indirectly induce sickness sleep. Tea may have the
potential to regulate sickness sleep with its vital function in relieving stress and regulating
healthy sleep. However, current research on tea in sickness sleep is deficient, and it is
unclear whether and how tea regulates sickness sleep. Based on the mechanisms of sickness
sleep regulation and the health benefits of tea, possible mechanisms of tea modulation of
sickness sleep have been proposed, including acting on the nervous system, regulating
intestinal flora, mediating DNA damage repair, and immune response. Secondly, according
to the role of sickness sleep in promoting energy homeostasis, this review discusses the
role of tea in linking sickness sleep and energy homeostasis, with lipid metabolism and
AMPK, IIS, and mTOR pathways as potential targets.

The role and regulatory mechanisms of sickness sleep are more extensively studied in
lower organisms. Owing to the more complex regulatory mechanisms, the role of sickness
sleep is still not well elucidated in higher organisms. Excessive sleepiness under stress or
illness has been found to be detrimental to patient recovery; hence, exploring the role of
tea in regulating sickness sleep cannot be too one-sided. Further animal experiments and
clinical validation are still needed in the future to focus on systematically and comprehen-
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sively describing the positive and negative effects of tea on sleep regulation under different
conditions. Negative emotions under stress and in illness, such as anxiety and depression,
can affect biological sleep while being detrimental to health recovery. Theanine in tea acts
as a sedative and calming agent, and aromatic substances are widely used as sleep aids.
Therefore, it would be a promising application to develop the beneficial components of tea
into a calming and tranquilizing product and use it for patient recovery.

Whether, and how, sickness sleep and energy homeostasis under stress are influenced
by tea warrants further investigation. Mitochondria may be an entry point to explore
this question. Owing to the intermediary role of mitochondria in energy metabolism and
response to stress, research on how tea affects mitochondrial function during sleep regu-
lation, including mitochondrial dynamics, mitochondrial autophagy, and mitochondrial
biosynthesis, might be a great direction for future research.

Overall, new insights on tea regulation of sickness sleep will enrich the health benefits
of tea, while the potential of tea to harmonize sleep and energy balance under stress will
provide insights into improving disease treatment recovery. A warm cup of tea and a nap
during stress or discomfort may provide enough energy for a better recovery.
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List of abbreviations
Acronym Full name
UV Ultraviolet
EGC Epigallocatechin
EGCG Epigallocatechin gallate
AAI Acute alcohol intoxication
EEG Electroencephalogram
NREMS Non-rapid eye movement sleep
REMS Rapid eye movement sleep
DTS Developmentally timed sleep
SIS Stress-induced sleep
GABA γ-aminobutyric acid
PSQI Pittsburgh sleep quality index
ROS Reactive oxygen species
LPS Lipopolysaccharide
LTA Lipoteichoic acid
FP Flavonifractor plautii
SCFA Short-chain fatty acid
AMP Antimicrobial peptide
NLP Neuropeptide-like protein
DDR DNA damage response
MAPK Mitogen-activated protein kinase
TNFα Tumor necrosis factor-alpha
IL-1 Interleukin-1
AMPK Adenosine monophosphate-activated protein kinase
IIS Insulin/IGF-1 signaling
mTOR Mammalian/mechanistic target of rapamycin
UCP1 Uncoupling protein 1
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HDL High-density lipoprotein
HFD High-fat diet
SREBP-1c Sterol regulatory element binding protein-1c
FFA Free fatty acid
Lk Leucokinin
SIKs Salt-inducible kinases
PKA Protein kinase A
ACC Acetyl-CoA carboxylase
G6Pase Glucose 6-phosphatase
IGF Insulin-like growth factor
FOXO Forkhead box O
AKH Adipokinetic hormone
CREB cAMP-response element binding protein
TFEB Transcription factor EB
mtROS Mitochondrial reactive oxygen species
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