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Abstract: Honey adulteration is a common practice that affects food quality and sale prices, and
certifying the origin of the honey using non-destructive methods is critical. Guindo Santo and Quillay
are fundamental for the honey production of Biobío and the Ñuble region in Chile. Furthermore,
Guindo Santo only exists in this area of the world. Therefore, certifying honey of this species is
crucial for beekeeper communities—mostly natives—to give them advantages and competitiveness
in the global market. To solve this necessity, we present a system for detecting adulterated endemic
honey that combines different artificial intelligence networks with a confocal optical microscope and
a tunable optical filter for hyperspectral data acquisition. Honey samples artificially adulterated with
syrups at concentrations undetectable to the naked eye were used for validating different artificial
intelligence models. Comparing Linear discriminant analysis (LDA), Support vector machine (SVM),
and Neural Network (NN), we reach the best average accuracy value with SVM of 93% for all classes
in both kinds of honey. We hope these results will be the starting point of a method for honey
certification in Chile in an automated way and with high precision.

Keywords: guindo santo honey; quillay honey; Eucryphia glutinosa; Quillaja saponaria; hyperspectral
microscopy; machine learning; honey adulteration

1. Introduction

The global problem of food fraud is becoming a threat for the entire industry chain,
from producers to consumers. Food fraud refers to the intentional substitution, dilu-
tion, and aggregation of ingredients in aliments [1]. Food sources often use restoratives,
preservatives, and neutralizers as adulterants. It is also a fraudulent practice to mix with
lower-quality products, to add water to increase volume, or to use sweetening syrups in
dairy products, virgin oils, wines, fruit juices, and honey, among others [2]. Consequently,
several industrial food products contain mislabeling and false statements [3].

Regarding regulations and food defense, ISO 22000:2018 became the international
standard, focusing on regulating safe food, products, and services that meet customer
and regulatory requirements [4]. The implementation of this standard offers multiple
methodological and technological challenges for the identification of adulterated foods.

Apis mellifera bees, a Hymenoptera order species, make honey, a natural product that is
prized for its health advantages and as a sweetener since 6000 BC. According to Trademap
data, the average world exportation of honey in 2021 was around 765,000 tons, with a
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global export value of USD 2650 million [5]. Honey is mostly composed of various sugars
(75–85%), including fructose (33–42%) and glucose (27–45%), as well as other compounds
obtained from nectar collecting, such as organic acids, minerals, amino acids, enzymes, and
solid particles [6,7]. Different bee colonies can have very different diets, and the honey that
they produce is determined by the nectar of the flowers, its concentration, and the amount
they consume. As a result, distinguishing between sugars that occur naturally and those
that have been added later is particularly difficult.

Intentional adulteration in honey is produced primarily through the fraudulent addi-
tion of sugar solutions, as these solutions are much cheaper than honey itself [8]. Adulter-
ation also alters the nutritional value of honey, resulting in the loss of most of its properties
and health benefits, as well as an economic loss for the beekeeping sector due to the signifi-
cant discredit towards the product as a consequence of noticeably declining quality and
flavor. This fact encourages a decrease in consumption.

In terms of honey adulteration detection, Carbon Isotope Mass Spectrophotometry
(SCIRA) corresponds to the official method declared by the AOAC [9], which is why it
has been used in several studies [10–15]. It is a procedure that evaluates the proportion
of carbon isotopes 13C/12C in honey to detect any adulteration, since the 13C isotope
is characteristic of C3-type carbohydrates (naturally abundant in honey) and 12C of the
carbohydrates C4 (carbohydrate produced from corn and artificially added cane sugar).

SCIRA detects the addition of 7 to 10% exogenous components, but it is expensive
and requires highly qualified personnel for its application, making it unsuitable for mon-
itoring, and it cannot detect the addition of syrups produced by C3-type plants such as
beet, rice, and wheat [16,17]. Other methodologies have been reported that use liquid
or gas chromatography coupled to mass spectrometry [18,19], liquid chromatography
with potentiometric detection [20] or with refractive index detection [21], and infrared
spectrophotometry [22]. However, all these methods necessitate specialized and costly
equipment and highly qualified personnel for their development and subsequent interpre-
tation of results, making the whole process time-consuming.

In this work, we implement a non-targeted method [23–25] to detect the purity of
Quillay (Quillaja saponaria) and Guindo Santo (Eucryphia glutinosa), two representative
monofloral endemic honeys from Chile, according to their botanical Classification of
Chilean honey [26]. For this method, we use hyperspectral transmission microscopy and
Köhler illumination to acquire the hyperspectral cubes. From the hyperspectral cubes,
spectral signatures are obtained, preprocessed, and dimensionally reduced to classify
different levels of purity of honey using supervised machine learning tools with 10-fold
cross-validation to protect the overfitting [27]. Note that specific guidelines about selecting
the minimal number of samples for training depend on the input problem [28]; in this case,
we use 100 curves for each class. Finally, some metrics commonly used in classification
problems are calculated to evaluate the method’s performance.

Both exclusive honeys, Guindo Santo and Quillay, suffer from syrup addition fraud,
which increases the uncertainty of their purity and limits their commercial growth. With
this work, local beekeepers would be incentivized to participate in new markets employing
quality seals. Thus, on the one hand, Guindo Santo honey would have an immediate
competitive advantage because it is a unique product from the Andes mountain (Alto
Biobío in Chile), where the Pewenche indigenous communities live and produce this
honey [29]. Finally, on the other hand, Quillay is an endemic species found in the Biobío
and Ñuble region, and its honey would also be favored.

2. Materials and Methods

Samples of pure syrups of glucose, fructose, maltose, pure honey from Guindo Santo
and Quillay, and honey mixed with these syrups, were prepared by means of experimental
protocols. Then, the spectral signatures of each were obtained. The information was used
to determine whether the honey was adulterated with additional sugars or was pure by
using classification algorithms based on artificial learning. The combination of spectral
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signatures and artificial intelligence reduce the costs of a honey fraud detection equipment
and analysis. Once the spectral signatures are obtained, and the artificial intelligence
training has been carried out, analysis by specific personnel is no longer necessary.

2.1. Honey Sample Collection and Melissopalynological Analysis

The two honey sample collection sites are located in the Biobío region, in Chile,
as shown in Figure 1. The first site is a territory with varied endemic vegetation and
native flora belonging to the Pewenche community of the Pitril sector (S 37°47′13.7′′,
W 71°32′11.9′′), commune of Alto Biobío, where the Guindo Santo honey production
apiaries are encountered. The second site, belonging to Colbún Company, is an area of
approximately 125 ha of native species (among them the Quillay endemic tree), inserted
in an anthropic matrix of forest plantations of fast-growing species and multiple crops in
the commune of Yumbel (S 37°2′2.10′′; W 72°40′20.28′′). In this place is Quillay’s honey
production apiaries. Additionally, it is important to mention that, at each study site,
beekeepers placed stamped frames without honey or prior preparation to ensure that when
the species under study began producing nectar, the bees produced only Guindo Santo and
Quillay honey.

Figure 1. Map of Chile highlighting (a) the Pitril sector, Alto Biobío Commune, and (b) Yumbel. Both
areas are located in the Biobío Region between 36º26′ and 38º29′ south latitude.

The honey samples were extracted by mechanical centrifugation once the phenological
period of each species had finished. For Guindo Santo, the harvest covers the period
from 22 January 2020, to 4 February 2020, and for Quillay, the harvest period covers
from 15 December 2019, to 20 January 2020. In both seasons, the bees were not receiving
supplementary energy or protein feeding. After harvest, the honey samples were analyzed
at the Palynology and Plant Ecology Laboratory of the Universidad de Concepción, Los
Angeles Campus. Pollen content was determined with the conventional technique of
acetolysis according to the method of Faegri and Iversen (1989) [30]. The preparations were
deposited in the laboratory Palynotheca for their pollen determination.

Pollen grains were determined at various taxonomic ranges using specialized bibli-
ographic assistance [31–33] (Heusser 1971) and the palynological reference collection of
the Palynology and Plant Ecology Laboratory of the University of Concepcion, where
the Chilean Norm NCh2981 was used [29]. According to this norm, monofloral honey is
defined as honey with a percentage equal to or greater than 45%, and bifloral honey is
when the honey contains two species in a minimum proportion of 50% and where there
is no difference greater than 5% between the two (INN 2007a). Finally, lower percentages
correspond to polyfloral content.

The melissopalynological analysis applied to the honey collected from the Pitril sector
recorded 15 pollen types for a total of 4 replications counted. The analyzed honey resulted
in monofloral origin of the Guindo Santo species with 52.5%. Likewise, for honey collected
from Yumbel, the results indicated that the honey analyzed is of monofloral origin from the
Quillaja saponaria species with 47.7%. It is important to note that there are no significant
differences and variability between the counted replicates.
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All the honey under study meet the basic national and international standards nec-
essary for their consumption according to the physio-chemical criteria established by the
Chilean Standards Division of the National Normalization Institute (INN) for the classifica-
tion of honey [29].

2.2. Honey Adulteration Process

The sample preparation methodology associated with the study of honey by spectral
analysis is based on Refs. [11,21,34]. At the beginning of the procedure, in transparent
plastic containers with screw caps, different types of honey (Quillay (Q) and Guindo santo
(GS)) are mixed with the three different syrups: fructose (F), glucose (G), and high maltose
(M), separately, as shown in Figure 2. The mixing proportions used are from 90 to 60% by
mass, in such a way that the sum between syrup and honey is 23 g (g), as shown in Table 1.
Then, each mixing ratio is stirred manually with a disposable plastic spoon at 20–25 °C until
the naked eye detects the homogeneous mixture. Later, reference samples are prepared
(syrups and honey samples to 100%, respectively). Finally, each prepared sample is kept
at 22 °C, in the absence of sunlight, closed with the container’s lid and parafilm around
it to prevent evaporation and contamination until analysis by hyperspectral microscopy
imaging. Each trial is performed in duplicate for each honey. We use a single concave
microscope slide from Fisher Scientific, ensuring that all samples are identical in their
spatial distribution conditions at the moment of measurements.

Figure 2. Sample preparation used for the acquisition of the transmission spectrum of honey from
Guindo Santo and Quillay mixed with different syrups (Fructose, Glucose, High Maltose). View of
the mixing preparation and all samples used. GSG, GSM and GSF are indicated for Guindo Santo
honey mixed with Glucose, High Maltose, and Fructose syrups, respectively, and QG, QM, and QF
for Quillay honey mixed with the same syrups. The references correspond to two samples of 100%
honey for each case (GS-100 1 and GS-100 2 for Guindo Santo and Q-100 1 and Q-100 2 for Quillay)
and 100% syrups, one for each case (G-100: 100% Glucose; M-100: 100% High Maltose; F-100: 100%
Fructose).

Table 1. Values of percentages and masses of the mixtures analyzed correspond to Quillay and
Guindo Santo’s honey samples separately.

Honey/Total Mass (%) Honey Quantity (g) Syrup Quantity (g)

100 23 0
90 20.7 2.3
80 18.4 4.6
70 16.1 6.9
60 13.8 9.2

2.3. Experimental Setup

The experimental setup is based on an inverted microscope (Nikon Eclipse Ti-U)
equipped with a white light lamp and an objective lens of 20×magnification. The camera is
a CMOS, Kiralux CS135MU from Thorlabs, with an array composed of 1200× 1920 pixels,
coupled with liquid crystal tunable bandpass filters Kurious-VB1 and digital controller
from Thorlabs, providing a continuously tunable center wavelength from 420 to 730 [nm].
Narrow, medium, or wide bandwidth can be settled with a Full Width at Half Maximum
(FWHM) of 10, 18, and 32 [nm], respectively. The system is presented in Figure 3.
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Figure 3. Hyperspectral microscope system. The setup also includes a high-speed motorized XY
scanning stage (MLS203 Base, Thorlabs) with a DC motor controller (BBD302, Thorlabs) for sample
positioning. The whole control and measurement system is programmed in Labview as a graphical
user interface.

2.4. Imaging Procedure

The collection of hyperspectral cubes involves two steps: (i) illumination and (ii) acqui-
sition. In the illumination stage, the idea was to achieve spatially uniform optical intensity
(irradiance) at the sample plane, obtaining optimal image quality. Köhler illumination
method [35] was implemented to modify the aperture diaphragm and condenser to produce
a homogeneous wide field, resulting in a bright image without artifacts and glare. Once
the lighting is corrected, hyperspectral data was acquired. For the acquisition step, the
prepared samples are positioned on the microscopy slides, and by transillumination, a
spectral sweep is performed using the tunable optical bandpass filter digital. The images
were acquired from the centers of the cavities containing the samples, and dark room
condition was used to avoid external illumination on the sample during measurements.

2.5. Data Processing

Spectral curves were obtained from the acquired hyperspectral cubes composed of
images for different visible wavelengths. Hyperspectral technology allows us to obtain
a spectral curve for each pixel: this means that we have as many radiometric curves as
the image has pixels. The total transmittance of the images was calculated by selecting a
region of interest (ROI). The ROI is then subdivided into 4 × 4 neighborhoods, which are
averaged to create spectral curves. Finally, we measured the transmittance (τ) according to
the model τλ = Pλ/Wλ [36], where λ is the representation of wavelengths, the incident
radiation generated by the light source is Wλ, and the maximum transmitted radiation
curves obtained from the neighborhoods’ average is Pλ.

2.6. Adulterated Honey Detection Algorithm

To correlate spectra features of the adulterated honey samples and the response of
the classification algorithms, it was assumed that the measured spectra were deterministic
signals in noise described by an observation model ρλ = τλ + ηλ [37], where τλ are the
known continuous-spectrum expansion functions, ηλ is an additive spatial white noise
associated with the readout electronics dependent of each λ, and ρλ is the raw signal.
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The transmission spectrum can be written as the linear combination of known
continuous-spectrum functions with unknown coefficients; based on simplicity and ro-
bustness of the method. In this case we use the Sum of Sine functions as the continuous-
spectrum expansion functions for all the measured spectra. Thus, the generative model can
be expressed as τλ ≈ τ̂λ = ∑N

n=1 an sin(bnρλ + cn). Here, an, bn, and cn are the unknown
expansion coefficients that must be determined, and n = 1, · · · , N are the number of
coefficients of the function. The use of τ̂λ ensures an optimal approximation for τλ.

The number of coefficients used to fit the curves are shown in Figure 4. The blue line
represents one measured transmittance spectrum from the GS images cube. The segmented
purple and black lines are the corresponding fit to N = 12 and N = 24 terms, respectively.
As shown in Figure 4, N = 24 coefficients optimally fit all the measured spectra with
a maximum root-mean-square error (RMSE) of less than 1%. Then, for each measured
spectrum, the best fit is made using 24 Sum of Sines coefficients, which are considered
the representation of the spectrum signal in this new space. It is fundamental to note
that this allows us to make a significant dimensional reduction in each acquired spectra.
Likewise, the curves will no longer be represented by high-resolution spectra but only by
24 expansion coefficients. This reduction is crucial for the processing cost in future real-time
implementation.

Figure 4. Adjust the measured transmittance spectrum from the GS images cube using the Sum of
Sine functions. The segmented purple and black lines represent a fit using 15 and 24 coefficients that
obtained an RMS of 0.016333 and 0.003743, respectively.

Finally, to detect the presence of different types of syrups on two kinds of honey and
classify them according to their level concentrations, we used three supervised learning
algorithms: Linear discriminant analysis (LDA), Support vector machine (SVM), and Neural
Network (NN). These classifiers presented better preliminary performance compared to
other previously studied algorithms from the standard Matlab tool. (Machine learning tool,
Matlab R2021b). Note also that the outputs of the classifiers are according to the purity
ranges of the honey. A graphic summary of the proposed method is shown in Figure 5.
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Figure 5. Block diagram of the adulterated honey detection algorithm. Firstly, the transmittance
is calculated from each pixel standing in the hypercube’s region of interest (ROI). Then, the ROI is
subdivided into 4 × 4 neighborhoods and averaged to create the spectral curves. Secondly, we used
the Sum of Sine functions to generate regression coefficients of all the measured spectra. Twenty-four
coefficient features were extracted from each spectral curve, which are introduced in the classification
section. Thirdly, and finally, we used three classifiers to detect the presence of different syrups on the
two kinds of honey and classify them according to their concentrations.

2.7. Dataset

For each sample, we obtained two hypercubes by using a transmittance microscopy
imaging system. For each type of honey, we used 100 curves with 311 wavelengths, contain-
ing 5 levels of purity concentration. It is important to note that for a syrup concentration
greater than 40%, the adulterated honey is visible to the naked eye. In this sense, the dataset
focuses on syrups concentrations beyond this limit.

2.8. Performance Metrics

Five metrics were selected to evaluate the classification models’ performance: pre-
cision, recall, specificity, F1scores, and accuracy. The precision is the fraction of correct
detections reported by the model, while the recall is the fraction of true events detected.
At the same time, specificity is the ability to reject the samples of other classes [38,39]. In
essence, precision, recall, and specificity are metrics that help us evaluate the predictive
performance of a classification model on a particular class of interest and are calculated
as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

where TP (true positive) is the samples correctly classified as belonging to a particular
class, and TN (true negative) refers to the samples correctly assigned as not belonging to a
specific class. FP (false positive) relates to the samples incorrectly classified as belonging
and FN (false negative) refers to the samples assigned incorrectly as not belonging to a
particular class [38]. On the other hand, accuracy is the rate of correct predictions to the
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total number of samples, so it is calculated by dividing the number of forecasts the model
got right by the total number of predictions it made.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

By definition, F1score is the harmonic mean of precision and recall combined into a single
number using the following mathematical expression:

F1scores = 2
Precision ∗ Recall
Precision + Recall

(5)

Notice that F1score takes both precision and recall into account, which means it accounts
for FPs and FNs. The higher the precision and recall, the higher the F1score.

3. Results and Discussion
3.1. Spectral Characteristics

Figure 6 shows an example of the transmittance spectra measured for the two kinds
of honey and their respective levels of adulteration used in this work. Figure 6a–c show
the cases of Q honey with the syrups F, G, and M, respectively. In addition, in Figure 6d–f
are GS honey mixed with similar syrups in the previous case. Overall, we can observe
the peculiarity of each syrups curve, which is easy to identify with the naked eye, and
the degradation trend from pure honey to syrups, for each curve. To illustrate this, GS’s
measured spectrums are noticeably degraded compared to adulterated GS honey (GS90,
GS80, GS70, and GS60); this is for any syrup case (Figure 6d–f). This can be seen more
clearly in the GS+F curves around the wavelength range between 450 and 630 [nm], where
the pool of curves presents a more similar trend to the F curves. On the other hand, the case
of Q honey is slightly different since it is possible to observe, concerning the intensity and
forms, that the degradation of the curves overlaps each other, being difficult to distinguish
with the naked eye, as shown in Figure 6a,b.

Figure 6. The transmittance curves were obtained from hyperspectral microscopy imaging. From
(a–f) are the Q and GS honey curves with different concentration levels using F, G, and M syrups,
respectively.
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3.2. Training and Model Validation

For this analysis, we trained and validated the model by selecting 10-fold cross-
validation to protect the overfitting. We built the feature matrix using 100 spectral samples
of the level of honey purity obtained from the hyperspectral cube of each kind of honey.
From each spectral sample, 24 coefficients were extracted using the regression technique
as indicated in Section 2.6. Then the classification process for each purity range of honey
was performed using an LDA model with a complete covariance structure, a quadratic
SVM model with an automatic kernel, and a feedforward NN model with a fully connected
layers size of 100 and a rectified linear unit (ReLU) activation function.

The values of metrics obtained by the classifiers for each class are summarized in
Table 2 and Figure 7. Firstly, in the case of Q honey, specifically Q + F, the LDA classifier
achieved the best performance with an average of 93.4, 93.2, and 97.6% in precision, recall,
and specificity, respectively; however, when analyzing the values of F1 scores in Figure 7a,
it can be observed that the highest scores (98 and 98.4%) in the Q90 and Q70 classes were
obtained by the SVM classifier. This is because the balance between recall and precision
values obtained by SVM are higher than LDA values in the Q90 and Q70 classes. On the
other hand, note that the LDA score values for the Q80 class far outweigh the different
classifiers, caused by the 91.9% correct predictions of samples compared to the 82 and
78% of SVM and NN. Besides, in the Q + M combination, SVM shows the best averages
with 89.2, 89.3, and 96.3% above the other classifiers. A similar occurrence happens for the
scores of Figure 7c, with 91, 83, and 83% for the Q90, Q80, and Q70 classes, respectively,
observing that the score in Q60 class is equal to 100% to SVM and LDA. Note that NN has
the lowest results overall; however, the specificity average (94.5%) slightly exceeds that of
LDA (94.3%) in type Q + M. Finally, in the Q + G mixture, all classifiers obtained perfect
results (100%).

Secondly, the results obtained in GS honey show that to GS + F, the LDA classifier
achieved the slightly best performance with precision, recall, and specificity averages of
96.2, 96.2, and 98.6%, compared to the 95.2, 95.2, 98.3, 93.4, 91.5, and 97.8% of SVM and
NN, respectively. Again, NN shows lower averages of 93.4, 91.5, and 97.8% than the other
classifiers; however, as shown in Figure 7d, it is noteworthy that NN achieved higher and
second-best results for GS90 and GS70 classes, respectively. In the case of GS + G, SVM
shows superiority with 95.9, 96, and 98.7% in the respective average values for each metric.
On the other hand, in Figure 7e, it is observed that NN overtook SVM with results of 93 and
91.8 in the GS70 class and obtained the second-best mark in the GS90 class. Finally, GS + M,
LDA, SVM, and NN obtained the best result averages in different metrics. LDA achieved
a 95.1% in specificity, SVM an 85% in the recall, and NN a 94.7% in precision. Focusing
on Figure 7e, LDA achieved the best result with an 84% for GS80 class. Meanwhile, SVM
shows the best performance with 85.6 and 77% in GS90 and GS70 classes. Overall, we note
that the GS+M combination recorded the lowest values by category.

Finally, from Figure 8a–c, the accuracies of the classifiers for the different cases of
honey mixed with syrups are shown. For the case of the LDA classifier shown in Figure 8a,
the accuracy values are 93.2, 100, 85, 96.2, 93.2, and 84.2% for the classes Q + F, Q + G,
Q + M, GS + F, GS + G and GS + M, respectively. In Figure 8b, for the SVM classifier, they
are 91.2, 100, 89, 95.2, 96, and 85%, and in Figure 8c, for the NN classifier, the values are
87.8, 100, 83.8, 93.5, 95.2, and 84.5%, all for the same classes of mixtures shown in Figure 8a.
At first glance, LDA reached good values for Q + F and GS + F classes; however, for GS + G
and GS + M classes, LDA obtained the lowest value of all the classifiers. Additionally,
NN underperformed overall, only achieving the second-best accuracy in the GS + G and
GS + M cases. Lastly, SVM showed the best performance for all classes, highlighting its
performance in Q + M, GS + G, and GS + M classes.
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Table 2. The Precision (P), Recall (Re), and Specificity (Sp) metrics obtained for 10-fold cross-validation
in each class are shown.

Class Classifier Class Classifier

LDA SVM NN LDA SVM NN

P Re Sp P Re Sp P Re Sp P Re Sp P Re Sp P Re Sp

+F Q90 98.9 93 99.6 98 98 99 96.8 93 99 +F GS90 97 100 99 98 99 99.3 99 100 99
Q80 91.9 91 97.3 84.5 82 95 78 82 92 GS80 94.8 92 98 92 92 97.3 97 80 96
Q70 97.9 97 99 98.9 98 99.6 97 97 99 GS70 100 98 100 98.9 97 99.6 100 97 100
Q60 85 92 94.6 83.6 87 94.3 79.7 79 93 GS60 93 95 97.6 92 93 97 88 89 96

Average 93.4 93.2 97.6 91.3 91.2 97 87.8 87.8 95.7 96.2 96.2 98.6 95.2 95.2 98.3 93.4 91.5 97.8

+G Q90 100 100 100 100 100 100 100 100 100 +G GS90 86 87 95 90 94 96.6 88.5 93 96
Q80 100 100 100 100 100 100 100 100 100 GS80 100 100 100 100 100 100 100 96 100
Q70 100 100 100 100 100 100 100 100 100 GS70 86.8 86 95.6 93.7 90 98 93 93 97.6
Q60 100 100 100 100 100 100 100 100 100 GS60 100 100 100 100 100 100 99.7 99 100

Average 100 100 100 100 100 100 100 100 100 93.2 93.2 97.6 95.9 96 98.7 95.4 95 98.4

+M Q90 89 83 93.6 91 91 97 89.6 87 96.6 +M GS90 75 85 92 79.4 93 92 84.6 83 94.6
Q80 75 76 91.6 80.9 85 93 69 78 88.6 GS80 84 84 94.6 81.8 72 94.6 80 80 93
Q70 77 82 92 85 81 95 77 71 93 GS70 79 69 94 78.9 75 93 74.7 77 91
Q60 100 100 100 100 100 100 100 99 100 GS60 100 100 100 100 100 100 100 98 100

Average 84.2 85.2 94.3 89.2 89.3 96.3 83.9 83.7 94.5 84.5 84.5 95.1 85 85 94.9 94.7 84.5 94.6

Figure 7. Bar plots for F1 scores rate (validation) of Table 2, 10-fold cross-validation results LDA,
SVM, and NN classifiers using 24 coefficients. From (a–f) are the Q and GS honey scores with different
concentration levels using F, G, and M syrups, respectively.

In summary, It should be noted that when the two types of honey were mixed with
G syrup, the classifiers performed the best. Specifically for Q + G, as seen in Figure 6c,
the curves are superimposed on each other, which makes it challenging to make a classi-
fication using these curve pools. However, all the classifiers’ performances were perfect,
demonstrating the feature extraction method’s robustness. This can be ratified by looking
at F1 scores and accuracy in Figures 7b and 8. On the contrary, the lowest values were
for the honey types mixed with syrup M, particularly for the GS70 class, as shown in
Figures 7f and 8. For these cases, the values determined by the coefficients function have
very similar terms, making the task more difficult for classifiers. As a possible solution to
this problem, it would be good to try feature extraction by focusing on where the difference
is more significant between the pool of curves.
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Figure 8. Training results. Comparison of the accuracy (validation) rate achieved by the different
classifiers for each combination between Q and GS honey and F, G, M syrups. The results of classifiers
LDA, SVM, and NN are represented in (a–c), respectively.

Our results are justified not only in the context of endemic honey characterization
but also in the benefit of hyperspectral microscopy. A very recent work published by
Zhang et al. in 2022 [40] compares different classifiers performance to categorize honey
samples from New Zealand. In that work, botanical origin was categorized using four
different machine learning algorithms, showing that SVM achieved >99% in accuracy rate,
which is in agreement with our results. In addition, in Ref. [41], three different machine
learning algorithms were used to predict honey floral origin using spectral information.
Additionally, advantages have been discussed in relation to snapshot microscopy and
spectrometry [42,43]. On one hand, there is no more sophisticated type of XY scanning of
samples or method of limiting the exposure time of remote sensing acquisitions. On the
other hand, the use of a microscopic field of view allows spectral analysis of each pixel and,
with Snapshot instruments, SNR tends to enhance.

4. Conclusions

The spectral signature, and the acquired data presented in this work, allowed us to
classify three types of syrups in two valuable endemic types of honey from Chile; Guindo
Santo and Quillay. By using classification algorithms based on artificial learning, it was
possible to determine if the honey had been adulterated at concentrations below the human
recognition capabilities. The estimation reached an error under 1% (RMSE equal to 0.0037
for both honeys) using 24 coefficients in the function fit. In addition, the number of curves
to train was reduced, from 106,926 to 100, which are selected randomly. Therefore, a feature
matrix of the size (100 × 24), corresponding to 100 normalized transmittance spectral
curves and the 24 estimation coefficients, was achieved for the classification algorithm.
This reduction strategy is significant so as to lower the time processing cost in future
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real-time applications. The best precision was obtained by SVM, followed by LDA and NN
classifiers. In future work, new functions will be explored by generating estimation curves
with greater accuracy. Additionally, new hyper-parameters of the SVM will be investigated
to improve its performance in order to increase average validation precision above 95% for
each sample and all adulterating factors.

The hyperspectral analysis performed on the Chilean native and endemic honey,
Quillay and Guindo Santo, allows for the determination of their spectral signature with
high reliability. These results, and the fact that these types of honey are a natural food
unique in the world in terms of their origin and production, allow projecting its use by
Chilean beekeepers to optimize their honey production business. Certification of these
types of honey facilitates their commercialization on national and international markets,
ensuring fair economic returns to the communities of producers. Additionally, certification
prevents the sale of adulterated products that lack adequate indications of their floral origin
and provenance, stating that they are Chilean Quillay and Guindo Santo honey, but which
they are in fact not.
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