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Abstract: Background: This study evaluated the influence of intramuscular connective tissue (IMCT)
on structural shrinkage and water loss during cooking. Longissimus thoracis (LT), semimembranosus
(SM) and semitendinosus (ST) muscles were cut and boiled for 30 min in boiling water, followed
by detection of water holding capacity (WHC), tenderness, fiber volume shrinkage and protein
denaturation. Results: Compared with LT and SM, ST had the best WHC and lowest WBSF and area
shrinkage ratio. The mobility of immobilized water (T22) was key to holding the water of meat. ST
contained the highest content of total and heat-soluble collagen. On the contrary, ST showed the
lowest content of cross-links and decorin, which indicate the IMCT strength of ST is weaker than the
other two. The heat-soluble collagen is positively correlated to T22. Conclusions: The shrinkage of
heat-insoluble IMCT on WHC and WBSF may partly depend on the structural strength changes of
IMCT components rather than solely caused by quantitative changes of IMCT.

Keywords: pork; water holding capacity; intramuscular connective tissue; muscle fiber; protein
denaturation

1. Introduction

Meat processing has been of great concern, and cooking is a common heat treatment
applied to meat. Cooking contributes to causing structural and chemical changes in the
meat; with cooking, meat becomes more palatable [1]. However, cooking affects muscle
quality, such as weight loss, juiciness, and area shrinkage. One of the most important factors
is the water-holding capacity (WHC), which is a critical indicator that affects weight loss,
area shrinkage, and juiciness during the cooking of meat [2]. There are two main factors,
including protein denaturation and myofibrillar structural shrinkage, which can influence
the WHC of cooked meat [3]. At different heating temperatures, muscle tissue shrinkage
results from different protein denaturation. The shrinkage in the sarcomere structure
decreases the WHC of muscles. During heat-induced shortening, the myofiber structure
can be torn by the force that is created by the contraction of cross-bridges consisting of
myosin and actin filaments [4].

Water in the myofibrillar structure is expelled by the structural change caused by
thermal denaturation [5]. The shrinkages of muscle structure during cooking can be sum-
marized as follows: the transversal shrinkage occurs mostly at 40–60 ◦C, which results
from myofibrillar protein denaturation. Transversal shrinkage enlarges the gap between
the myofibers and the surrounding endomysium, causing the majority of water loss. The
longitudinal shrinkages to the fiber axis take place mainly at 60–70 ◦C; the intramuscular
connective tissue (IMCT) network and myofibers shrink collaboratively [6]. Different pro-
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teins have different thermal denaturation temperatures, such as myosin, actin and collagen.
The meat quality traits differ in diverse muscles in terms of myofiber characteristics [7,8].

There has always been some dispute about the value of IMCT in meat heating [9]. The
force generated by the contraction of IMCT drives fluid out of myofibres [6,10]. Connective
tissue is made up of cells and extracellular matrix. There is a matrix of proteoglycans
embedded in collagen fibers [11]. The mature intramolecular cross-links are essential for
the in vivo mechanical functions of collagen [9]. After the synthesis of collagen fibres by
fibroblasts, cross-links are formed immediately [9]. The temperature of thermal denatu-
ration of IMCT collagen is usually between 58–67 ◦C. It is generally accepted that, above
65 ◦C, collagen contraction leads to meat shrinkage, which generates a greater cooking
loss [9,12]. However, there still needs more convincing research to support this point. The
investigative results of the possible mechanisms are different from the possible way that
cooking loss is correlated to collagen shrinkage. A study investigating [11] beef muscles
found that cooking loss was not correlated to collagen content [13]. The improvement of
cooking on IMCT, as well as their influence on meat qualities, remains to be investigated.

There is conjecture that thermally insoluble collagen is currently more acceptable [14].
The hypothesis for the present study was that the heat-insoluble IMCT fraction would
influence IMCT network shrinkage and may contribute to squeezing fluid out of the matrix.
Heat soluble IMCT fraction would influence water distribution, especially the immobilized
water. The heat solubility affects WHC. Consequently, by comparing WHC and shrinkage
differences between three distinct porcine muscles, the objectives of the research were (1) to
investigate the influence of IMCT on structural shrinkage and water loss during cooking,
and (2) to explore the change of quantity and quality of IMCT during heating.

2. Materials and Methods
2.1. Samples Collection

Five pork carcasses (Duroc × Landrace × Yorkshire crossbred, 6 months of age,
110 ± 10 kg) were purchased from a local market. Three different pork muscles were
obtained: longissimus thoracis (LT, n = 11), semimembranosus (SM, n = 11) and semitendinosus
(ST, n = 11). There were three batches. For the first batch, three samples of each muscle
(LT, SM and ST) were collected from one pork carcass of crossbreed animals. For the other
two batches, four samples of each muscle (LT, SM and ST) were collected from two pork
carcasses. All the samples were split after precooling at 4 ± 1 ◦C for 24 h. Each meat steak
was 100 g (4 × 4 × 5 cm). The samples were sealed in a low-density polyethylene bag
individually. After packaging, samples were heated in a circulating thermostatic water bath
(TESTO735, TESTO, Schwarzwald, Germany) at 100 ◦C for 30 min to (the core temperature
reached about 97 ◦C). After cooking, samples were quickly cooled in the ice water.

2.2. Warner-Bratzler Shear Force (WBSF)

The method to determine Warner-Bratzler shear force (WBSF) was described by Hol-
man et al. [15] and Qian et al. [16]. All blocks were approximately 50 mm × 10 mm × 10 mm
high, and parallel to muscle fibers. Measurements were carried out on a tenderness testing
machine (C-ML3B, TENOVO, Beijing, China). Ultimately, the result of WBSF was presented
as a unit of force.

2.3. Water Holding Capacity
2.3.1. Cooking Loss

According to the method of Jeong et al. [17], samples were wiped dry and weighed.
The cooking loss (%) was calculated according to:

Cooking loss (%) =
ma − mb

ma
× 100% (1)

where (ma) and (mb) represent the weight of raw and cooked samples.
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2.3.2. Low-Field Nuclear Magnetic Resonance (LF-NMR) Measurements

Water distribution was measured according to the method of Li et al. [18]. The
transverse relaxation, T2, were tested on a LF-NMR Analyser (PQ-001, Niumag Electric Cor-
poration, Shanghai, China; magnetic field strength: 0.5 Tesla; probe coil diameter: 60 mm;
operating temperature: 27 ◦C; spectrometer frequency: 23 MHz). T2 was determined using
the Carr–Purcell–Meiboom–Gill sequence (CPMG) with phase cycling to remove the arti-
facts. Data were expressed by using the MultiExp Inv Analysis software (Niumag Electric
Corporation, Shanghai, China). Three relaxation T2 water populations and proportions
(bound water, immobilized water and free water) were obtained [19]. The nuclear magnetic
resonance spin–spin relaxation (T2) was measured by LF-NMR. Three populations can be
classified as bound water (T21, 0.1–10 ms), immobilized water (T22, around 100 ms) and
free water (T23, 100–1000 ms) [16,20,21]. The relative percentages of the three fractions of
water are showed as A21, A22 and A23.

2.4. Structural Shrinkage
2.4.1. Area Shrinkage

According to the method of Kong et al. [22], the area shrinkage ratio was determined
as the percent reduction between raw and cooked samples. Transverse and longitudinal
shrinkages were calculated as the area difference of raw and cooked samples along and
across the muscle fibers, respectively.

Transverse shrinkage (%) =
x1 − x2

x1
× 100% (2)

Longitudinal shrinkage (%) =
y1 − y2

y1
× 100% (3)

where x1 and x2 represent the area of raw and cooked samples across the muscle fibers,
respectively; whereas, y1 and y2 represent the area of raw and cooked samples along the
muscle fibers, respectively.

2.4.2. Microstructure Measurements
Histological Analysis

The 4 µm thickness transverse sections were cut from the 1 × 1 × 2 cm meat strips.
The sections were stained by the Picrosirius method of Li et al. [23]. Microphotographs
were obtained by an Eclipse microscope (Nikon CI-S, Nikon, Tokyo, Japan) fitted with a
CCD imaging system (Michrome 5 PRO, SONY, Fuzhou, China).

Scanning Electron Microscopy (SEM)

According to Krystyna et al. [24], the microstructural changes across the muscle fibers
were evaluated by a scanning electron microscope (SEM). The 3 × 3 × 5 mm strips, cut
along the direction of muscle fibers, were fixed with 3% glutaraldehyde for 48 h. Samples
were rinsed with distilled water for 1 h. An ethanol series was used to dehydrate samples.
After drying, samples were sputter-coated with gold (Eiko IB-5, Hitachi, Tokyo, Japan).
Cross-sections of myofibers were detected with a scanning electron microscope (Quanta
200 FEG, FEI, Eindhoven, Netherlands); the magnification was ×300.

Transmission Electron Microscopy (TEM)

The ultrastructural changes along the direction of myofibers were observed using a
transmission electron microscope (TEM) by Wang et al. [25]. Muscle strips were fixed with
3% glutaraldehyde for 48 h, post-fixed with 1% osmium tetroxide for 2 h, and then washed
with 0.1 M PBS. Afterwards, samples were dehydrated by gradient ethanol series. Sections
were prepared on Leica UC6 ultra-microtome, stained with uranyl acetate and lead citrate,
and detected under a transmitting electron microscope (H-7500, Hitachi, Tokyo, Japan).
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The magnification was ×30,000. Image J software was used to measure sarcomere length,
which was calculated as the distance between two Z lines.

2.5. Surface Hydrophobicity

According to Mitra et al. [26], the surface hydrophobicity of samples was evaluated
by binding of hydrophobic chromophore bromophenol blue (BPB); 2 g of samples were
mixed in 20 milliliters of PBS (20 mM, pH 6.0). PBS was used to adjust the total protein
concentration to 5.0 mg/mL. 1.0 mL of suspension was added to 200 µL of BPB (1.0 M) and
vortexed. A control was prepared by adding 200 µL of 1.0 M BPB to 1.0 mL of PBS (20 mM).
Afterwards, the samples were centrifuged (15 min 2000× g). The supernatant was removed
and then diluted 10 times with PBS. The absorbance was evaluated at 595 nm. The amount
of bound BPB was calculated by the equation:

Bound BPB (µg) =
ODControl − ODSample

ODControl
× 200 µg (4)

2.6. IMCT Traits
2.6.1. Collagen Content

The determination of total and soluble collagen was measured according to Starkey et al. [27]
with slight modifications. Total collagen content was conducted in triplicate from 0.1 g
of freeze-dried muscle powder. Samples were added to 3 milliliters of H2SO4 (3.5 mM)
and then hydrolyzed at 106 ◦C for 16 h. After hydrolysis, the total volume was adjusted to
50 mL, which was subsequently filtered; 0.25 mL of NaOH (1.5 M) and 3.75 mL of water
were added to 1 mL of the filtrate. The hydroxyproline content was evaluated at 558 nm.
Total collagen content was calculated by the formula:

Total collagen =
Hydroxyproline × 7.25 × Weight

1000 × 250
(5)

Heat-soluble collagen content was determined by suspending 1.5 g of freeze-dried
muscle powder in 10 milliliters of water. The samples were heated at 80 ◦C for 2 h and
vortexed every 0.5 h. The samples were centrifuged (30 min 1500× g) and then filtered. A
half milliliter of the filtrate was taken and combined with 3 milliliters of H2SO4 (3.5 M). This
solution was subsequently heated for 16 h at 106 ◦C. Water was added to the hydrolysate
to make a 10 mL volume. One milliliter of the diluted filtrate was used for measuring the
hydroxyproline content. The heat-soluble collagen content was calculated by the formula:

Heat − soluble collagen =
Hydroxyproline × 7.25 × Weight

1000 × 400
(6)

2.6.2. Cross-Links and Decorin

Cross-links were determined as described by Wang et al. [28]; 250 mg of freeze-dried
muscle samples were acid hydrolyzed with 4 milliters of HCl (6 M) at 110 ◦C for 12 h,
and then centrifuged (5 min 16,000× g). 1 mL of NaOH (6 M) and 1 mL of Tris (1 M)
were mixed to 1.0 mL of the acidic supernatant. The final pH was adjusted to 7.0–7.2.
Analysis for decorin, 500 mg of freeze-dried muscle samples were mixed in 10 milliliters
of PBS. The suspension was subjected to 2 freeze–thaw cycles. Afterwards, samples were
centrifuged (15 min 1500× g). The supernatant was collected for further analysis. The
content of pyridinoline cross-links and decorin were measured using the enzyme-linked
immunoassay (ELISA) kit (Shanghai Jianglai Biotech, Shanghai, China) following the
manufacturer’s instructions.



Foods 2022, 11, 3835 5 of 13

2.7. Statistical Analysis

Data were statistically analyzed by general linear model procedures of SPSS Statistics
26.0. Porcine muscle was regulated as a fixed factor and three batches as a random factor.
Duncan’s test was performed to identify significant differences at p < 0.05.

3. Results and Discussion
3.1. Water Holding Capacity and WBSF

WBSF was highly correlated with tenderness. As shown in Table 1, the value of
WBSF was highest (p < 0.05) in LT muscle. The contraction and fracture of myofibers
may contribute to the shear force [16]. The higher WBSF in LT was correlated to its
microstructural shrinkage, which is shown in Figure 1. LT showed the biggest WBSF might
be correlated to cross-links. In accordance with Wang et al. [28], WBSF was positively
correlated with the intrinsic IMCT traits (the content of mature cross-links and decorin).
In addition, the lower shear force in ST may result from the increase in collagen solubility,
which is shown later.

Table 1. WBSF and water holding capacity (means ± SE, n = 11) of porcine longissimus thoracis,
semimembranosus and semitendinosus.

LT SM ST

WBSF (N) 70.48 ± 3.95 a 66.74 ± 1.86 a 51.33 ± 2.73 b

Cooking loss (%) 36.98 ± 0.77 a 35.47 ± 0.90 a 32.74 ± 0.96 b

T21 (ms) 0.31 ± 0.00 a 0.34 ± 0.02 a 0.31 ± 0.02 a

T22 (ms) 22.14 ± 0.53 c 24.94 ± 0.48 b 28.47 ± 0.55 a

T23 (ms) 217.48 ± 9.53 b 250.43 ± 15.20 ab 271.46 ± 19.50 a

A21 (%) 5.04 ± 0.00 a 4.45 ± 0.00 b 3.66 ± 0.00 c

A22 (%) 91.48 ± 0.00 b 93.00 ± 0.00 a 93.01 ± 0.00 a

A23 (%) 2.70 ± 0.00 ab 2.28 ± 0.00 b 3.30 ± 0.00 a

Different superscript letters within a row indicate significant differences (p < 0.05). T21, T22 and T23 represent the
spin–spin relaxation time of bound water, immobile water and free water, respectively. A21, A22 and A23 represent
the relative percentages of bound water, immobile water and free water, respectively.
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Figure 1. Microstructure and ultrastructure observation of porcine longissimus thoracis, semimembra-
nosus and semitendinosus. (a) transversal SEM micrographs; (b) TEM micrographs; (c) longitudinal
SEM micrographs; 1, LT; 2, SM; 3, ST.

During heating, the water content of meat decreases due to its shrinkage. The results
of the cooking loss of three distinct muscles is displayed in Table 1. Compared to ST,
the cooking loss of LT and SM was significantly higher (p < 0.05). Water loss within the
myofiber would increase, for changes in the myofibrillar structure and denaturation of
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protein were affected by the improvement of temperature and time [29]. The reasons for
this observation might be correlated to the differences in ultrastructure among the three
porcine muscles.

Three populations can be divided into bound water (T21, 0.1–10 ms), immobilized
water (T22, around 100 ms) and free water (T23, 100–1000 ms) [16,20,21]. Their relative per-
centages are shown as A21, A22 and A23 in Table 1. A longer T2 relaxation time corresponds
to a poorer WHC, which might result from the reduction of water-protein interaction [30].
The result of LF-NMR is in agreement with cooking loss. A significant change of the
relaxation time of bound water (T21) was not displayed among LT, SM and ST. This is
consistent with Pearce [31], who found that bound water may keep still in response to any
microstructural changes (such as freezing and heating) in the meat matrix. Water distri-
bution significantly changed among the three muscles (p < 0.05). T22 and T23 of ST were
significantly longest (p < 0.05), and A22 was significantly longer with ST than LT (p < 0.05).
The increment of T22 and A22 indicated that the mobility of immobilized water was en-
hanced [25], that is to say, the immobilized water mobility of ST was enhanced. The longer
T22 in the meat matrix is related to the higher mobility of entrapped protons [21]. H-proton
has fewer degrees of freedom, which indicates that the hydrogen bond energy of retained
immobilized water is higher [32]. The increase of T23 and A23 may result from the shifting
of immobilized water to free water, which may result from the hydrogen bonds between
water and protein [16]. Transformation of A22 to A23 could be facilitated by heat-induced
sarcomere microstructural shortening (as shown in Figure 1). These shrinkages would
squeeze out the intra-myofibrillar water and further result in cooking loss. ST showed
prolonged T2 relaxation times, which suggested that the existence of greater mobile water
component in it.

3.2. Structural Shrinkage
3.2.1. Volume Shrinkage

The structural muscle contraction, caused by the denaturation of protein, resulted in
the major loss of meat mass during cooking [33]. As pork shrinks, the mass loss is made
up of water and soluble proteins, as well as some other compounds [34]. Table 2 displays
the changes in transverse and longitudinal shrinkage ratios as affected by heating. The
area shrinkage ratio showed a similar trend to cooking loss; LT showed the biggest cooking
shrinkage (p < 0.05). The results of volume shrinkage are consistent with cooking loss.
Transversal shrinkage of muscle fibers will account for the majority of the cooking loss. But
as the temperature rises, denaturation of collagen and longitudinal shrinkage is responsible
for attached loss [35]. Compared with ST, the volume and longitudinal shrinkage of SM did
not show a significant change, which may indicate that, for SM, the longitudinal shrinkage
plays a leading role during the volume shortening.

Table 2. Volume shrinkage (means ± SE, n = 11) of porcine longissimus thoracis, semimembranosus and
semitendinosus.

LT SM ST

Volume shrinkage (%) 53.73 ± 1.62 a 45.85 ± 2.31 b 41.97 ± 2.40 b

Transversal shrinkage (%) 37.75 ± 2.51 a 33.09 ± 2.74 a 31.81 ± 1.62 b

Longitudinal shrinkage (%) 44.53 ± 1.57 a 37.25 ± 1.84 b 37.03 ± 2.77 b

Sarcomere length—raw (µm) 1.29 ± 0.03 b 1.37 ± 0.09 b 1.63 ± 0.11 a

Sarcomere length—cook (µm) 1.14 ± 0.03 b 1.23 ± 0.06 b 1.38 ± 0.05 a

Fiber diameter—raw (µm) 70.57 ± 1.50 b 79.05 ± 1.76 a 82.52 ± 1.67 a

Fiber diameter—cooked (µm) 63.17 ± 2.55 a 70.24 ± 2.10 a 70.97 ± 3.31 a

Different superscript letters within a row indicate significant differences (p < 0.05).

3.2.2. Microstructural Shrinkage

The microstructure and ultrastructure of myofiber in three muscles are shown in
Figure 1. After cooking, all three muscles exhibited distinct fiber diameter and sarcomere
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length shrinkage. Gaps between fiber bundles were much more visible after cooking
(Figure 1(a1–a6)). The differences in the content and structure of IMCT may be attributed to
the results of transversal shrinkage. During heating, water is released from the myofibers,
which would be squeezed out by the collagenous network contraction.

The thermal transformation of collagen is gradual and highly reliant on the ability
of collagen to shrink [36]. The heating had severe destruction on the muscle structure,
especially the Z-lines (Figure 1(b1–b6)). ST showed the most serious disruption of the
I-band. It is proposed that the reduction of vulnerable I-region leads to the diminishment
of proteolysis of myofibrils in shortened meat [3]. There were granulation and coagulation
changes in IMCT (Figure 1(c1–c6)). The epimysium granulation of ST was much more
perceptible. The gel results from the thermal denaturation of collagen wrapped around
the muscle fibers [37]. The connection of muscle fiber bundles was loose after cooking. LT
showed severe body shrinkage might result from its cross-links and decorin content. The
presence of thermal-stable bonds means that cross-links are held at these temperatures. It is
inferred that the contraction of heat-insoluble IMCT on WHC may depend, to some extent,
on the proteolysis and structural strength changes of IMCT components.

To determine the differences in IMCT in the three muscles, the digital images are
shown in Figure 2. The muscle fibers were stained yellow, while the perimysium were
red. LT exhibited myofibers of highly regular diameter and normal fibrillar organization
as compared to ST. The amount of intramuscular connective tissue in ST was the highest,
while the structural integrity of fiber bundles was compromised. The quantity and quality
of collagen are vital in deciding meat tenderness [38].
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Figure 2. Histological microscopic images and SEM micrographs of porcine longissimus thoracis,
semimembranosus and semitendinosus. (a) histological microscopic images; (b) SEM micrographs; 1, LT;
2, SM; 3, ST.

The fiber diameter of both samples (raw and cooked) is shown in Table 2. Sarcomere
length is a related indicator correlated with water-holding [4]. The water content would
increase for the expansion of the muscle fiber lattice spacing [3]. ST displayed the biggest
fiber diameter and sarcomere length, no matter if raw or cooked, which indicates ST has
much more space to retain water. A large quantity of water exists in the region between thin
and thick myofilaments (Figure 3). Due to the protein denaturation, the sarcomere length
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decreases in a temperature-dependent manner. The decrease in myofiber diameter and sar-
comere length alters the distribution of water within the myofibril spaces [39,40]. The Z-disk
is closely associated with stable sarcomere against transversal and axial forces transmission
along with the myofiber. For ST, the Z-disks of adjacent myofibrils are aligned, which
promotes coordinate contraction between individual muscle fibers (Figure 1(b3,b6)) [4].
After cooking, the alignment of Z-disks decreased. The sarcomere length shrinkage of ST
is the greatest. The volume of cooked ST is still the biggest, which gives it much more
space to hold water. Compared with the shrinkage ratio, the volume has a greater effect on
improving WHC.
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3.3. Protein Surface Hydrophobicity

Protein surface hydrophobicity could be an appropriate indicator to evaluate protein
denaturation, as it monitors sensitive changes in the physical and chemical state of proteins.
Differences among the three muscles in the surface hydrophobicity are shown in Table 3.
LT showed the highest surface hydrophobicity, which confirmed the greatest break of
conformational stability in proteins. The increase of surface hydrophobicity proves the
unfolding of proteins and exposure of nonpolar amino acids to the surface [6]. A molecular
rearrangement into hydrophobic clusters can promote intra- and intermolecular interac-
tions [41]. LT showed the most serious protein denaturation. It’s interpreted that T22 was
negatively correlated with surface hydrophobicity (Figure 4a). To some extent, surface
hydrophobicity was negatively correlated to the water-holding capacity of porcine muscles.
A shorter T22 indicated lower mobility of entrapped protons and therefore reflected more
protein denaturation. These results were accordant to Table 1 and Song [21].

Table 3. Protein denaturation characterization (means ± SE, n = 11) of porcine longissimus thoracis,
semimembranosus and semitendinosus.

LT SM ST

Bound BPB content (µg) 181.15 ± 5.49 a 156.50 ± 7.02 b 128.64 ± 10.28 c

Total collagen (mg/g DM) 13.85 ± 1.98 b 17.94 ± 1.15 ab 18.87 ± 1.33 a

Heat Soluble collagen (mg/g DM) 3.50 ± 0.49 c 4.96 ± 0.42 b 7.12 ± 0.45 a

Cross-links (µg/g collagen) 2.93 ± 0.82 a 1.54 ± 0.24 ab 1.34 ± 0.21 b

Decorin (µg/g collagen) 15.27 ± 2.18 a 11.80 ± 1.31 a 10.80 ± 1.06 a

Different superscript letters within a row indicate significant differences (p < 0.05).
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3.4. IMCT

The content of total collagen and heat-soluble collagen are shown in Table 3. Compared
to LT, total collagen in ST was higher (p < 0.05). During heating, the increase in the total
collagen content might result from the increase in cooking loss and the transformation
of collagen to gelatin [37]. The difference between heat-soluble collagen was statistically
significant (p < 0.05) among the three muscles, while the content of cross-links and decorin
were the lowest. The results of cross-links and decorin suggested that the stability of
collagen fibers of LT was better than ST. The results are accordant to Lepetit [36]. It’s
supposed that the higher the amounts of cross-links, the higher the thermal contraction of
collagen fibers [36]. Furthermore, the development of cross-links in muscle tissue might
be mediated by decorin [42]. Both SM and ST muscles are attached to the aitchbone and
myofibers are stretched longitudinally over the knee joint. The ST and SM muscles are
connected directly to the bone and are exercised frequently, therefore, their amount and
heat solubility of IMCT are higher than LT. These results are consistent with the hypothesis
proposed by Purslow [14], who reported that heat-insoluble collagen occurs in a weak pool
and a strong pool. The weak pool was less stable, more easily denatured and solubilized
during heating. The strong pool was more cross-linked, and resistant to heating and
proteolysis. When heated above 60 ◦C, the strength of the cooked material is determined
by the strong pool.

Heat-soluble collagen content is negatively correlated with WBSF. A proportion of the
heat-insoluble collagen decreased during heating, and another part of collagen is efficiently
heat-insoluble. The increase of heat-insoluble cross-links was positively related to increase
WBSF. Accordingly, both the quantity and quality of collagen conduce to tenderness. A
negative correlation was observed between the cross-links, decorin and the heat-soluble
collagen (Figure 4a). The results are consistent with the conclusion that the divalent cross-
links were replaced by mature cross-links, which were associated with reduced thermal
solubility of collagen [9]. Heat solubility might result from different skeletal muscle that has
different types of collagen. Previous studies have shown that type I collagen is more readily
resolved by heat than type III [43,44]. The reduction in cross-links indicated the decline of
cross-links to bind three polypeptide subunits [28,45,46], which induced a decrease in the
intensity of IMCT. Decorin acts as a spacer in the lateral assembly of the collagen molecular
structure [28]. It was an indispensable part of collagen to maintain normal tissue function
and mechanical properties [28]. The decorin was important in developing the elasticity and
strength of collagen fibers [47]. The collagen fiber strength of LT is the greatest among the
three porcine muscles. Both the quantity and quality of collagen were key in deciding meat
structural changes.

3.5. Contribution of Denaturation of Proteins to the Physical Characteristics

The correlations of the porcine muscles were analyzed and presented as a hierarchical
clustering heat map (Figure 4). It was a negative correlation between T22, T23, A22, fiber
diameter, sarcomere length and cooking loss. T22 was negatively correlated to volume
shrinkage (Figure 4a). The results suggest the structural changes induced by the cooking
procedure influence the WHC. The increasement of content (A22) and mobility (T22) of
immobilized water were key to holding water in the meat. The cluster analysis results
between three porcine muscles and physico–chemical characters were analyzed and are
shown as a hierarchical heat map (Figure 4b). The variation from different samples within
the same muscle type almost presented a similar color, and different muscle types presented
different colors, especially LT. The heat-induced shrinkage squeezes out water in the meat.
The water in the matrix depends on the volume and structure of the myofiber, whether raw
or cooked, just like ST.

The differences in content and structure of IMCT may be attributed to the results of
transversal shrinkage (Figure 4a). The stability of collagen fibers of LT was better than
ST. The thermal transformation of collagen is gradual and greatly reliant on the ability
of collagen fibers to contract [36]. As the heat proceeds, the strength of heat-insoluble
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collagen showed different trends in content. There are some differences in IMCT among
muscles (Figure 4b), which are related to variations in the thermal shrinkage force in the
perimysium among muscles [48]. There was a positive correlation between T22 and heat-
soluble collagen content. The higher heat solubility of collagen correlated to the higher
mobility of entrapped protons. Accordingly, that reflected a looser myofibrillar structure
most probably because of the bigger intrinsic pores as a consequence of heat-induced
shrinkage [49]. As was shown in Figure 4b, the samples with higher WHC showed a
larger amount of total and heat-soluble collagen content, i.e., ST. The increase in collagen
heat solubility indicated a decrease in the stability of the IMCT structure. The increasing
content and thermal stability of collagen in the muscle were largely determined by its
cross-links [50]. The presence of thermal-stable bonds means that intermolecular linkages
are held at these temperatures. From the present study, it is inferred that the contraction of
heat-insoluble IMCT on WHC may depend to some extent on the proteolysis and structural
strength changes of IMCT components rather than solely caused by quantitative changes
of IMCT.

4. Conclusions

To conclude, ST showed the best WHC during cooking compared to LT and SM. Under
the same heating conditions, ST indicated lower WBSF, surface hydrophobicity and decorin,
higher sarcomere length, collagen content and heat solubility. Apart from heat-induced
myofiber shrinkage ratio, the volume of muscle fiber plays an important role in WHC.
With larger myofiber volume, the muscle possesses much more space to retain water. The
results of IMCT indicated that the amount and structural changes, such as heat-resistant
cross-links may synergistically contribute to changes in WBSF. The quantity and quality
of heat-induced IMCT were critical during the heat-induced shrinkage. The heat-soluble
collagen content would influence the mobility of immobilized water. Further research is
needed to understand the heat solubility changes of collagen during cooking.
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