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Abstract: Upon hydrating and mixing wheat flour, wheat protein forms a network that strongly
affects the structure and physicochemical properties of dough, thus affecting the properties of noodles.
Different approaches have been taken to alter the gluten network structure in order to control the
dough properties. In the current review, we summarize the structure and function of wheat protein,
including glutenin and gliadin, and describe food components that may affect noodle quality by
interacting with wheat protein. In fact, the ratio of glutenin to gliadin is closely related to the viscosity
of dough, and disulfide bonds also contribute to the gluten network formation. Meanwhile, wheat
protein coexists with starch and sugar in wheat dough, and thus the nature of starch may highly
influence gluten formation as well. Salts, alkali, enzymes and powdered plant food can be added
during dough processing to regulate the extensional properties of wheat noodles, obtaining noodles
of high quality, with improved sensory and storage properties. This review describes specific methods
to reinforce the wheat protein network and provides a reference for improving noodle quality.
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1. Introduction

The main traditional basic meal in our daily diets consists of wheat products. In Asian
countries such as China and Japan, wheat flour is largely utilized for noodles production [1].
Generally, rheological and textural properties such as chewiness and compactness, sensory
properties such as aroma and color, and storage properties highly affect noodles acceptance
by consumers [2]. Wheat flour has many components such as starch, protein, lipid, and
enzymes. The gluten protein forms the principle network of dough, endowing it with
elastic, cohesive and viscous properties [3]. It has been reported that gluten quality is
highly correlated with noodle texture such as springiness and the cooking loss of noo-
dles [4]. Gliadins and glutenins are the main components of gluten protein. During dough
development, gliadins contribute to the viscosity of dough, while glutenins are related
to its elasticity [5].

According to previous studies, A-type starch with a disk or lenticular shape was able
to make the gluten network more porous and less compact [6]. Other food components in
noodles such as salt, alkali and polyphenols were reported to affect the non-covalent and
covalent interactions of gluten protein, thereby influencing the physicochemical, sensory
and storage properties of noodles [7].

This review focuses on “wheat protein”, “interactions”, and “noodle quality”. We
searched these keywords in the “Web of Science” database, filtering irrelevant literature
based on article abstracts. After that, we analyzed the selected 85 references. The purpose
of this review is to provide a thorough summary of the structure and function of important
proteins in wheat and the interactions between wheat proteins and other food components
affecting noodle quality. The textural, sensory, and storage qualities of noodles in the food
industry will be improved as a result of this review.
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2. Structure and Function of Wheat Protein

As previously noted, gluten makes up approximately 80% of the protein in wheat
flour. According to the solubility of gluten protein in an ethanol–water solution, gluten
protein can be divided into two fractions: the soluble fraction contains gliadin, and the
insoluble fraction contains glutenin [8]. The glutenin and gliadin proteins have diverse
functions during dough production due to differences in their structural compositions
(Figure 1). Glutenins form polymers stabilized by inter-chain disulfide bonds, whereas
gliadins are monomers and interact with glutenin polymers through non-covalent forces,
especially hydrogen bonds [9]. It is commonly believed that glutenin proteins create
the polymeric protein network that gives dough its cohesiveness and elasticity, whereas
gliadins as plasticizers of the glutenin network and provide dough with viscosity and
extensibility [9,10]. Although there are several reviews on high-molecular-weight glutenin,
a comprehensive review on the structure and function of gluten protein is lacking.
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2.1. Glutenin

Glutenin, one of the largest polymers found in nature, is composed of huge macropoly-
mers containing high-molecular-weight (HMW-GS) (Figure 2A) and low-molecular-weight
(LMW-GS) subunits (Figure 2B) crosslinked via intermolecular or intramolecular disulfide
bonds. According to their electrophoresis mobility in SDS-PAGE, the subunit masses of
HMW-GS are between 60,000 Da and 100,000 Da, while those of LMW-GS range from
30,000 to 50,000 Da, and they account for about 20% and 80% of the total glutenin fraction,
respectively [11]. HMW-GS mostly influence the final quality of dough.
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2.1.1. High-Molecular-Weight Glutenin Subunits

Genes at the Glu-A1, Glu-B1 and Glu-D1 loci on chromosomes 1A, 1B and 1D code for
the HMW subunits. Each low-molecular-weight x-type subunit and high-molecular-weight
y-type subunit are encoded by two genes in each locus [12]. Theoretically, hexaploidy
wheat should contain six expressed HMW glutenin subunits. In fact, due to gene silencing
and allelic variation, the composition of HMW-GS often varies among wheat cultivars [13].
Generally, all cultivars contain 1Bx, 1Dx and 1Dy subunits, while some cultivars also
contain a 1By and/or a 1Ax subunit. Therefore, specific composition of HMW glutenin
subunits have been identified as standards for wheat cultivar selection.

Four regions form the fundamental structure of an HMW glutenin: the signal peptide
(cleaved after maturation), the N- and C-terminal domains, and a central repetitive re-
gion (Figure 2A). Cysteine residues that are highly conserved in terms of both number and
position can be found in the N- and C-terminal regions of these proteins. The N-terminal do-
main has between 81 and 104 residues, whereas the C-terminal domain has 42 residues. [12].
Repeats encoding tri-, hexa- and nonapeptides are the primary components of the repetitive
domain. In x-type subunits, the repeat units are hexapeptides (PGQGQQ) and nonapep-
tides (GYYPTSLQQ), while hexapeptides (PGQGQQ) and nonapeptides (GYYPTSLQQ)
make up the repeat units in y-type subunits [14]. Differences in subunit size are primarily
due to variations in the quantity of tripeptides and hexapeptides. The HMW-GS function is
molecularly based on these domains.

The higher order structure of the HMW glutenin subunits is maintained by interac-
tions involving the conserved cysteine residues and the repetitive domain, which mainly
include disulfide bonds and hydrogen bonds, respectively [15]. More importantly, because
interchain disulfide links favor the production of gluten aggregates and play a significant
role in stabilizing HMW-GS polymers, the cysteines in HMW-GS are particularly critical to
the structure and function of gluten [16].

The repetitive structure of HMW-GS has been studied by scanning tunnelling mi-
croscopy, showing that reverse β-turns and β-sheet are organized in a β-spiral structure,
whereas the non-repetitive N- and C-terminal domains are rich in α-helixes [17]. It has been
reported that the highest the content of β-turns, the greatest wheat dough viscoelasticity
and that HMW-GS with the largest amount of β-sheets produced the strongest wheat
dough [18]. However, the crystal structure of HMW-GS is lacking.

As for the HMW-GS variations in different species, two novel HMW-GS as 1Dx2s

and 1Dx2f in the wheat line CNU608 were identified; the introgression of these subunits
is closely related to the improvement in dough strength. Specifically, the 1Dx2f subunit
includes an additional cysteine residue at position 730 and has a longer repetitive domain
and a greater glutamine content, whereas the 1Dx2s subunit presents an octapeptide
deletion in the N-terminal region. All these factors help create dough of high quality
(Figure 3) [19]. Meanwhile, HMW-GS are closely connected to the dough final quality. Jiang
et al. found that HMW-GS affect loaf volume and crumb structure significantly, and their
lack may lead to a decline in the size, brightness and fineness of the bread crumb [20].
According to Song et al., gluten quality is weakened when Dx2 is absent from the Glu-D1
locus; genes encoding Glu-1Dx2+1Dy12 were down-regulated in HMW-D1a during grain
development, which could affect the glutenin macropolymer [21]. Further research on
HMW-GS during food processing is highly needed.
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2.1.2. Low-Molecular-Weight Glutenin Subunits

As previously mentioned, low-molecular-weight glutenin subunits (LMW-GS) endow
dough with unique viscoelastic properties that enable flour to be processed into a variety
of foods [23]. In wheat grain, LMW-GS include around 60% of glutenins and 40% of the
total storage protein. In contrast to HMW-GS, the characterization of LMW-GS is difficult,
mainly because of the mutigenic of LMW-GS and their low solubility after reduction
of the intermolecular disulfide bonds. In general, a signal peptide of 20 amino acids
(cleaved after maturation), a small N-terminal domain of 13 amino acids, a repetitive
region of variable length, and a C-terminal domain composed of C-terminal I, C-terminal
II, and C-terminal III are present in LMW-GSs [24]. According to the first amino acid
residue of the N-terminal domain, LMW-GSs are classified into three groups, i.e., LMW-s
(serine), LMW-m (methionine) and LMW-i (isoleucine). All genotypes examined have
the highest abundance of LMW-s-type subunits, which have an average molecular mass
of 35,000–45,000, higher than that of LMW-m-type subunits (30,000–40,000). As for the
N-terminal amino acid sequence of LMW-s-type subunits, its sequence is SHIPGL-. In
contrast, the N-terminal sequences of the LMW-m type subunits differ dramatically, being
METSHIGPL-, METSRIPGL- and METSCIPGL- [25].

LMW-GS was first identified by gel filtration of extracts of wheat flour, distinguish-
ing them from monomeric gliadins. According to their mobility in SDS-PAGE, glutenin
subunits can be subdivided into A (HMW-GS), B and C groups (LMW-GS) [26]. Based
on their structural characteristics, the B-type subunits extend the growing polymers by
forming two intermolecular disulfide bonds, while the C-type subunits serve as chain
terminators of the elongating polymer by forming an intermolecular disulfide bond with
just one cysteine [26,27].

More recently, new classes of low-molecular-mass proteins have been discovered.
Anderson identified a new wheat endosperm protein with distinctive N-terminal se-
quences, a much smaller central repetitive domain, and much more cysteine residues [28].
Ikeda et al. [29] were able to develop specific PCR and 2DE to distinguish 12 groups of
LMW-GS genes in Norin 61. The largest LMW-GS was identified from Aegilops uniaris-
tata and is known as LMW-N13. It also has an extra cysteine residue. Transgenic wheat
overexpressing LMW-N13 has demonstrated enhanced dough properties. In the meantime,
the complete identification of LMW-GSs encoded by Glu-3 loci alleles was made possible
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through the use of capillary electrophoresis and RP-HPLC. The best quality parameters
were found in wheat varieties with the Glu-3 loci scheme [30].

Much more recently, research on celiac disease, which is caused by an immune re-
sponse to cereal gluten proteins, has resolved the crystal structure of low-molecular-weight
glutenin subunits [31]. Glut-L1 (PFSEQEQPV) was reported to bind to celiac disease
patient-derived TCR, differently from that of gliadin (Figure 2B). Further characterization
of LMW-GS is highly needed to elucidate their role in the formation of the gluten network
and in human health.

2.2. Gliadin

Gliadins are monomeric proteins and confer foaming and viscous properties on
dough. Gliadin is a single-chained polypeptide composed of five amino acids, solu-
ble in 70% ethanol, with molecular weights ranging from 25 to 100 kDa. According to
their electrophoretic mobility and genetic data, gliadins can be classified as α (25–35 kDa),
β (30–35 kDa), γ (35–40 kDa) and ω (55–70 kDa) (Table 1) [32]. Generally, the gliadin
structure contains two primary domains: a hydrophobic center region, which is rich in
glutamine and proline, and a terminal hydrophobic portion, which surrounds the central
hydrophobic area and is rich in hydrophobic amino acids. Gliadin has a generally limited
water solubility, which increases at extremely low pH conditions. The poor aqueous solu-
bility could be caused by its stable disulfide bonds and hydrophobic interactions [33]. Thus,
various extraction methods have been used to isolate gliadin. Sardari et al. [34] tried to
sequentially use different solvents, such as NaCl, ethanol and an alkaline solution, to isolate
the albumin, globulin and prolamin fractions. The isolation and quantitation of gliadin
fractions are not reviewed in detail here, and we refer the reader to Mehanna et al. [35].
Importantly, it has been proved that the proportions of gliadin and glutenin can affect the
functionality and rheological characteristics of wheat protein. Gliadin transforms into a
viscous liquid after being hydrated, providing dough with extensibility and viscosity [36].

Table 1. Predicted structure of gliadins.

Type Predicted Structure

α/β-gliadins
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3. Food Components Affecting the Protein Network and the Properties of Noodles

The physicochemical, sensory and storage properties of noodles are highly affected by
the constituents of wheat flour. In addition to wheat protein, the minerals, carbohydrates
and enzymes present in wheat flour can affect the quality of noodles. Recently, with
the development of food science and technology, researchers have tried to improve the
properties of noodles by adding other food components. In this section, we will summarize
the food components added during the production of noodles and their interactions with
the wheat protein network (Figure 4).
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3.1. Minerals
3.1.1. Sodium Chloride

In addition to wheat flour and water, salt is also an important ingredient in noodle
processing. Sodium chloride and alkaline salts (e.g., sodium and potassium carbonate,
sodium hydroxide and bicarbonates) are commonly used to enhance noodle flavor and
texture. In noodle processing, salts exert the following functions. First, salts enhance the
flavor and improve the texture; second, they inhibit enzyme activities and microorganisms
growth; third, they strengthen and tighten the gluten network of dough [37]. NaCl can
strengthen the dough because it can influence protein hydrophobic and electrostatic inter-
actions, thereby impacting the aggregation and disaggregation of proteins. Additionally,
NaCl enhances the association of gluten proteins and the rheological properties of noo-
dles. The hardness of machine-made noodles can be increased by adding NaCl (1–2%),
improving their quality [38]. On the contrary, during the production of Chinese traditional
hand-stretched dried noodle (CHDN), more salt (>3% w/w) must be used to improve the
extensional properties of CHDN dough. According to a study, adding NaCl (1–4% w/w)
improved the dough storage modulus (G′), the loss modulus (G′ ′), the extensional area and
the (maximum) resistance to extension. G′ and G′ ′ reflect changes in elasticity and viscosity
of wheat gluten protein, respectively. However, an excessive aggregation of protein after
adding 5–6% of salt, leads to an opposite result. Therefore, a concentration of salt around
3–5% (w/w) is ideal to produce CHDN [39]. Chen et al. [40] reported that NaCl increases
the mixing time, stability, storage and loss modulus of wheat flour doughs. In addition,
salt addition may promote the formation of β-sheets and alter the secondary structure of
the protein. Meanwhile, the reduction of the free SH content of gluten indicated that salt
induces SH cross-linking during dough production.
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3.1.2. Alkaline Salts

The G′ and G′ ′ of gluten and glutenin components are also increased by adding
alkali. Alkali addition significantly enhances gluten strength and noodle texture. Gluten
strength can differ depending on the physical and chemical characteristics of glutenin and
gliadin. Alkali enhance alkali/protein–protein interactions and electrostatic interactions
in gluten, which involve, respectively, glutenin and gliadin [41]. Kan Sui is the most
common alkaline salt used today and contains Na2CO3 and K2CO3 or a combination
of the two. With the addition of alkaline reagents, the noodle dough becomes tougher,
tighter and less extensible [37]. The effect of alkali salts on noodle dough depends on
salt concentration. Alkali salts not only can give an elastic mouthfeel to noodles, but also
can enhance dough elasticity and strength, making noodles harder and more difficult to
break. This may be due to the fact that, in the presence of Kan Sui, additional polymeric
glutenin can be integrated into the network by thiol (SH)/disulfide (SS) exchange or
other non-redox reactions/interactions [42]. The addition of both salt and Kan Sui during
the sheeting process can significantly increase the noodle dough’s rupture stress. At
the same time, the number of β-sheets in the dough is also increased, which makes the
structure of the gluten network more stable and delays its disintegration. Furthermore,
Kan Sui at a low concentration (1%) can significantly inhibit glutenin macropolymer (GMP)
dissociation by facilitating disulfide cross-linking and thus enhances the dough’s resistance
to stretching [7]. Additionally, Wang et al. [43] reported that phosphate salts increase the
rigidity and elasticity of noodles by changing the behavior of the gluten proteins. The
specific interactions between gluten proteins and salts need to be further investigated,
especially the structure of the complexes they form.

3.2. Carbohydrates
3.2.1. Starch

The carbohydrates in wheat flour include starch, dextrin, cellulose, free sugars. The
proportion of starch is quite high, at 70–80%. The gelatinization process of starch can
alter the textural quality, sensory evaluation and cooking quality of noodles. The primary
components of starch in wheat flour are amylose and amylopectin, and the content of
amylopectin is higher than that of amylose [2]. However, the amylose content has been
reported to positively correlate with noodles’ hardness, gumminess and chewiness, and
negatively correlate with their cohesiveness, springiness, and resilience. When the protein
content was kept constant, the hardness of noodles was significantly elevated with increas-
ing amylose content. It is possible that the amylose chains leach out of the granules during
gelatinization and establish interactions and junctions during noodle cooking. In addition,
high smoothness and low adhesiveness are highly desired in noodles [44,45].

Protein and starch interactions have a significant impact on the pasting and textural
qualities of starch as well as on the flow, structure and mouthfeel of food products. The
elasticity of noodles was adversely associated with protein and amylose content and
retrogradation. During heating and cooling, it was discovered that protein had an impact
on the peak values of starch’s storage (G′) and loss (G′ ′) moduli [46]. The interactions
between starch and protein are important determinants of noodle quality. It was reported
that the starch–protein matrix consists of two phases: a dispersed phase that contains starch
particles and protein, and a continuous phase that contains amylose/amylopectin [47].
In addition, the alkyl side chains of proteins contain many hydrophilic groups (amides,
hydroxyl, carboxyl and mercaptan) that could interact with the starch molecules [48].
Furthermore, the starch–protein interactions are determined by a combination of different
forces, such as covalent bonds, electrostatic forces, van der Waals forces, hydrogen bonds
and hydrophobic interactions [49]. On the other hand, as the temperature decreases, starch
retrogradation occurs, during which the side chains of amylose and amylopectin molecules
are rearranged and recombined. With the help of gluten, the free hydroxyl groups of starch
form hydrogen bonds with free amino acid residues, delaying the regeneration of starch.
Additionally, gluten forms a double helix with amylose in the starch–protein paste system,
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which prevents starch’s short-term retrogradation [50]. These interactions between starch
and protein affect the quality of the noodles. Further research is needed in the future to
better understand how proteins alter starch conversion.

Damage to starch occurs when wheat flour undergoes mechanical damage caused by
external processing conditions. Because the internal structure of granules becomes exposed
following damage, water absorption by starch and its sensitivity to enzymes increase. This
means that, compared to intact starch, damaged starch can more easily absorb water and
swell, whereas intact starch is protected by a physical barrier that prevents the gluten
network from growing [51]. As damage increases in starch, the springiness and hardness
of noodles are significantly enhanced. It is well known that damaged starch has a higher
water absorption capability than intact starch. Hence, high levels of damaged starch disrupt
the integrity of the gluten protein network and decrease the development of a raw noodle
dough by competing with proteins for water [45,52].

The swelling power of starch is closely related to noodle eating quality. According to
Yue et al. [53], cooking loss is inversely correlated with flour swelling power, indicating
that starch with a higher swelling power might be properly incorporated into the gluten
network structure, reducing the flour swelling power, which would then decrease the
cooking loss. Furthermore, frozen cooked noodles (FCNs) can additionally be broken by
ice crystals; however, the interactions of starch with proteins can decrease the damage.
Previous research revealed that the content of damaged starch was positively correlated
with the expansion capability of wheat flour as well as the hardness, chewiness, and
elasticity of the resulting FCNs. However, with an increase in the amount of damaged
starch, the gluten network structure is destroyed [54].

Hydrogen bonds are broken and rearranged during the starch gelatinization process.
The combined action of heat and moisture gelatinizes starch when fresh noodles are
cooked. Then, as moisture slowly permeates the noodles from the outside to the inside,
the gluten protein thermally polymerizes, creating a compact three-dimensional network
structure embedded in the starch. Finally, a layer with a high moisture level on the outside
and a low moisture content within develops, providing the noodles with good taste and
viscoelasticity [55,56]. Previous research has shown that temperature and wheat starch
gelatinization have an impact on the color, firmness and viscoelasticity of noodles. During
gelatinization, gluten is adsorbed into the starch granules through hydrophobic interactions
between gluten and the starch granules, which causes gluten and starch to hydrate in a
competitive manner and may prevent water from diffusing into the starch granules [50].
In addition, the physicochemical properties of gluten–starch mixtures can be influenced
by different gliadin/glutenin ratios. As the gliadin/glutenin ratio increases, the viscosity
decreases. This might be because gliadin has many hydrophilic residues on its surface,
which increases the binding of water molecules to gliadin and decreases the viscosity of
the gelatinized starch [50].

3.2.2. Sugar

The presence of the sugar sucrose entails a significant modification of the rheological
properties of dough. With the addition of sucrose, dough’s stickiness and extensibility are
improved, but its consistency and tenacity decrease. It is possible that the affinity of sucrose
for water inhibits water absorption by starch and gluten, and the resulting dough protein
networks require a longer time to unfold [57]. Furthermore, it would take more energy
for the nonpolar side chains of aliphatic and aromatic amino acids to become exposed in
a sucrose solution. As a result, for protein cross-linking to occur during processing, the
temperature must be raised [58,59].

As a low-molecular-weight polyol and plasticizer, sorbitol has the potential to consid-
erably slow down the degeneration of the gluten network. It can improve the hydrogen
bonding connections in the gluten system and then promote the dynamic depolymerization
and repolymerization of gluten protein molecules throughout processing and cooking,
stabilizing the dough’s texture. In a study, sorbitol was added in an appropriate amount
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(2%), which increased gluten’s tensile strength and dough’s viscoelasticity. It also reduced
the weight of the glutenin macropolymer (GMP), the cooking loss of new noodles and the
dough’s hardness and springiness [4]. Although the effects of carbohydrates on the proper-
ties of noodles have been extensively investigated, the interactions between carbohydrates
and glutenin or gliadin during dough formation and the effects on noodle properties need
to be further elucidated.

3.3. Enzymes

Since enzymes in wheat flour are fully denatured during processing, exogenous
enzymes are widely used to crosslink gluten directly or indirectly and improve dough
quality. The creation of covalent connections between polypeptide chains is facilitated by
enzymes that catalyze the oxidative crosslinking of SH groups and tyrosine residues or
acyl-transfer processes between amino acid residues [60].

3.3.1. Transglutaminase

An acyltransferase known as transglutaminase (TG) is used in several culinary prod-
ucts such baked goods, meat, shellfish and others. For example, TG was reported to
improve the elasticity, water capacity and other functional properties of wheat dough
through amine incorporation, crosslinking and deamidation [61]. Previous research re-
ported that TG addition was able to affect the wheat flour pasting properties and increase
the elastic modulus (G′) and the viscous modulus (G′ ′) in doughs. TG can also help frozen
doughs to develop a gluten network and fewer isolated starch granules [62]. Upon the
addition of 1 g/kg of TG, the storage modulus and loss modulus of white salted noodle
dough increased significantly; however, with a higher concentration of TG, the effects on
these parameters were not clear. For dried white salted noodles, the textural parameters
generally increased, including tensile force, hardness and gumminess [63]. This result can
be explained by the fact that TG can catalyze the acyl transfer reaction between lysine and
the γ-carboxamide groups of a peptide-bound glutaminyl residue in proteins, yielding
intra- and intermolecular 3-N-(γ-glutamyl)-lysine crosslinks between proteins. Crosslink-
ing strengthens the gluten network, enhancing the strength and elasticity of dough [64].
In addition, HMW-GS and α-gliadins are predominantly involved in cross-links formed
by TG. TG has a greater effect on HMW-GS than on gliadins, because of the lower lysine
content of gliadins as compared to glutenins. However, a higher dosage of TG improved
the formation of a protein network in flour, causing an uneven distribution of wheat
protein structures [65,66].

3.3.2. Glucose Oxidase

GOX is a glycoprotein that mostly consists of mannose and has a 16% carbohydrate
content. The capacity of glucose oxidase (GOX) to promote cross-linking within the gluten
network preserves the texture of noodles when frozen. When oxygen is present, GOX
catalyzes the oxidation of α-D-glucose to α-D-gluconolactone and H2O2 in wheat flour. It
is believed that H2O2 is the catalyst for GOX in dough and that the free thiols in cysteine,
peptides, and proteins in dough are potential reaction sites. For example, H2O2 can form
disulfide bonds and bind the ferulic acid residues of arabinoxylan into the gluten structures
by reacting with free thiol groups in glutenin proteins, thus improving gluten quality and
enhancing dough’s extensibility [67,68]. Bonet et al. reported that GOX modified gliadin
and glutenin by the formation of disulfide and non-disulfide crosslinks. With the addition
of GOX, a reinforcement or strengthening of wheat dough can be obtained. However, a
large amount of GOX in dough leads to excessive gliadin cross-linking and aggregation,
as well as to severe water-soluble arabinoxylan gelation, weakening the glutenin network
and making dough less extensible [69]. Several research groups found that adding GOX
to dough boosts dough’s water absorption, toughness and elasticity but decreases its
extensibility [60]. However, the mechanism of GOX action is poorly understood at the
molecular level.
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The addition of the above-mentioned enzymes to wheat dough improves the physic-
ochemical characteristics, handling properties and shelf-life of noodles. In addition to
transglutaminase and glucose oxidase, Table 2 shows many other enzymes that can be used
in noodle processing to improve gluten texture and quality (Table 2).

Table 2. Enzymes widely used in wheat products.

Enzymes Effects References

Hexose oxidase (HOX)

Due to the formation of hydrogen peroxide, HOX causes
S-S linkages to form between proteins and boosts the

gelation of arabinoxylans. This increases the strength of
dough and the volume of bread.

[60]

Laccase (LAC) LAC treatment reduces dough extensibility and
promotes dough stiffness. [67]

Pyranose oxidase (P2O)
The molecular mechanism of improving dough stability
by P2O involves the cross-linking of gluten proteins and

arabinoxylan with formation of H2O2.
[70]

Polyphenol oxidase (PPO) PPO would cause discoloration of the noodles. [71]

Cyclodextrin Glycosyl transferase (CGT) CGT decreases dough consistency but provides a good
specific volume and a very soft crumb texture to bread. [72]

3.4. Edible Powder from Plant Sourcse

With the economic development and the increasing consumer awareness of the impor-
tance of a healthy lifestyle, it is increasingly important to emphasize that noodles are rich
in natural protein and other useful plant-based ingredients. Researchers have attempted to
improve the nutritional value and quality of noodles by fortifying them with a variety of
ingredients, over the past few years [73].

The quality of dough and fresh wet noodles can be significantly enhanced by ginkgo
biloba powder (GBP). A study found that the mixture tolerance index of dough, its water
absorption, G′ (storage modulus) and G′ ′ (loss modulus), extensibility, hardness, adhesive-
ness, springiness and chewability increased with the addition of GBP. However, dough
viscosity, setback, breakdown, development time dough stability decreased. The addition
of GBP in an amount less than 20% is appropriate [74]. With an increasing GBP concen-
tration in a GBP/wheat flour mixture, the amount of moisture, protein, total sugar, starch
and gluten progressively dropped, whereas the content of flavonoid, fiber and amylose
increased. The great number of hydroxyl groups existing in fiber structure allow more
interactions with water through hydrogen bonding, resulting in a better water absorption
by gluten; additionally, such interactions change the way of water distribution inside the
dough and how the gluten networks form [75]. Meanwhile, with a lower gluten content in
the dough, it usually takes a longer time to build the gluten network, and the starch–gluten
interactions are less stable [76].

Grape seed power (GSP) has been used in some food products because it may have
health advantages. The hardness, adhesiveness and chewiness of noodles increased initially
with an increase in the GSP concentration and then decreased; recovery and adhesiveness
essentially remained the same, and elasticity declined. It is reported that moderate amounts
(1%) of GSP significantly improved the quality of raw noodles [77], which indicated that
the addition of GSP broke the disulfide bonds in gluten proteins, since the amount of
free sulfhydryl groups in gluten proteins increased, and the hydrophobic region on the
surface shrank. However, both hydrogen bonding and hydrophobic interactions helped
the gluten proteins aggregate. Meanwhile, little amounts of GSP active constituents may
interact with the proteins in gluten to create a tighter network structure (Figure 5), raising
the level of quality of the noodles. On the contrary, an excessive GSP addition will lead to
more sulfhydryl groups and less disulfide bonds in the structure of gluten, hindering the
establishment of the gluten network and favoring its destruction [1].
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Potato pulp addition may affect the processing properties and gluten structure of
wheat dough. The development time, water absorption, storage modulus (G′) and loss
modulus (G′ ′) of dough were negatively impacted by the amount of potato pulp. The
stability and extensional characteristics of the dough decreased in the presence of a high
potato pulp content (≥30%), which also influenced the dough’s processing properties.
The gelatinization characteristics also revealed that wheat flour containing potato pulp
had decreased viscosity. Meanwhile, the content of free SH in wheat flour containing
30–50% potato pulp increased, and the content of S-S decreased, which significantly de-
creased the number of β-sheet and α-helix structures in the dough [78]. This occurred
most likely because the dietary fiber in potato pulp may prevent the swelling of the starch
granules, which would reduce friction and lessen the viscosity. The disulfide bond content
and the β-turn content are connected, but high potato pulp levels will reduce the gluten
content and the disulfide bond content [79].

The addition of dried okara powder has been reported to improve the cooking loss,
tensile property, elasticity and sensory acceptability of noodles. It was shown that with the
addition of optimal amounts of wheat gluten flour (WGF) (2.5–4.7%) and unripe banana
flour (UBF) (22–22.5%), white salted noodles with excellent sensory and physicochemical
properties could be prepared. The thermal stability, peak viscosity and final viscosity of
reconstituted flour can be enhanced by an increased amount of UBF along with WGF, thus
improving the overall cooking quality of noodles [80]. According to Sun et al. [3], adding
Chinese yam powder (CYP) to wheat flour could influence the general characteristics of
dough and noodles. It might promote the tight association of starch particles with gluten
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protein, leading to a smooth surface. Besides, the addition of 20% CYP increased the
product’s hardness, mouthfeel and springiness. The addition of potato flour increased
the adhesiveness, hardness, springiness and water absorption of noodles. However, this
process destroyed the gluten network structure of the dough, decreased its elastic and
viscous modulus, and increased the rake of the noodles when they broke [81]. In addition
to Shiitake mushroom powder [82], dragon fruit peel powder [83], oats [84] and buck-
wheat [85] could affect the structure of starch or protein in noodles and improve their
quality. Considering the possibility of improving the quality of noodles with powdered
ingredients, the specific ingredients that may affect the protein structure in dough should
be identified, and their mechanisms of action should be uncovered in detail.

4. Conclusions

Many efforts have been made to improve the quality of noodles, not only fresh and
dried noodles, but also frozen noodles. Wheat proteins, especially glutenin and gliadin, are
the most important factors that affect the physiochemical, sensory and stability properties
of noodles. In this review, we described the classification and essential structure of wheat
protein. Moreover, the interactions between food components such as minerals, carbo-
hydrates, enzymes and edible powder from plant sources were summarized. Hydrogen
bonds, hydrophobic interactions and disulfide bonds are responsible for the interaction
of wheat protein with food components. Although the literature on gluten proteins is
already extensive, it is still necessary to determine the structural features of protein through
proteomics or X-ray diffraction during dough processing. In addition, multiple factors may
contribute to the gluten network, and it is necessary to construct effective models to guide
the improvement of noodle quality. This review highlights the recent developments in this
field, which is beneficial for the applications of wheat protein in the future. Further studies
are encouraged to determine the effects of food components with different particle sizes or
proteins with various molecular weights on the nutritional value and quality of noodles.
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