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Abstract: Ready-to-eat (RTE) chicken is a popular food in China, but its lack of food safety due
to bacterial contamination remains a concern, and the dynamic changes of microbial association
networks during storage are not fully understood. This study investigated the impact of storage time
and temperature on bacterial compositions and microbial association networks in RTE chicken using
16S rDNA high-throughput sequencing. The results show that the predominant phyla present in all
samples were Proteobacteria and Firmicutes, and the most abundant genera were Weissella, Pseudomonas
and Proteus. Increased storage time and temperature decreased the richness and diversity of the
microorganisms of the bacterial communities. Higher storage temperatures impacted the bacterial
community composition more significantly. Microbial interaction analyses showed 22 positive and
6 negative interactions at 4 ◦C, 30 positive and 12 negative interactions at 8 ◦C and 44 positive and
45 negative interactions at 22 ◦C, indicating an increase in the complexity of interaction networks with
an increase in the storage temperature. Enterobacter dominated the interactions during storage at 4 and
22 ◦C, and Pseudomonas did so at 22 ◦C. Moreover, interactions between pathogenic and/or spoilage
bacteria, such as those between Pseudomonas fragi and Weissella viridescens, Enterobacter unclassified and
Proteus unclassified, or those between Enterobacteriaceae unclassified and W.viridescens, were observed.
This study provides insight into the process involved in RTE meat spoilage and can aid in improving
the quality and safety of RTE meat products to reduce outbreaks of foodborne illness.

Keywords: ready-to-eat chicken meat; bacterial community; microbial association networks; high-
throughput sequencing; 16S rDNA

1. Introduction

Chicken consumption has increased rapidly in China, and the annual consumption
amount has reached 15.46 million tons, representing an 11.21% increase from
2019 [1,2]. Ready-to-eat (RTE) meat products are pre-cooked meat that can be consumed
either directly or with minimal preparation, and RTE chicken has become popular not only
due to consumers’ convenience, but also because of the high levels of protein, iron, vitamins,
selenium and niacin, as well as reduced fat and cholesterol [3]. RTE meat products are
susceptible to microbial contamination, including spoilage and pathogenic microorganisms
captured during processing, storage and transportation [4]. Although the viable counts
of microorganisms during the storage of RTE chicken products have been extensively re-
viewed, few studies have focused on the dynamic changes in the microbial associations that
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accompany spoilage-associated bacteria and potential pathogens under different storage
times and temperatures in RTE chicken [5–8].

Traditional studies on bacterial diversity in foods have relied on cultivation methods,
whereas only about 1% of microorganisms in the natural environment can be cultivated
through pure culture methods [9]. Culture-independent technologies that involve molec-
ular biology approaches, such as gradient gel electrophoresis (DGGE) and polymerase
chain reaction (PCR), have been applied to the evaluation of microbial diversity in a variety
of environments, including foods, avoiding the limitations of traditional microbial anal-
yses [10–13]. These measurement methods have been expanded using high-throughput
sequencing (HTS) to analyze microbial community structures [9]. In addition, HTS tech-
niques have indicated that microbial interactions during food storage are critical in shaping
the microbiota. Analyses of microbial association networks can function to uncover pre-
viously unexplored interactions between microbial taxa and identify species that act as
hubs, i.e., they have many interactions with other species [14]. Numerous bioinformatics
methods are in use that can reveal microbial association networks, including Co-occurrence
Network Inference (CoNet) [15], Sparse Correlations for Compositional data (SparCC) [16]
and Sparse Inverse Covariance Estimation for Ecological Association Inference (SPIEC-
EASI), which has been recently been utilized for the American Gut Project [17]. SparCC is
considered valuable since it corrects for spurious correlations to identify true associations
missed by Pearson correlations and is a robust method to determine compositional effects
that are influenced by the correlation diversity and sparsity in human microbiome data
sets [18]. In addition, SparCC could detect the largest number of significant associations
that were either positive (co-present) or negative (mutually excluded), while SPIEC-EASI
generated the lowest number of associations [19]. The relative strengths and weaknesses
between CoNet and SparCC have been assessed using synthetic data, and SparCC sur-
passed CoNet in terms of accuracy, sensitivity and precision [20]. However, the application
of microbial association networks to the study of food microbial communities is poorly
exploited. Exploring the correlation between beneficial and spoilage-associated/potentially
pathogenic bacteria will provide useful information for improvement of food quality and
safety, as well as new approaches for identifying hub species in food microbial communi-
ties [19]. In the current study, we applied HTS to provide a general background of bacterial
communities in RTE chicken storage at different temperatures and times. Meanwhile, we
inferred microbial association networks using SparCC in order to investigate the structure
and properties of a variety of bacterial association networks in RTE chicken, and to further
explore the potential microbial risks during storage.

2. Materials and Methods
2.1. Sample Collection and Processing

In this study, the RTE chicken samples were purchased from a local supermarket,
where the whole chicken was cooked by heating in boiling water for 15–20 min with ginger,
scallion and garlic, then sliced and packaged in a polypropylene (PP) plastic box, stored
under normal atmospheric conditions in the counter and sold as RTE chicken. Samples
were transported to the laboratory within 1 h in an insulated box containing an ice pack
and then stored separately at refrigerated temperatures representing optimal (4 ◦C) and
suboptimal (8 ◦C) conditions, as well as at room temperature (22 ◦C). Five samples were
analyzed for bacterial communities in RTE chicken on Day 0 (Group O). The others were
analyzed on the 1st, 2nd, 3rd, 4th and 5th days at 4, 8 and 22 ◦C, which were named L1–L5
(Group L), M1–M5 (Group M) and H1–H5 (Group H), referring to the 4, 8 and 22 ◦C storage
on Days 1–5, respectively. For each analysis, eight parallel samples were used.

2.2. DNA Extraction

The samples were individually added to sterile stomacher bags containing 225 mL
of buffered peptone water (Beckton Dickinson, Franklin Lakes, NJ, USA) and kneaded
gently for 2 min. Then, 40 mL of the mixture was centrifuged at 4000× g for 10 min and
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the supernatant was again centrifuged at 12,000× g for 5 min. The DNA from different
samples was extracted using the TIANamp Stool DNA Kit (Tiangen Biotech, Beijing, China)
according to the manufacturer’s instructions. The DNA concentration was measured using
a Nanodrop One spectrophotometer (Thermo Fisher, Pittsburg, PA, USA), and the DNA
quality was confirmed using 1% agarose gel electrophoresis. The total DNA was stored at
−20 ◦C until PCR analysis.

2.3. PCR Amplification and Sequencing

The V3–V4 region of the bacterial small-subunit 16S rRNA gene was amplified with
slightly modified versions of primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) [21]. PCR amplification was performed in a total
volume of 25 µL of the reaction mixture, containing 25 ng of template DNA, 12.5 µL of
PCR Premix, 2.5 µL of each primer and PCR-grade water to adjust the volume. The PCR
conditions to amplify 16 S rDNA consisted of an initial denaturation at 98 ◦C for 30 s,
followed by 32 cycles of 98 ◦C for 10 s, 54 ◦C for 30 s, 72 ◦C for 45 s and a final extension at
72 ◦C for 10 min. The PCR amplicons were confirmed using 2% agarose gel electrophoresis,
gel-purified using an AMPure XT kit (Beckman Coulter Genomics, Danvers, MA, USA)
and quantified using a Qubit instrument (Invitrogen, Carlsbad, CA, USA). Amplicon pools
were prepared for sequencing, and the size and quantity of the amplicon library were
assessed with an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and the Library
Quantification Kit for Illumina (Kapa Biosciences, Woburn, MA, USA), respectively.

2.4. Sequence Data Analysis

The samples were sequenced on an Illumina NovaSeq platform using a 2 × 250 cycle
kit provided by LC-Biotech, Hangzhou, China, according to the manufacturer’s recom-
mendations. Paired-end reads were assigned to samples based on their unique barcode,
truncated by cutting off the barcode and primer sequence and then merged using FLASH
(Version 1.2.8, Macromedia, San Francisco, CA, USA) to an average length of 426bp [22].
The sequencing quality was assessed with fastqc (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed on 20 September 2020). Quality filtering on the raw reads
was performed under specific filtering conditions to obtain high-quality clean tags using
fqtrim (Version 0.94, Johns Hopkins University, Baltimore, MD, USA). Chimeric sequences
were filtered using Vsearch software (Version 2.3.4, https://github.com/torognes/vsearch,
accessed on 20 September 2020). The Operational Taxonomic Units (OTU) table, which
selected reads with similarities of 100%, was obtained after dereplication using DADA2 [23].
The sequence data obtained in this study were deposited in NCBI BioProject PRJNA744008.

The alpha and beta diversity were calculated using random normalization to the same
sequences. Alpha diversity was applied in analyzing the complexity of species diversity
for a sample through five indices, including Chao1, Observed species, Goods coverage,
Shannon and Simpson, calculated using QIIME2 (https://qiime2.org/, accessed on 20
September 2020) [24]. Beta diversity, which refers to species differences between different
environmental communities, included principal coordinates analysis (PCoA) and clustering
analysis (UPGMA), calculated with QIIME2. Graphs were drawn using the R package
(Version 3.4.4, http://www.r-project.org/, accessed on 20 September 2020) [25]. BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 September 2020) was used for
sequence alignments, and the feature sequences were annotated with the SILVA database
(http://www.arb-silva.de/, accessed on 20 September 2020) for each representative se-
quence. Redundancy analysis (RDA), heatmaps, cluster and correlation analyses were
performed using OmicStudio (https://www.omicstudio.cn/tool, accessed on 5 May 2021).
Genera with relative abundances above 0.01% were selected to construct the co-occurrence
network. To investigate co-associations among bacterial taxa, we used the network infer-
ence tool SparCC, which is based on an iterative approximation approach and uses log-ratio
transformed data to infer the correlations between components. SparCC’s correlation was
estimated using the psych package in R. Robust correlations were defined as those with
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the Pearson correlation coefficient threshold values of >0.2 and p < 0.05 [26]. The network
analysis was conducted using the igraph (1.2.6) package in R (http://igraph.org/, accessed
on 5 May 2021 ). The pathogens were classified as previously reported and included the
list of human pathogens and the German Technical Rules for Biological Agents [27,28].

2.5. Statistical Analysis

The SPSS 20.0 software package (SPSS, Chicago, IL, USA) was used for statistical
analysis. The data are shown as the mean ± standard deviation (S.D.) for every group. The
Kruskal-Wallis test was used for diversity differential analysis. ANOSIM was performed
based on the Bray-Curtis dissimilarity distance matrices to identify differences in the
microbial communities among different groups. The significance level was set at p <0.05.

3. Results
3.1. Characteristics of OTUs in RTE Chicken Samples during Storage

The sequencing resulted in 64,947 average valid sequence reads in each sample, fewer
than the 77,645 raw sequences. Singleton reads were not considered for subsequent analy-
ses. A total of 7,272,857 high-quality effective sequences with a mean of 58,182 sequences
per sample clustered into 5122 OTUs. The Good’s coverage estimator of the completeness of
sampling was at least 0.999, indicating that the sequencing reads covered almost all the bac-
terial populations present in the samples [29,30] (Table 1). The minimum sample sequence
number of 38,427 was sufficient to reflect the diversity of the bacterial species in each sample,
and the sequencing amount met the requirements of subsequent bioinformatics analysis.

Table 1. Diversity indices of RTE meat samples †.

Sample Observed OTU Shannon Simpson Chao1 Good’s Coverage

O 116 ± 61 2.12 ± 1.45 0.49 ± 0.32 117.47 ± 61.65 0.9998
L1 365 ± 62 5.41 ± 0.76 0.90 ± 0.07 373.24 ± 60.49 0.9996
L2 334 ± 95 4.62 ± 1.75 0.78 ± 0.24 337.67 ± 94.39 0.9997
L3 248 ± 68 3.99 ± 1.35 0.78 ± 0.13 250.68 ± 68.57 0.9998
L4 208 ± 66 3.94 ± 0.77 0.80 ± 0.10 209.78 ± 65.85 0.9999
L5 179 ± 51 4.37 ± 0.78 0.88 ± 0.06 180.21 ± 50.95 0.9999
M1 292 ± 85 4.32 ± 1.22 0.79 ± 0.12 296.57 ± 84.04 0.9997
M2 242 ± 80 4.23 ± 1.19 0.81 ± 0.15 245.80 ± 78.77 0.9998
M3 253 ± 30 5.54 ± 0.33 0.95 ± 0.02 254.55 ± 30.50 0.9999
M4 225 ± 29 5.04 ± 0.61 0.91 ± 0.05 227.37 ± 29.61 0.9999
M5 237 ± 29 5.18 ± 0.57 0.92 ± 0.03 238.79 ± 29.06 0.9999
H1 289 ± 43 6.44 ± 0.14 0.97 ± 0.01 291.01 ± 43.59 0.9999
H2 235 ± 39 4.92 ± 0.36 0.90 ± 0.02 236.52 ± 38.55 0.9999
H3 228 ± 35 4.68 ± 0.46 0.90 ± 0.02 228.64 ± 34.72 0.9999
H4 177 ± 26 4.22 ± 0.23 0.89 ± 0.03 177.89 ± 25.79 0.9999
H5 189 ± 28 4.23 ± 0.37 0.89 ± 0.02 189.92 ± 27.73 0.9999

† Data are expressed as the mean ± standard deviation of the same samples. Samples collected from 4, 8 and
22 ◦C are named L1 to L5, M1 to M5 and H1 to H5, respectively, and the numbers (1 to 5) represent the storage
time (d).

The alpha diversity indices (Observed OTU, Shannon, Simpson and Chao1) were used
to measure and compare the microbial diversities in the samples during storage. As shown
in Table 1, with the increasing storage time and temperature, the Observed OTU and Chao1
indices generally decreased, indicating that the richness and diversities of microorganisms
in the RTE chicken were decreased. As shown in Figure 1A, 2617, 2302 and 2264 OTUs were
obtained from the samples stored at 4, 8 and 22 ◦C, respectively, among which 686 OTUs
were observed to be common in all samples. In addition, 404, 1689, 1818, 1818, 1489 and
1554 were obtained from samples collected on Days 0–5, among which 98 OTUs were
observed to be common in all samples. Interestingly, among the 98 common OTUs, Serratia
proteamaculans (OTU ID 34588d48b1f866ee34ee3225e78009e8), which could be spoilage
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bacteria and potentially pathogenic bacteria, was present in all samples (mean of 2.41%)
and deserves further attention.
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Figure 1. Venn diagram (A) and UpSet plot (B) based on OTUs of RTE chicken meat bacteria. L, M
and H represent samples collected at 4, 8 and 22 ◦C, respectively. D0–D5 represent samples collected
from Day 0 to Day 5.

3.2. Taxonomic Composition of Bacterial Community

The 16S rDNA gene sequencing showed that the microbial communities of all samples
covered 18 phyla, 42 classes, 86 orders, 165 families, 387 genera and 1374 species. As shown
in Figure 2A, Firmicutes was the most dominant phylum (mean of 88.66%) on RTE chicken
samples collected from the supermarket (Group O), followed by Proteobacteria (mean of
11.91%) at the phylum level. When stored at 4 ◦C (Group L) and 8 ◦C (Group M), the
relative abundance of Proteobacteria gradually increased with the extension of storage time,
achieving maximum abundances of 81.74% and 97.45% on Day 5, respectively. When stored
at 22 ◦C (Group H), the relative abundance of Proteobacteria rapidly increased to 90.38% on
the first day, but decreased to 83.23% on Day 5. During storage, the relative abundance of
Bacteroidetes gradually increased to 20.19%, becoming another dominant phylum.

At the genus level, the bacterial communities showed a dramatic increase in complexity
with increases in storage temperature and time (Figure 2B). On Day 0, Weissella(87.02%) was
the most predominant. At 4 ◦C, the relative abundance of Weissella gradually decreased to
16.62% on Day 5, and the relative abundance of Pseudomonas increased to 50.70%, becoming
the dominant genus. At 8 ◦C, the relative abundance of Weissella decreased to less than
1% on Day 5, and Serratia, Pseudomonas and Acinetobacter increased to 24.81%, 17.02% and
13.48%, respectively, becoming the dominant genera. At 22 ◦C, the relative abundance of
Weissella decreased rapidly to 1.64% on Day 1, and Proteus and Myroides grew to be the
dominant genera, with relative abundances of 46.19% and 15.85% on Day 5, respectively.
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(B) genus and (C) species levels in the RTE chicken meat samples during storage. The multi-colored
stack bar graphs display the relative abundances of bacteria in each sample.



Foods 2022, 11, 3733 7 of 16

The bacterial species’ richness for samples stored at 4 and 8 ◦C was generally higher
than that at 22 ◦C (Figure 2C). W. viridescens, the dominant species on Day 0, with an
average relative abundance of 58.27%, decreased to 14.53% on Day 5, and P. fragi (17.71%)
became the most predominant species. At 8 ◦C, the relative abundance of W. viridescens
and Weissella minor gradually decreased, and E. unclassified and S. proteamaculans increased
to 14.12% and 15.31%, respectively, on Day 5. The three most abundant species, including
P. unclassified, Myroides unclassified and Providencia unclassified, showed increasing trends at
22 ◦C, reaching 42.06%, 12.54% and 6.94%, respectively, on Day 5.

3.3. Microbiota on RTE Chicken Meat Varies over Time during Storage at Different Temperatures

Bacterial communities were further compared using PCoA, which showed that an
examination of the score plots in the area defined by the first two principal components
accounted for 66.92 and 15.1% of the total variance, and significant differences were ob-
served among all groups for PCoA (p = 0.001). The samples stored at 4 and 8 ◦C partially
overlapped, indicating a similarity in their bacterial compositions. The analysis showed
discrimination between the samples at 22 ◦C and those at the other two temperatures, with
no overlap, indicating that the higher storage temperature had a significant impact on the
bacterial community composition (Figure 3A,B).
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analysis in the RTE chicken meat samples based on (C) storage time and (D) temperature at the genus
level. (E) Redundancy analysis (RDA) of correlations between environmental factors and bacterial
community composition.

In order to reveal the effects of storage time and temperature on the composition and
similarity of bacterial communities, sample clustering was performed using Bray-Curtis
distances. In general, the products were clearly clustered according to storage time and tem-
perature. As shown in Figure 3C, the samples from the first and second days were distant
from those of the last three days, and samples stored at 4 and 8 ◦C were clustered together,
while those at 22 ◦C were clearly separated (Figure 3D and Supplementary Figure S1). The
RDA analysis had concordant results, showing that storage temperature and time had
strong and positive effects on the distribution of the bacterial community of the RTE chicken
meat samples (Figure 3E).

We used heat maps to visually define the groups that contributed to the differences in
the bacterial community composition. The samples at 22 ◦C displayed relative abundances
of Klebsiella, Enterobacter, Citrobacter, Pluralibacter, Morganella, Arcobacter, Myroides, Proteus,
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Providencia and Stenotrophomonas, which exceeded the levels for the samples at 4 and 8 ◦C.
Meanwhile, the samples stored at 4 and 8 ◦C displayed similar heat map profiles. As for
the groups with different storage times, there was a significant difference between Day 0
and the other days. The relative abundances of Pseudomonas, Psychrobacter, Acinetobacter,
Morganella, Shewanella, Erwinia, etc. on Day 0 were significantly lower than those on the
other days (Supplementary Figure S2).

3.4. Potentially Pathogenic and Spoilage-Associated Species

Bacterial pathogens, including P. unclassified, M. unclassified, E. unclassified, Acinetobacter
sp., Psychrobacter sp., S. proteamaculans, P. unclassified, Pantoea agglomerans and Pseudomonas
sp., were identified in our samples, and are associated with urinary tract infections, bac-
teremia, pneumonia, diarrhea, septicemia and meningitis (Table 2). As shown in Figure 4A,
the total relative abundance of potentially pathogenic species increased over time at all
storage temperatures, and higher total relative abundances were observed at 22 ◦C. En-
terobacteriaceae, Acinetobacter sp. and Psychrobacter sp. were dominant pathogenic species
at 4 and 8 ◦C, while P. unclassified and M. unclassified became dominant at 22 ◦C. Notably,
familiar foodborne pathogen, such as Salmonella, Escherichia coli and Listeria, were almost
undetectable (accounting for less than 0.1% of the total abundance), indicating that further
validation is required by using targeted qPCR or a traditional culture method.

Table 2. Cardinal symptoms by potential pathogens and spoilage-associated bacteria.

Species CardinalSymptom/CorruptionPhenomenon Reference

Potential pathogens

Proteus unclassified Urinary tract infections, gastroenteritis and
wound infections [31,32]

Myroides unclassified
Urinary tract infections, skin and soft tissue

infections, bacteremia, pneumonia and
intra-abdominal infections

[33]

Enterobacteriaceae
Urinary tract infections, septicemia,

pneumonia, peritonitis, meningitis and
intra-abdominal infections

[34,35]

Acinetobacter sp.
Urinary tract infections, skin infections,
bacteremia, pneumonia, meningitis and

endocarditis
[36,37]

Psychrobacter sp.
Conjunctivitis, endocarditis, peritonitis,

bacteremia, infant meningitis, arthritis and
surgical wound infections

[38]

Serratia proteamaculans Pneumonia [39]
Providencia unclassified Diarrhea [40]

Pantoea agglomerans Septicemia [41]
Pseudomonas sp. Bacteraemia [42]

Spoilage-associated
bacteria

Weissella viridescens Produces peroxide which reacts with meat
pigment and forms a green-colored [43,44]

Pseudomonas fragi slime formation [45]

Enterobacteriaceae Forms biofilm and produces gas; putrescine
and cadaverine [46]

Acinetobacter sp. Produces some volatile spoilage compounds
and sulfurous, rancid and fishy off-odors [47]

Psychrobacter sp. Produces some volatile spoilage compounds
and musty off-odors [38,48]

Serratia proteamaculans Produces trimethylamine, putrescine,
cadaverine and off-odors [49]
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Spoilage-associated species, including W. viridescens, Pseudomonas sp., Enterobacteri-
aceae, Acinetobacter sp., Psychrobactersp. and S. proteamaculans, were also identified, which
are responsible for the development of off-odors, volatile spoilage compounds, putrescine
and cadaverine, thereby making it unacceptable for human consumption (Table 2). As
shown in Figure 4B, the total relative abundances of spoilage-associated species kept
relatively stable when stored at 4 and 8 ◦C, while they decreased significantly at 22 ◦C.
W. viridescens was the most dominant species at 4 ◦C, while it decreased rapidly at 8 ◦C.
E. unclassified, S. proteamaculans and Psychrobacter sp. gradually increased during storage
at 8 ◦C, becoming the dominant spoilage-associated species. At 22 ◦C, the total relative
abundances of spoilage-associated species were much lower than those at 4 and 8 ◦C.
W. viridescens was almost unrecognized, and Acinetobacter sp. and Psychrobacter sp. became
the dominant spoilage bacteria.

3.5. Microbial Association Networks during Storage

In microbial association networks, positive interactions might represent cooperation
or complementation among species, while negative interactions might signify competition,
predation or amensalism [50,51]. In this study, networks at the genus and species level
were constructed (Figure 5). At the genus level, 22 positive and 6 negative interactions
at 4 ◦C, 30 positive and 12 negative interactions at 8 ◦C and 44 positive and 45 negative
interactions at 22 ◦C were observed (Figure 5A–C). At the species level, 49 positive and
36 negative interactions, 80 positive and 39 negative interactions and 73 positive and
69 negative interactions were identified at 4, 8 and 22 ◦C, respectively (Figure 5D,E). In
general, potential interactions became more complex as the storage temperature increased.
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As shown in Figure 5 and Table 3, Enterobacter was the core genus in the microbial
association networks at both 4 and 22 ◦C, and Pseudomonas was observed as the core
genus at 8 ◦C. When stored at 4 and 8 ◦C, there was a strong negative correlation between
Pseudomonas and Weissella (r = −0.702 and r =−0.678, respectively). At 22 ◦C, Enterobacter
was negatively correlated with Proteus (r = −0.578). The results are consistent with the
changes in the relative abundances of Pseudomonas, Weissella and Enterobacter during storage
in Figure 2B.

At the species level, P. fragi, W. viridescens and P. unclassified were the main bacte-
ria that constituted the microbial association networks at 4, 8 and 22 ◦C, respectively
(Supplementary Table S1). The highest positive correlation was observed between W. minor
and W. viridescens among the networks at 4 ◦C (r = 0.653) and 8 ◦C (r = 0.722). Consistent
with the results in Figure 2C, P. fragi was negatively correlated with W. minor at 4 ◦C
(r = −0.622), and S. proteamaculans was negatively correlated with W. viridescens at 8 ◦C
(r = −0.526). At 22 ◦C, P. unclassified and P. unclassified had a positive correlation (r = 483),
while P. unclassified and Klebsiella aerogenes had a negative correlation (r = −0.578).
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Table 3. Microbial interactions detected by SparCC in the bacterial communities of chicken meat
samples stored at 4, 8 and 22 ◦C.

Temperature (◦C) Interaction Pearson Correlation † Relation

4

Enterobacter↔ Pantoea 0.583 Copresence
Klebsiella↔ Pantoea 0.524 Copresence

Aeromonas↔ Pantoea 0.515 Copresence
Enterobacter↔ Klebsiella 0.498 Copresence

Aeromonas↔ Enterobacter 0.485 Copresence
Aeromonas↔ Klebsiella 0.464 Copresence
Acinetobacter↔ Pantoea 0.420 Copresence
Pseudomonas↔Weissella −0.702 Mutual exclusion

8

Enterobacteriaceae_unclassified↔ Serratia 0.740 Copresence
Pseudomonas↔ Serratia 0.469 Copresence

Enterobacteriaceae_unclassified↔Weissella −0.510 Mutual exclusion
Serratia↔Weissella −0.563 Mutual exclusion

Pseudomonas↔Weissella −0.677 Mutual exclusion

22

Enterobacter↔ Klebsiella 0.664 Copresence
Klebsiella↔ Pluralibacter 0.556 Copresence
Enterobacter↔ Pantoea 0.548 Copresence

Klebsiella↔ Pantoea 0.539 Copresence
Enterobacter↔ Pluralibacter 0.538 Copresence

Enterobacter↔ Serratia 0.479 Copresence
Proteus↔ Providencia 0.462 Copresence
Citrobacter↔ Klebsiella 0.457 Copresence

Klebsiella↔ Serratia 0.455 Copresence
Pantoea↔ Pluralibacter 0.439 Copresence

Pantoea↔ Serratia 0.438 Copresence
Proteus↔ Pseudomonas 0.421 Copresence

Citrobacter↔ Enterobacter 0.403 Copresence
Pantoea↔ Pseudomonas −0.425 Mutual exclusion

Klebsiella↔ Pseudomonas −0.444 Mutual exclusion
Proteus↔ Serratia −0.445 Mutual exclusion

Enterobacter↔ Pseudomonas −0.445 Mutual exclusion
Pantoea↔ Providencia −0.467 Mutual exclusion

Klebsiella↔ Providencia −0.476 Mutual exclusion
Pluralibacter↔ Proteus −0.489 Mutual exclusion

Acinetobacter↔ Providencia −0.502 Mutual exclusion
Enterobacter↔ Providencia −0.503 Mutual exclusion

Pantoea↔ Proteus −0.530 Mutual exclusion
Klebsiella↔ Proteus −0.572 Mutual exclusion

Enterobacter↔ Proteus −0.578 Mutual exclusion
† The Pearson correlation threshold values in the three constructed networks were >0.4 or <−0.4.

4. Discussion

Initial indigenous microbiota are derived from raw materials, ingredients and addi-
tives, as well as from the external environment, including roasting, packaging, storage
and operators, accounting for high microbial diversity at the initial storage times [52,53].
Dynamic changes in bacterial communities significantly affected the quality and safety
of RTE meat. The core microbiota in our samples were dominated by Proteobacteria and
Firmicutes, which is in agreement with the previously published study [54]. These phyla
were not significantly different in the 4 and 8 ◦C samples, indicating that Proteobacteria
and Firmicutes might be the primary phyla responsible for meat spoilage at cold storage
temperatures [55]. Pseudomonas, which belongs to Proteobacteria, is often sourced from the
environment, especially the meat processing plant. Some Pseudomonas species are recog-
nized as spoilage-associated species, since they have the ability to produce pectinolytic
enzymes that cause meat spoilage [56]. In this study, Pseudomonas generally increased in
relative abundance during storage at 4 and 8 ◦C, indicating this genus may be a driving
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force for the spoilage of RTE chicken at low temperatures. Furthermore, in the early stages
of low temperature storage, the relative abundance of Weissella was elevated and gradually
decreased with time, indicating that this bacterium may be at a competitive disadvantage
compared to the dominant genera that drive spoilage of RTE chicken meat [57]. Proteus was
the dominant genera at 22 ◦C, which differed from those at 4 and 8 ◦C. However, Proteus
sp. is sensitive to pasteurization and common disinfectants, weakly resistant to heat and
unlikely to bear viable Proteus cells in meat if correct cooking steps have been taken. Thus,
Proteus in RTE chicken can originate from packing, transportation or storage [58].

Interactions among microorganisms are important in any food in which a mixed flora
develops during storage [59] and microbial interaction networks can be used to predict hub
species and potential species interactions in these instances [60]. Genus-level analyses are
associated with the highest connectivity, and genera are typically considered the keystone
taxa in a network [61]. In our study, Pseudomonas dominated in interactions at 4 and 8 ◦C,
while Proteus dominated at 22 ◦C (Figure 5). Pseudomonas also displayed negative effects
on Enterobacter, Weissella, Klebsiella and Aeromonas. It has been shown that Pseudomonas
could inhibit some spoilage-associated and pathogenic bacteria via siderophore-mediated
competition for iron or competition for specific nutrients [62,63]. In addition, Pseudomonas
inhibited the growth of foodborne pathogens via cell-contact-dependent competition es-
tablished in the food matrix, which can be used as a non-probiotic antagonistic bacterium
to reduce the risk of foodborne pathogens [64]. We found that Proteus had 13 negative
interactions with Klebsiella, Enterobacter, Pantoea, Serratia, etc. Klebsiella and Enterobacter
belong to potentially pathogenic bacteria. Serratia and Pantoea are primary spoilage bac-
teria in meat and meat products during aerobic storage [65,66]. Therefore, Proteus can be
used as a basis for biomarker research to find harmful bacteria [67]. P. unclassified was
negatively correlated with 23 species and consistent with these observations. In addition,
in low-temperature conditions, W.viridescens had negative interactions with E. unclassified,
Pseudomonas plecoglossicida, Serratia proteamaculans, Psychrobacter sp. and other potential
pathogens. Although W.viridescens is often regarded as the dominant spoilage bacterium, it
displays a wide range of antimicrobial activities against potential pathogens through the
production of antimicrobial compounds, including Bacillus cereus, Clostridium botulinum,
Escherichia coli and Listeria monocytogenes [9,68,69]. This could be advantageous in extending
the microbiological safety of these products. Microbial interactions are not only due to
the competition fornutrients, but also to cell-to-cell communication (quorum sensing) and
metabolism (creating an unfavorable environment), which may affect microbial behav-
ior [70]. Using microbial interactions to inhibit the growth of harmful bacteria can be a
novel strategy to improve food quality and safety.

Taxonomic identification is a problem to be solved when studying food microbiota us-
ing HTS. The classical V3–V4 region of the16S rDNA (usually family- or genus-level) lacks
accurate taxonomic assignment at the intra-species level. As shown in Figure 4, Enterobacte-
riaceae was ubiquitously present in all samples. Members of Enterobacteriaceae are widely
distributed and include a wide range of important enteric foodborne pathogens, such as
Shigella sp., Salmonella sp. and Escherichia coli, which represent a strong threat to public
health and food safety [71,72]. In the current study, we only identified Enterobacter cancero-
genus (mean of 0.76%) among the top 30 species in relative abundance, and others were
included in Enterobacteriaceae unclassified (mean of 3.12%) and Enterobacter unclassified (mean
of 0.72%). This is due to the close sequence identities of Enterobacteriaceae, which makes the
species-level resolution of Enterobacteriaceae challenging with 16S rRNA amplicon sequenc-
ing [73]. Therefore, more studies with whole-genome sequencing, shotgun sequencing of
metagenomes and other molecular biology tools are needed to provide greater taxonomic
and functional information at the species level [74]. Additionally, Serratia, Enterobacter,
Klebsiella, Rahnella, etc. could be found ubiquitously in samples, and they were reported to
contribute significantly to the spoilage flora on meat and meat products. Enterobacter and
Klebsiella decreased and almost disappeared during storage, which suggested that they did
not play a crucial role in meat spoilage [53].
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Further investigation of bacterial interactions during storage could provide new strate-
gies for reducing and inhibiting the growth of potential pathogens and spoilage-associated
bacteria. Several models for this process have been developed, including the Jameson-
effect [75] and Lotka-Volterra [76] models, which predict interactions between potential
pathogens and spoilage-associated bacteria. Nevertheless, at present, the research on food
bacterial communities lacks large time-series studies, and the nature of data obtained from
HTS for foods (which are relative abundances rather than absolute quantitative values) is
not completely adequate for evaluating interactions and developing an interaction model
under different storage conditions in microbial communities. Therefore, further work
should be performed to obtain quantitative changes in bacteria during the storage of RTE
meat products and to develop more realistic interaction predictive models.

5. Conclusions

This study revealed that different storage times and temperatures affected the com-
position of bacterial communities and the microbial association network. Higher storage
temperatures impacted the bacterial community composition and microbial association
network more significantly. The relative abundance of potentially pathogenic bacteria in-
creased during storage, representing a significant threat to human health. The core bacteria
which dominated the interactions during storage, such as Pseudomonas and Proteus, can be
considered the critical control bacteria for the microbiological quality of RTE chicken. The
interactions detected in this study primarily reflect co-occurrence and mutual exclusion
patterns at different storage temperatures, although some cases suggested true positive
(commensalism, mutualism) or negative (competition, amensalism) interactions. These
interpretations should be confirmed in other independent experiments. The study of bacte-
rial interactions during storage and the identification of the key bacteria that cause food
spoilage and foodborne illness will contribute to the development and implementation of
effective control strategies to ensure food safety.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods11223733/s1: Figure S1: Cluster analysis in RTE chicken meat samples based on (A,C)
storage time and (B,D) temperature at the (A,B) phylum and (C,D) species level, Figure S2: Heatmap
analysis in RTE chicken meat samples based on (A–C) storage temperature and (D–F) time at the
(A,D) phylum, (B,E) genus and (C,F) species level, Table S1: Species-level microbial interactions
detected by SparCC in the bacterial communities of chicken meat samples stored at 4, 8 and 22 ◦C.
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