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Abstract: Aloe vera has been proven to have various medicinal properties, including anti-inflammatory
and anti-obesity functions. However, the effects of Aloe vera-fermented beverages (AFB) on obesity
and its complications are still not clear. In this study, HepG2 cells in high-fat environment and high-fat
diet (HFD) mice were used to investigate the potential obesity-preventing function of AFB. We found
that AFB intervention decreased the amount of lipid droplets of HepG2 cells, suppressed the body
weight gain and adipose accumulation, and reduced the serum contents of total cholesterol (TC),
alanine aminotransferase (ALT), and interleukin 10 (IL-10) of HFD-mice. In addition, it also changed
the composition of the gut microbiota. The ratio of Firmicutes/Bacteroidetes was decreased, while
the relative abundance of Muribaculaceae, Alistipes and Rikenellaceae_RC9_gut_group was increased
after the administration of AFB compared with HFD-mice. These results demonstrated that AFB
can prevent diet-induced obesity (DIO) and provides a new option to modulate obesity-related
gut dysbiosis.

Keywords: obesity; fermented beverages; Aloe vera; gut microbiota

1. Introduction

Obesity, defined as excessive adipose accumulation caused by excess energy intake
and insufficient energy expenditure [1], has become an increasingly prevalent disease [2].
Over 70.2% of adults in the United States are overweight or obese according to a survey
conducted by the National Health and Nutrition [3]. Additionally, the rate of obesity in
children has increased dramatically in recent years [4]. As the current pharmacotherapies
are always limited by the adverse effects [5], functional foods with obesity-preventing
activity and without adverse effects have great research value.

Aloe vera, which belongs to the family Liliaceae, has been proven to have anti-obesity [6]
and anti-inflammation functions and is able to modulate blood glucose and cholesterol [7].
Some evidence has indicated that Aloe vera gel could alleviate type 2 diabetes, decrease
the blood glucose levels [8], and prevent adipose accumulation [9], which might be cred-
ited to the phytosterols rich in the gel [10]. It has been proven that Aloe vera extracts can
also activate brown adipose tissue [11] and suppress the expression of lipogenic genes in
mice [12]. Additionally, the milk with the addition of Aloe vera gel powder also shows
anti-obesity and anti-inflammatory properties after fermentation [13]. Not only milk, but
fermented beverages made from some plants were demonstrated to have the function of
restraining the body weight gain of mice fed a high-fat diet (HFD) [14,15]. Fermentation
can increase the contents [16] and bioavailability [17] of polyphenols and flavonoids in the
fermented beverages, which are critical in obesity suppression. Some evidence revealed
that fermented beverages could also ameliorate gut microbiota dysbiosis related with
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HFD [18,19]. Researchers have proven that there are close connections among gut micro-
biota, obesity, and inflammatory responses [20,21]. The systems that have considerable
influences on obesity, including metabolism, energy balance, homeostasis, central appetite,
and food-reward signaling, are all regulated by obesity-associated gut microbiota through
fermentation in the host [22]. Hence, the Aloe vera-fermented beverage (AFB) that the affects
obesity and gut microbiota is rarely reported and has high research value.

This study aimed to assess the restorative effects of AFB on the HepG2 cells in a high-
fat environment, and the obesity prevention and gut microbiota modulation effects in a
HFD C57BL/6J mice model. The body weight, serum, cell morphology of the adipose tissue
and liver, gut microbiota, and SCFA in the feces of the mice were examined. Our research
may provide a theoretical basis for the development of Aloe vera-fermented beverages as a
new kind of anti-obesity dietary supplement.

2. Materials and Methods
2.1. Reagents and Materials

Aloe vera (Aloe vera (L.) Burm.f.) leaves were provided by Tongxiang Huimei Aloe
planting Cooperative (Jiaxing, China). Lactobacillus plantarum powder was obtained from
Guozhen Health Science and Technology (Beijing) Co., Ltd. (Beijing, China). The Princess
Fermented beverage (PFB) was purchased from Rivaland Co., Ltd. (Suzuka City, Mie
Prefecture, Japan). Folin-Ciocalteu, NaOH, and Al(NO3)3 were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Palmitic acid (PA) was from Sigma (St. Louis,
MO, USA). Bovine serum albumin (BSA), Dulbecco’s modified Eagle’s medium (DMEM),
and fetal bovine serum (FBS) from BBI Solutions (Shanghai, China) were used in cell
culture. Cell Counting Kit-8 (CCK-8) was from MedChemExpress (Monmouth, NJ, USA).
The 4% paraformaldehyde, Hematoxylin and Eosin Staining Oil (H&E) and Red O kit were
purchased from Beyotime (Nantong, China), while the Mayer’s Hematoxylin was from
Sbjbio (Nanjing, China). Furthermore, serum interleukin 10 (IL-10) and tumor necrosis
factor alpha (TNF-α) kits were from Shanghai Enzyme-linked Biotechnology Co., Ltd.
(Shanghai, China). The E.Z.N.A. ® soil DNA Kit and the AxyPrep DNA Gel Extraction Kit
were from Omega Bio-Tek (Norcross, GA, USA) and Axygen Biosciences (Union City, CA,
USA) respectively.

2.2. Preparation and Composition of the Fermented Juice

To prepare the AFB, 300 g Aloe vera leaves were cut into 8 cm segments and added
to 700 mL water before the addition of 100 g brown granulated sugar. After the first step
of fermentation that took 3 months at room temperature, 2.2 mg Lactobacillus plantarum
powder was added for the second step of fermentation, which was maintained at 29 ± 2 ◦C
for 3–7 days. When the pH value was below 4, the fermentation was terminated and the
AFB was stored at−20 ◦C for a maximum of 2 month after sterilization at 105 ◦C for 30 min.
The Princess Fermented beverage (PFB) was used as a positive control. Folin-Ciocalteu and
Al(NO3)3 were used as color developing agents to detect the contents of total polyphenols
and flavonoids, respectively. The content of total proteins was measured by the Coomassie
Brilliant Blue method. Total sugars and reducing sugars were detected by using anthrone-
sulfuric acid and the DNS method, respectively. The compositions of the two kinds of
beverages are provided in Table S1.

2.3. Preparation of Palmitic Acid and AFB Dilution

Palmitic acid (PA) was prepared according to a reported method [23]. To obtain the
stoke PA solution, 1 mL of 100 mM NaOH solution which contained 0.1 mmol PA was
mixed with 19 mL of 10% bovine serum albumin (BSA) at 70 ◦C, then stored at −20 ◦C
after membrane filtration. The stoke PA solution and the AFB were diluted to 150, 200, 250,
300, and 350 µM and 1%, 2%, 3%, 4%, and 5% by Dulbecco’s modified Eagle’s medium
(DMEM), respectively.
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2.4. Cell Culture and Assay

HepG2 cells were cultured in DMEM with 10% fetal bovine serum (FBS) and main-
tained at 37 ◦C in a moist atmosphere containing 5% CO2. To investigate the cytotoxicity
of PA and AFB, the HepG2 cells were exposed to different concentrations of PA (150, 200,
250, 300, and 350 µM) and AFB (1%, 2%, 3%, 4%, and 5%) in 96-well plates for 48 h. The
medium was replaced by 100 µL fresh DMEM and 10 µL Cell Counting Kit-8 (CCK-8)
before incubation at 37 ◦C for 1 h. The absorbance was detected by a microplate reader
(Bio-Rad Laboratories, Berkeley, CA, USA) under 450 nm to analyze the cell viability. To
figure out the restorative effects of AFB on HepG2 cells in the high-fat environment, the
cells were cultured by 200 µM PA (PA group), 200 µM PA, and 2% AFB (PA + AFB group),
without any PA or AFB (control group) for 48 h, then detected by CCK-8.

2.5. Oil Red O Staining

After cultured for 48 h, the cells in 24-well plates from the control, PA, and PA + AFB
groups were washed and fixed in 4% paraformaldehyde for 30 min before staining with the
Oil Red O kit. The cells were observed under an inverted microscope (Nikon Corporation,
Tokyo, Japan) after counterstaining by Mayer’s Hematoxylin.

2.6. Animal Experimental Design

Male C57BL/6J mice at 5 weeks old were purchased from Vital River Laboratory
Animal Technology Co., Ltd. (Jiaxing, China). The animals were kept in a specific room
with a temperature of 23± 3 ◦C, a relative humidity of 55± 15% and a controlled 12 h light–
dark cycle. After the first week of acclimation, 8 mice were chosen randomly to receive a
normal diet as the control group (ND) and the others were given a high-fat diet (HFD) as
the HFD0 group. The compositions of the two kinds of diets are provided in Table S2. After
two weeks, the weights of the mice in the HFD0 group were measured, and the heaviest
40 mice were chosen randomly divided into 5 different groups (n = 8), including the HFD
group, the PFB group (HFD + PFB), the LAFB group (HFD + low dose of AFB), the MAFB
group (HFD + medium dose of AFB), and the HAFB group (HFD + high dose of AFB). The
mice in the LAFB, MAFB, and HAFB groups were given 3.9, 7.8, and 15.6 mL/kg body
weight AFB each day, respectively. In the PFB group, the mice were given 7.8 mL/kg body
weight PFB every day, while in the ND and HFD groups, the mice were given the same
volume of saline. Their body weights were measured once a week. After week 8, fecal
samples from the mice were collected and stored at −80 ◦C. Finally, the mice were fasted
for 12 h and then anesthetized with pentobarbital sodium. The blood was collected from
an eyeball and centrifuged at 1150 g for 15 min after clotting for 12 h at 4 ◦C to obtain
the serum. In addition, the liver and adipose tissue were weighed and then fixed in 4%
paraformaldehyde after washing with PBS. All experimental procedures were examined
and approved by the Animal Ethics Committee of Jiangnan University (Permission Number:
JN. No20210315c1150610[004]).

2.7. Serum Biochemical Analysis

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total choles-
terol (TC), and triacylglycerol (TG) were measured by an automatic biochemical analyzer
(Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China). Furthermore,
serum interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-α) were measured by
commercial kits. Under the instructions of the kits, 50 µL serum was mixed with 100 µL
HRP-conjugate reagent in the microtiter plates and incubated for 30 min. Afterwards, the
microtiter plates were washed 5 times by the wash solution before 50 µL substrate A and
substrate B were added into the microtiter plates. After incubation for 15 min at 37 ◦C, the
stop solution was added into the microtiter plates and the absorbance was measured under
450 nm by a microplate reader (Bio-Rad Laboratories). The blank and standard samples
were analyzed following the same instructions in the same time.
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2.8. Histopathological Examinations

Liver and epididymal adipose tissues were collected and fixed in 4% paraformalde-
hyde for at least 24 h and then embedded in paraffin. The tissues were sliced into 4 µm
sections before staining with hematoxylin-eosin (H&E). An inverted microscope (Nikon
Corporation) was used for histological assessment of the tissue sections.

2.9. Analysis of Short-Chain Fatty Acids (SCFA)

Approximately 20 mg of fecal sample was added to 500 µL of saturated NaCl for
30 min. After homogenization, 20 µL of H2SO4 (1.67 mol/L) was added to the mixture.
Afterward, 1 mL anhydrous ether was added, mixed for 30 s, allowed to stand for 30 min,
and then centrifuged at 4600× g for 15 min. The supernatants of the samples were dried
by 0.25 g anhydrous Na2SO4 before injection into a gas chromatograph (GC) with a flame
ionization detector 7890 (Agilent Technologies, Inc., Palo Alto, CA, USA) and a fused silica
capillary column (Zebron, ZB-FFAP, 30 m × 0.25 mm × 0.25 µm). The contents of SCFA
were measured following a reported method [24]. The initial temperature of the oven was
raised from 80 ◦C to 190 ◦C at a rate of 8 ◦C/min and kept at 192 ◦C for 3 min, while the
temperature of the injector and detector was 230 ◦C. Nitrogen that passed through the
column at a constant flow rate of 1 mL/min was used as the carrier gas. Quantification
of acetic acid, propionic acid, butyric acid, and isobutyric acid was based on the standard
solution and relative peak areas from the GC.

2.10. Fecal DNA Extraction and Gut Microbiota Analysis

DNA was extracted with the E.Z.N.A. ® soil DNA Kit from feces samples stored at
−80 ◦C. The concentration and purification of the DNA were determined by a NanoDrop
2000 UV–vis spectrophotometer (Thermo Scientific, Waltham, MA, USA). The 16S rRNA
gene from the V3-V4 hypervariable regions of the bacteria was amplified with primers 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′)
by a GeneAmp 9700 PCR system (Applied Biosystems, San Diego, CA, USA). The products
were purified by an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA) after extraction from a 2% agarose gel and further quantified by a Quanti Fluor™-ST
(Promega, Madison, WI, USA). The amplicons were then pooled in equimolar amounts and
paired-end sequenced (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, CA,
USA). Raw fastq files were quality-filtered by Trimmomatic and merged by FLASH with the
following criteria: (i) the reads were truncated at any site receiving an average quality score
<20 over a 50 bp sliding window. (ii) Sequences whose overlap was longer than 10 bp were
merged according to their overlap with a mismatch of no more than 2 bp. (iii) Sequences
of each sample were separated according to the barcodes (exactly matching) and primers
(allowing 2 nucleotide mismatches), and reads containing ambiguous bases were removed.
Operational taxonomic units (OTU) were clustered with a 97% similarity cutoff using
UPARSE 7.1 (http://drive5.com/uparse/, accessed on 10 August 2021) with a novel
‘greedy’ algorithm that performs chimera filtering and OTU clustering simultaneously. The
taxonomy of each 16S rRNA gene sequence was analyzed by the RDP Classifier algorithm
(http://rdp.cme.msu.edu/, accessed on 10 August 2021) against the Silva (SSU123) 16S
rRNA database using a confidence threshold of 70%.

2.11. Statistical Analysis

Statistical significance was determined by using GraphPad Prism 8.0 (GraphPad
Software, Inc., San Diego, CA, USA) according to one-way ANOVA with Dunnett’s multiple
comparisons test. The differences were considered statistically significant when p < 0.05 or
p < 0.01. The results are expressed as mean ± standard deviation (SD).

http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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3. Results
3.1. The Restorative Effects of AFB on HepG2 Cells in High-Fat Environment

In order to investigate the effect of AFB on PA and HepG2 cells, they were exposed to
different concentrations of PA and AFB. The cell viability was not affected after the treat-
ment with 2% AFB. However, the cell viability significantly decreased after the treatment
with 3–5% AFB (Figure 1A). The treatment of PA at 150–350 µM for 48 h decreased the
cell viability significantly while the cells had the highest viability when the concentration
of PA was 200 µM (Figure 1B). Based on the results above, 2% AFB and 200 µM PA were
selected for the next experiments. When the cells were exposed to the PA and AFB together,
the cell viability was significantly higher than PA group and lower than the control group,
which indicated that AFB treatment alleviated the damage of HepG2 cells induced by PA
(Figure 1C). The results of Oil Red O staining indicated the observed oil droplets induced
by the high-fat environment were decreased after AFB treatment (Figure 1D).
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Figure 1. Effect of PA and AFB on the HepG2 cells in the high-fat environment. (A) The cell viability
after treatments with different concentrations of AFB. (B) The cell viability after treatments with
different concentrations of PA. (C) The cell viability after the treatment of PA or PA + AFB. (D) Oil
Red O staining of HepG2 cells after treatments with PA or PA + AFB (100×). The results are expressed
as the mean ± SD. * p < 0.05, ** p < 0.01 versus the control group and ## p < 0.01 versus the PA group
by one-way ANOVA.

3.2. AFB Prevented HFD-Induced Obesity

Different doses of AFB were given to the mice under HFD (Figure 2A). The body
weights of the mice were recorded every week during the experiment (Figure 2B). There
were no significant differences in the body weights of the mice among the HFD, PFB, LAFB,
MAFB, and HAFB groups at week 2. From week 2 to week 8, the body weights of the
mice in each group continued to increase, while the body weights of the HFD group were
significantly higher than those of the ND group at week 8. After treatment with PFB and
AFB, the body weights of the LAFB, MAFB, and HAFB groups were significantly lower
than those of the HFD group at week 8. Besides, the food intake and energy intake of
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mice in the LAFB, MAFB, and HAFB groups were also lower than those in the HFD group
(Figure 2C). Although the mice in the LAFB group had lower food intake and energy intake
than those in the MAFB and HAFB groups, their higher food efficiency (Figure 2D) might
have caused their higher body weights at week 8.
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Figure 2. Effect of AFB on body weight, food intake, and food efficiency. (A) Schematic diagram of
the experiment. (B) Growth curve of body weight from week 2 to week 8. (C) Average food and
energy intake from week 2 to week 8. (D) Food efficiency = body weight gain/food intake. The
results are expressed as the mean ± SD. * p < 0.05, ** p < 0.01 versus the HFD group and # p < 0.05,
## p < 0.01 versus the ND group by one-way ANOVA.

3.3. Effect of AFB on Liver and Adipose Tissue

After the mice were sacrificed, the liver, perirenal adipose tissue, and epididymal
adipose tissue were collected and weighed (Figure 3A). Long-term HFD consumption led
to increased liver, epididymal adipose, and perirenal adipose weights in mice compared
with those in the ND group. After the administration of AFB, the weights of the three
tissues all showed downward trends. In particular, the mice in the HAFB group exhibited
significantly lower weights of the livers and perirenal adipose tissue than those in the HFD
group. Similar results were also observed in the pathological sections. In the ND group, the
liver cells had clear borders and almost no lipid droplets, while the HFD and PFB groups
exhibited serious fatty infiltration. However, after AFB intervention, the fatty infiltration
was alleviated compared with that in the HFD group (Figure 3B). In addition, the sizes of
the epididymal adipose cells in the three AFB-supplemented groups were smaller than
those in the HFD group (Figure 3C,D), while the latter were much larger than the cells in
the ND group.
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Figure 3. Effect of AFB on tissue. (A) Weight of the liver, epididymal adipose, and perirenal adipose
tissue. (B) H&E staining of the liver (400×). (C) H&E staining of epididymal adipose tissue (100×).
(D) The size of the epididymal adipose tissue. The results are expressed as the mean ± SD. * p < 0.05,
** p < 0.01 versus the HFD group and # p < 0.05, ## p < 0.01 versus the ND group by one-way ANOVA.

3.4. Effect of AFB on Serum Biochemical Parameters

ALT and AST are important indicators to assess the extent of liver damage. The
AFB-treated groups had significantly lower ALT levels than the HFD group (Table 1).
Besides, the TC, TG, HDL-C, and LDL-C levels are important parameters for predicting
the risks of hyperlipidemia, cardiovascular and cerebrovascular diseases induced by an
HFD. The results reveal that HAFB could significantly decrease TC levels compared with
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the HFD group. Furthermore, AFB treatment also decreased the TG, HDL-C, LDL-C, and
AST levels compared with the HFD group, although the differences were not significant
(Table 1). To evaluate the effect of AFB on inflammation, the levels of serum TNF-α and
IL-10 were also measured. The levels of IL-10 were significantly decreased in the PFB and
AFB-supplemented groups, while the levels of TNF-α were also decreased (Table 1).

Table 1. Effect of AFB administration on serum parameters.

ND HFD PFB LAFB MAFB HAFB

TC (mmol/L) 2.54 ± 0.18 ** 5.08 ± 0.07 ## 4.71 ± 0.54 ## 4.83 ± 0.23 ## 4.61 ± 0.39 ## 4.30 ± 0.34 ##,**
TG (mmol/L) 0.92 ± 0.08 1.00 ± 0.31 0.96 ± 0.11 0.86 ± 0.15 0.77 ± 0.19 0.74 ± 0.07

HDL-C (mmol/L) 2.10 ± 0.18 ** 3.96 ± 0.15 ## 3.59 ± 0.41 ## 3.76 ± 0.12 ## 3.67 ± 0.10 ## 3.58 ± 0.26 ##

LDL-C (mmol/L) 0.30 ± 0.06 ** 0.79 ± 0.30 ## 0.87 ± 0.19 ## 0.78 ± 0.11 ## 0.75 ± 0.03 ## 0.59 ± 0.10 #

ALT (U/L) 497.25 ± 5.38 514.30 ± 21.31 473.22 ± 21.23 ** 478.82 ± 16.57 * 472.78 ± 4.98 ** 477.06 ± 20.16 **
AST (U/L) 103.98 ± 10.92 107.76 ± 23.19 101.30 ± 14.46 91.56 ± 12.15 106.66 ± 18.54 90.98 ± 17.52

TNF-α (pg/mL) 17.94 ± 9.19 24.26 ± 10.37 21.02 ± 9.05 20.11 ± 13.95 17.09 ± 7.42 15.53 ± 7.51
IL-10 (pg/mL) 52.81 ± 34.82 ** 215.01 ± 12.55 ## 75.78 ± 17.98 ** 66.7 ± 42.56 ** 54.94 ± 38.16 ** 40.6 ± 40.07 **

* The results were expressed as mean ± SD. ND: normal diet group; HFD: high-fat diet group; PFB:
HFD + 7.8 mL/kg PFB; LAFB: HFD + 3.9 mL/kg AFB; MAFB: HFD + 7.8 mL/kg of AFB; HAFB: HFD + high
dose of 15.6 mL/kg AFB. * p < 0.05, ** p < 0.01 versus HFD group and # p < 0.05, ## p < 0.01 versus ND group by
one-way ANOVA examination.

3.5. Effect of AFB Intervention on the α and β Diversities of the Gut Microbiota

Chao, ACE, Shannon, and Simpson indices indicated that the richness and diversities
of gut microbiota respectively are used to analyze the α diversity. As shown in Figure 4A,B,
the Chao and ACE indices of the MAFB and HAFB groups were significantly higher than
those in the ND group and slightly higher than those in the HFD group, but the difference
was not significant. Similarly, the Shannon index of the HAFB group was higher than those
of the ND and HFD groups while the Simpson index was lower, although the differences
were not significant (Figure 4C,D).
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Figure 4. AFB affected the α and β diversity of the mouse gut microbiota. (A) Chao index, (B) ACE
index, (C) Shannon index, (D) Simpson index, and (E) UniFrac distance-based principal coordinate
analysis (PCoA) of the ND, HFD, and HAFB groups. # p < 0.05, ## p < 0.01 versus the ND group by
one-way ANOVA.

In addition, PCoA was used to analyze the β diversities among the groups. As dis-
played in Figure 4E, the ND group was obviously separated from the HFD group, indicating
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that HFD significantly affected the composition of the gut microbiota. Moreover, the HAFB
group was almost completely separated from the HFD group, which demonstrated that the
supplementation with HAFB significantly changed the structure of gut microbiota of HFD
mice. The LAFB and MAFB groups also showed a tendency to be separated from the HFD
group and they gradually became closer to the HAFB group with increasing doses of AFB
(Figure S1).

3.6. Effect of HFD and AFB on the Composition of the Gut Microbiota

The intestinal microbiota were mainly composed of Firmicutes, Bacteroidota,
Actinobacteriota and Verrucomicrobiota at the phylum level (Figure 5A). Compared with
the ND group, the relative abundance of Firmicutes and Actinobacteriota in the HFD group
increased, while those of Bacteroidota and Verrucomicrobiota decreased. In the LAFB, MAFB,
and HAFB groups, the relative abundance of Firmicutes and Actinobacteriota decreased
gradually, while the relative abundance of Bacteroidota and Verrucomicrobiota increased
gradually. Besides, the F/B ratio (Firmicutes to Bacteroidetes ratio) also changed significantly
after the intervention of high-dose AFB (Figure 5B). The significantly higher F/B ratio
induced by HFD was reversed by high-dose HAFB treatment and led to a significantly
lower F/B ratio than that in the HFD group.
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Figure 5. AFB restructured the mouse gut microbiota. (A) Relative abundance of gut microbiota
at the phylum level. (B) F/B ratio. (C) Heatmap of the relative abundance of each group at the
genus level. (D–G) The relative abundances of some genera were significantly changed due to the
consumption of AFB. * p < 0.05, ** p < 0.01 versus the HFD group and # p < 0.05, ## p < 0.01 versus the
ND group by one-way ANOVA.



Foods 2022, 11, 3728 10 of 15

At the genus level, the 25 genera with the highest relative abundance were selected
to evaluate the effect of AFB on changing the gut microbiome structure of the mice
(Figure 5C). Norank_f__Muribaculaceae, Akkermansia, Alistipes, Rikenellaceae_RC9_gut_group
(Figure 5D–G), and Bacteroides were enriched in the ND group and less enriched in the HFD
group. After AFB treatment, however, the relative abundance of these genera displayed
a dose-dependent increase. Furthermore, HFD induced a higher relative abundance of
Faecalibaculum, Bifidobacterium, and unclassified_p__Firmicutes compared with the ND group.
After the administration of AFB, the relative abundance of these genera displayed a dose-
dependent decrease. Moreover, the relative abundance of Lachnospiraceae_NK4A136_group,
unclassified_f__Lachnospiraceae, norank_f__Lachnospiraceae, Ruminococcaceae, Lachnoclostridium,
Lachnospiraceae_UCG-006, Colidextribacter, and norank_f__Ruminococcaceae was also increased
after AFB intervention. Moreover, the levels of SCFA also changed after supplementa-
tion with AFB (Table 2). The levels of all kinds of SCFA were decreased in the long-term
HFD group compared with the ND group, while they were increased after AFB treatment
compared with the HFD group, although the difference was not significant.

Table 2. Concentration of SCFA in the feces of each group of mice.

ND HFD PFB LAFB MAFB HAFB

Acetate
(µg/g) 1076.92 ± 381.12 510.78 ± 129.98 656.79 ± 248.34 661.93 ± 416.96 660.58 ± 474.07 618.82 ± 113.93

Propionate
(µg/g) 687.00 ± 266.87 ** 292.89 ± 101.46 ## 184.74 ± 89.85 ## 105.7 ± 45.75 ## 223.83 ± 102.67 ## 255.66 ± 108.68 ##

Butyrate
(µg/g) 185.29 ± 25.62 171.71 ± 51.1 149.61 ± 68.19 182.42 ± 107.22 207.29 ± 130.05 331.67 ± 252.53

Isobutyrate
(µg/g) 164.98 ± 45.65 146.31 ± 40.23 84.98 ± 1.49 81.93 ± 51.63 124.35 ± 73.32 215.71 ± 93.39

Total SCFA
(µg/g) 1588.55 ± 794.69 1171.43 ± 169.26 1306.05 ± 575.37 976.21 ± 606.54 1097.47 ± 732.45 1453.19 ± 926.13

The results were expressed as mean ± SD, n = 8. ND: normal diet group; HFD: high-fat diet group; PFB:
HFD + 7.8 mL/kg PFB; LAFB: HFD + 3.9 mL/kg AFB; MAFB: HFD + 7.8 mL/kg of AFB; HAFB: HFD + high dose of
15.6 mL/kg AFB. ** p < 0.01 versus HFD group and ## p < 0.01 versus ND group by one-way ANOVA examination.

3.7. Obesity and SCFA Levels Were Correlated with the Gut Microbiota

Spearman’s correlation analysis was applied to elucidate the potential connections
among the gut microbiota and obesity-related indicators. As shown in Figure 6,
Bifidobacterium showed significantly positive correlations with tissues and body weight and
significantly negative correlations with SCFA levels. In contrast, norank_f__Muribaculaceae,
Alistipes, and Rikenellaceae_RC9_gut_group were negatively correlated with body weight and
perirenal adipose tissue and positively correlated with propionate and isobutyrate levels.
Moreover, after the high dose of AFB treatment, the relative abundance of
norank_f__Muribaculaceae, Alistipes, and Rikenellaceae_RC9_gut_group increased significantly
(Figure 5D–F).
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4. Discussion

With the gradually increasing intake of high-calorie food, obesity has become a global
epidemic that places an excessive health burden on humans [25]. Excessive energy intake
always induces excessive lipogenesis and dyslipidemia, and then leads to cardiovascular
disease [26,27] and inflammatory responses [28]. In addition, excessive lipogenesis also
increases the risk of non-alcoholic fatty liver disease [29]. Therefore, finding an ideal
solution for this social problem is urgently needed. It has been proved that Aloe vera can
reduce adipose accumulation [30], alleviate metabolic syndrome [31], and has no reported
side effects [32]. Furthermore, some research also indicated that fermented beverages could
prevent diet-induced obesity [33]. This study focused on the bioactivities of Aloe vera-
fermented beverages, which remain underexplored.

The development of obesity stems from the food efficiency ratio, which represents
the ability of animals to convert food into body weight gain on a per-gram basis [34]. In
our study, the mice in HFD group had significantly higher food efficiency rates than the
ND group and HAFB group (Figure 2D), which demonstrated that the intervention of AFB
prevented the HFD-mice from excessive energy absorption. By comparing with PFB, we
found that AFB had higher contents in polyphenols and flavonoids (Table S1). It has been
proven that some of the polyphenols can inhibit the appetite [35], which might contribute
to the lower food intake after AFB treatment (Figure 2C). In addition, polyphenols and
flavonoids have been proven to prevent obesity by inducing the browning of white adipose
tissue (WAT) and regulating the expression of factors such as C/EBPα, SREBP-1C, ACC,
and FASN, which relate to the synthesis of fatty acids [36]. Therefore, the high contents
of these ingredients might lead to a decreased amount of lipid droplets in HepG2 cells
(Figure 1D) and lower body weights after the administration of AFB for 6 weeks (Figure 2B).
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Moreover, the decreased weight of perirenal adipose tissue and liver (Figure 3A), the
reduced size of epididymal adipose cells (Figure 3C,D) and the lower level of TC (Table 1)
after the treatment of AFB may relate to the high contents of polyphenols and flavonoids.
As fat can be synthesized in the liver but cannot be stored, excessive fat synthesis will cause
fatty infiltration and liver damage [37]. The relief of fatty infiltration (Figure 3B) and ALT
levels (Table 1) after administration of AFB should also be attributed to the high contents
of polyphenols and flavonoids that inhibit the fat synthesis. Furthermore, it has been
proven that polyphenols and flavonoids possess anti-oxidant properties and can activate
the antioxidant pathways to exert anti-inflammatory effects [38,39], which might relate to
the decrease of IL-10 level (Table 1).

As reported in previous studies, because of the limitation of digestion, most polyphe-
nols and flavonoids could pass through the small intestine and reach the large intestine
instead of entering the blood [40] which might finally ameliorate obesity-related gut dys-
biosis. In the present study, the gut microbial communities also showed dose-dependent
differences after the administration of AFB (Figure 4E, Figure S1 and Figure 5A). The F/B
ratio in HAFB group was significantly lower than that in HFD group. It has been proven
that Firmicutes contains far more metabolism-related genes compared with Bacteroidetes [41].
A high F/B ratio, which makes the organism obtain more energy from its diet [42], is
regarded as one of the characteristics of obesity [43]. Therefore, the decreased F/B ratio
caused by the consumption of AFB (Figure 5B) might relate to the decreased food efficiency
ratio and play an important role in obesity suppression.

From another perspective, the change in gut microbiota at the genus level (Figure 5C–
G) further elucidated the anti-obesity mechanism of AFB. Accumulating evidence has
indicated that an HFD could decrease the relative abundance of Muribaculaceae, which
had a positive relationship with the SCFA contents and a negative relationship with body
weight gain, weight of the perirenal adipose tissue, and TC and TG levels [44]. In our
present work, the relative abundance of Muribaculaceae was increased after AFB treatment
(Figure 5D), and it was negatively correlated with body weight and perirenal adipose tissue
(Figure 6), which is consistent with previous studies. Alistipes has a negative relationship
with body, liver, perirenal, and epididymal adipose weight [45]. Some scholars verified that
Alistipes had a positive relationship with SCFA and could alleviate HFD-induced obesity
and its complication by fecal microbiota transplantation [46]. The relative abundance of
Alistipes was also increased after supplementation in the present study (Figures 5E and 6)
which might exert critical effect on obesity prevention. In addition, the evidence suggested
that the Rikenellaceae_RC9_gut_group, which had a lower relative abundance in obese indi-
viduals, was negatively correlated with serum lipids, glucose, and insulin level [47] and
positively correlated with SCFA [48]. In our present work, the Rikenellaceae_RC9_gut_group
exhibited similar characteristics, while its relative abundance was increased after the con-
sumption of AFB (Figures 5F and 6). It was verified that SCFA can induce the browning
of white adipose tissue and increase the expression of peroxisome proliferator-activated
receptor-γ coactivator 1α (PGC1α) and uncoupling protein 1 (UCP1), which activate energy
expenditure and lipid oxidation, thereby causing the loss of body weight [49,50]. Besides,
SCFA also suppresses appetite and energy intake through central nervous system-related
mechanisms and the gut–brain axis [51]. In sum, the AFB intervention changed the struc-
ture of gut microbiota, enhanced the relative abundance of beneficial genera, and finally
alleviated the pathological development of metabolic disorders.

5. Conclusions

Our research indicated that AFB intervention alleviated lipid accumulation and the
complications of obesity, including dyslipidemia, inflammatory responses, and liver dam-
age. In addition, the administration of AFB also changed the structure of the gut microbiota.
The F/B ratio was significantly decreased and the relative abundance of beneficial gut
microbiota including Muribaculaceae, Alistipes, and Rikenellaceae_RC9_gut_group were sig-
nificantly increased. Moreover, these three genera of gut microbiota, which might exert
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critical effects in obesity prevention, showed significantly positive relationships with body
weight and perirenal adipose. These results demonstrated that AFB has the potential to
become a healthy beverage to prevent obesity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11223728/s1, Figure S1: UniFrac distance-based principal
coordinate analysis (PCoA) of all 6 groups; Table S1: The compositions of two kinds of beverages;
Table S2: The contents of different ingredients in different diet (% of diet, w/w).
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