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Abstract: The development of novel materials with microstructures is now a trend in food science
and technology. These microscale materials may be applied across all steps in food manufacturing,
from raw materials to the final food products, as well as in the packaging, transport, and storage
processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel
(1~100 µm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology
allows unit operations to occur in devices that are closer in size to the expected structural elements.
Therefore, microfluidics is considered a promising technology to develop micro/nanostructures
for delivery purposes to improve the quality and safety of foods. This review concentrates on
the recent developments of microfluidic systems and their novel applications in food science and
technology, including microfibers/films via microfluidic spinning technology for food packaging,
droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.

Keywords: microfluidics; microencapsulation; spinning technology; functional food; emulsions

1. Introduction

Food quality and safety are growing concerns in the food industry [1]. All steps
during food processing are critical for achieving high-quality and safe food products [2,3].
Firstly, most food products are dispersed systems that contain various components. The
development of food emulsions is one of the most efficient methods to enhance the quality
of food systems [4,5]. In addition to traditional emulsions formed through homogenization,
novel technologies have long been applied to produce emulsions in food systems, such as
nanoemulsions produced through high-pressure microfluidization [6]. In food systems,
there are also various minor components, such as polyphenols [7], probiotics [8], antho-
cyanins [9], etc., that are sensitive to stimuli during food processing. Microencapsulation is
a common solution to increase the quality of food products [10,11]. Furthermore, food pack-
aging is indispensable for processed whole food products [12,13]. It is a protection outside
food systems and can effectively promote the product quality and safety of the food [14]. In
addition, food analysis is the final step in processed food chains to ensure product quality
and safety [15]. Various advanced methods have been applied in food analysis such as
spectroscopic [8], electrochemical [16], and chromatographic methods [17]. However, all
these techniques are relatively slow and require long times for sample preparation. The
demand for cheap, high-throughput, and portable analytical systems has encouraged the
development of new technologies and more suitable analytical methods.

Microfluidics is an advanced technology for manipulating fluid flows in microscale
channels (1~100 µm) [18]. A microfluidic system can be defined as a fluid element or chip
in which there are many channels on the nanometer to micron scale [19]. These tiny chan-
nels give the fluid an interesting and unique character and a wide range of applications
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in different fields [20]. Microfluidic technology has shown great potential as a new tool
in food science (Figure 1) [21,22]. Microfluidic technology can produce various shapes of
micro–nano structures, including particles and fibers. Microfibers fabricated via microflu-
idic spinning have been used as microreactors for analyzing the chemical components [23],
and microfilms have potential applications as functional packaging for food products [24].
Droplet-based microfluidics is an advanced technology to produce particles [25]. By con-
trolling the wetting of the channel walls, this technology can generate stable emulsions that
are widely applied in food systems [26]. In addition, droplet microfluidic strategy is used
to manufacture advanced particles, which are useful structures for the encapsulation and
release of active substances [27].
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Figure 1. Potential applications of microfluidics in food science and technology. In this review,
we conclude that there are three main applications of microfluidics: (a) microfluidic chips/devices
for food analysis; (b) microfibers/films fabricated via MST; and (c) microcapsules and emulsions
prepared from droplet microfluidic systems.

One previous review summarized the applications of microfluidic systems in food
analysis [28]. Microfluidic technologies provide high-throughput and large-scale analysis
via the integration of multiple steps, multiplexing, and the parallelization of analyses
on a single device. Most analytical methods of components in food systems have been
reviewed, such as major/minor nutrients, pathogens, toxins, and allergens, and thus are not
included in this review. This review investigates the materials, design, and microchannel
arrangement of microfluidic chips and their applications. This review focuses on the
construction of microfluidic systems and their applications on micro-/nanofabrications in
food quality assurance. The system is divided into two parts: The first one is microfluidic
spinning technology, which can produce micro-/nanofibers and films. The second is droplet
microfluidics, which can produce micro-/nanoemulsions and capsules.

2. Systems for Microfluidics
2.1. Microchannel Arrangements in Microfluidic Platforms

Microfluidics integrates basic operation units of sample fabrication, reaction, sepa-
ration, and detection in the process of biological, chemical, and medical analysis into a
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microchip to automatically complete the whole analysis or preparation process [29]. The
whole system for microfluidics is a combination of various unit devices that may include
injectors (with a micropump), tubes and chips for the fluid flows, external stimuli systems
for solidifications, and detection systems to collect signals from analysis [30]. The design
of the microchannels of microfluidic chips is the main in many applications [31–33]. It
is the key for achieving rapid analysis and multiple chemical reactions to produce vari-
ous fibers and particles. The devices used for microfluidics have been developed using
various materials. These devices exist in many forms, such as pulled-glass micropipettes,
PDMS microchannels, metal needles, and tubes. Table 1 summarizes the platforms and
microchannels applied (or potentially applied) in the fields of food processing and analysis.

Table 1. Summary of the microfluidic platforms applied in food processing and analysis.

Material Type (Microchannel
Arrangement) Applications Refs

PDMS

Cross-junction Construction of emulsions and encapsulation
of active substances [34]

Y-junction Controlled assembly of nanoparticles and
drug delivery [35]

Multichannel Screening of drugs [36]

Multichannel Detection of pathogens [37]

Multichannel Immunoassay [38]

Glass

Capillary Creation of food assemblies [39]

Capillary 3D bioprinting [40]

Capillary Construction of multiple emulsions and
protection of natural pigments [41]

Capillary Encapsulation, protection, and
delivery of protein [42]

Capillary Construction of nanoparticles for
pharmaceutical delivery [43]

Capillary Preservation of oil [44]

Capillary Encapsulation of food ingredients [45]

Cross-junction Content analysis of protein [46]

Cross-junction Enhancement of the stability of pigment [47]

T-junction Encapsulation of polypeptide [48]

Glass-based
hybrids

Capillary Detection of pathogens [49]

Cross-junction Generation of emulsion [50]

Cross-junction Delivery of nanocarriers [51]

Serpentine channel Detection of protein [52]

Paper

Multichannel Monitoring systems of food adulterants [53]

Multichannel Detection of drugs [54]

Humped circle Detection of pathogens [55]

Syringe needle Delivery of drugs [56]

Cross-junction Water-in-oil emulsification [57]

PMMA Multichannel Extraction of DNA [58]

Polycarbonate Capillary Extraction of DNA [59]

Fused silica
Serpentine channel Detection of nucleic acids [60]

Hollow microneedle Delivery of drugs [61]
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Table 1. Cont.

Material Type (Microchannel
Arrangement) Applications Refs

Stainless steel

Syringe needle Wound dressing [62]

Syringe needle Release of drugs [63]

Syringe needle Microreactor for amine detection [23]

Syringe needle Food packaging [64]

Microchannels are helpful to control the flow parameters in the process of coaxial
flow [65]. Figure 2 illustrates various designs of microfluidic platforms. Capillary-based
platforms (Figure 2a) are favored for creating coaxial flows for the production of micropar-
ticles and reactions in channels [66–68]. It is very simple; only two kinds of glass capillary
tubes with different pipe diameters, glass sheets, syringes, and glue are needed to construct
a capillary device. It should be noted that the axes of the two glass capillaries should be
coaxial, as far as possible, to ensure a more stable and uniform liquid drop. In general,
dispersed-phase fluid is introduced into the small-diameter capillary tube, and continuous-
phase fluid is introduced outside of the small-diameter capillary tube. However, the
fabrication of drawn glass micropipettes is labor-intensive and requires a high level of skill.
In addition, those superthin tubes are easily cracked during the experiments [69]. The
most developed microfluidic devices are PDMS channels or PDMS-based multifunctional
platforms (Figure 2b–d). PDMS has high flexibility and chemical and thermal stability
and is biocompatible with biological and medical applications [70,71]. The frequently
used geometries are the T-connection (Figure 2b) and the cross-connection of four cross
channels (Figure 2c). The T-connection uses the geometric structure at the intersection
of the microchannel to make the front edge of the dispersed-phase fluid vertically en-
ter the continuous-phase fluid. At the corner of the intersection, the momentum of the
dispersed-phase fluid changes under the action of the continuous-phase fluid and finally
becomes unstable. It is continuously sheared into many droplets [72]. Compared with
the T-connection, the dispersed-phase in a cross-connection is subjected to continuous
and symmetrical shear forces on both sides to produce a focusing effect and is extruded
into droplets [73]. Compared with the T-connection, the cross-connections are more sta-
ble, convenient to operate, produce a wide range of droplet sizes, and are more likely to
produce uniform small droplets much smaller than the channel’s characteristic size. The
cross-connections are always filled with solutions and can solidify the polymers in the main
channels. Both arrangements can produce microfibers [74–76] and microcapsules [77–79].

Two (or more) channels can be arranged concentrically to produce a strong extensional
flow (Figure 2d). This arrangement is commonly applied for the formation of multiple
emulsions and foams, which can be realized by one-step emulsification. Moreover, the
stability of droplets can be improved. It has been proven that the coaxial channels have
multifunctional advances: (1) Coaxial channels allow multiphase flows by confinement
in microcapillaries and emulsification to multiple emulsion drops [80]. (2) A microfluidic
platform with a coaxial annular chip interface is favored for the high-throughput production
of emulsion droplets with controllable sizes and internal compositions [81]. (3) Coaxial
channels can exert longer forces, allow larger deflections, and improve reliability [82]. In
addition, a capillary-driven microfluidic chip with various and sophisticated arrangements
is a common system for analysis or bioassay (Figure 2e,f). For example, Ezgi Ahi et al.
fabricated a capillary-driven microfluidic chip with four continuous chambers for SERS-
based hCG detection [83]. Li et al. prepared a stretch-driven microfluidic channel with
multiple wing structures for nucleic acid detection [84].
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2.2. Materials for Microfluidic Chips

The application of new materials and the combination and configuration of new tech-
nologies promote the development of microfluidic systems, which makes them more func-
tional [85,86]. The materials for synthesizing microfluidic chips are mainly divided into the
following categories: inorganic materials, organic materials, and composite materials (Table 2).

Inorganic materials were first used as substrates in the early stage of microfluidics and
usually had high surface stability, adjustable thermal conductivity, and solvent compatibil-
ity. Silicon and glass are the two most commonly used raw materials for chips. Silicon was
the most ideal material due to its high possibility and advancement in micromachining tech-
nology [87–89]. However, silicon is an opaque material and has great limitations in optical
detection [90,91]. In contrast, glass has strong light permeability with good surface chemical
properties and high pressure resistance [92,93]. Various configurations of glass capillaries
are often used in the microfluidic processing of functional microparticles [94]. Although
glass materials have many advantages, the real challenge is how to use amorphous glass to
prepare high specific surface area and anisotropic structural materials. Low-temperature
cofired ceramic (LTCC) with laminar characteristic is another common inorganic material
that can be utilized to prepare complex devices [95]. Currently, an LTCC device is usually
applied in pharmaceutical analysis and sensors [96].

Organic materials are flexible with low costs. Compared to inorganic materials, they
can make the process of microfluidic spin faster and simpler. The commonly used or-
ganic materials for microfluidic devices are polystyrene (PS), polyvinyl chloride (PVC),
polymethyl methacrylate (PMMA), cycloolefin copolymers, polycarbonate (PC), and poly-
dimethylsiloxane (PDMS) These materials have good surface modification, low thermal
conductivity, and compatibility in biomedical applications [97,98]. PDMS microfluidic
equipment has permeability to gas, and can therefore be used for long-term cell culture.
According to their physicochemical properties, the organic materials used in microfluidic
systems can be divided into the following categories: elastic [99], thermoplastic [100],
plastic [101], hydrogel [102], and paper-based platforms [103]. While organic materials
have many advantages, there are still some challenges in their applications, such as aging,
chemical resistance, and their mechanical, optical, and thermal properties [101]. PDMS has
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high resistance to short-wavelength fluorescence detection, so the sensitivity of detection is
much lower than that of glass materials [104].

The application of single materials such as silicon, glass, elastomers, and hydrogels
can be combined into a hybrid chip to give full access to their advantages. The well-
designed multifunctional complex system is suitable for different environments. Organic
modified ceramics is a typical example that is beneficial to many applications of biological
microfluidic technology [105]. Currently, the most widely used hybrid materials are based
on the combination of PDMS with other materials, such as glass [106,107], SU-8 [108,109],
polycarbonate [110], PMMA [111], hydrogel [112] and biodegradable materials [113–115].
Those hybrids can be applied in different states. A PDMS/polycarbonate microfluidic
system uses a polycarbonate nanoporous membrane to control the fluid flow, which is also
suitable for cell culture as a gas diffusion barrier [116]. Recently, scientists have developed
an ethylene propylene polyimide film for the synthesis of organic materials. This film has
high hardness under high pressures and good operability under low temperatures and is
also chemically inert and will not react with most solvents [117].

Table 2. Summary of the common materials for microfluidic platforms.

Materials Optical
Clarity Mechanics Biocompatibility Thermostability Bonding

Performance Formability Refs

Inorganic Silicon Good Medium Bad Good Difficult Difficult [118,119]

Glass Bad Medium Bad Good Difficult Difficult [120,121]

LTCC Bad Medium Good Good Difficult Difficult [95,96]

Organic PDMS Good - Good Good Easy Easy [122]

PMMA Good Good Good Medium Easy Easy [123,124]

PC Good Good Medium Medium Easy Medium [119,125]

PS Good Medium Bad Medium Easy Easy [118,119]

PVC Good Good Good Medium Easy Medium [118,119]

SU-8 Medium Good Good Good Easy Easy [126,127]

Paper - Bad Bad Medium Medium - - [128,129]

3. Microfluidic Spinning Technology for Micro-/Nanofibers and Films

Microfluidic spinning technology (MST) refers to the preparation of microfibers with
different sizes and morphologies from materials with a certain viscosity under the action of
gravity by changing the fluid driving force and the drawing force of the receiver. MST has
become a powerful and widely used platform due to its high specific surface area, effective
heat transfer, and high reaction rate [130]. Microstructure fiber is very important because
of its wide application, such as in microreactors, optical sensors, and biomaterials [23]. The
multifunctional properties of microfluidic spun fiber show many potential applications in
food science and technology. [131]. The advantages of microfluid devices for the fabrication
of microfibers are as follows: (1) They are good systems to produce core–shell fibers or
emulsion fibers to protect many sensitive components. (2) It is possible for the composites
of different materials to enhance the mechanics of fibers and therefore form films for food
packaging. (3) To make the best use of microfilms, MST can introduce bioactive molecules
into the fibers to improve their functionality (such as antioxidation and antimicrobial
properties). (4) Functional microfibers/films produced from MST are also good systems for
food analysis and solvent purification. Figure 3 and Table 3 briefly illustrate the fabrication
of microfibers via microfluidic spinning technology and its potential applications in food
processing and analysis.
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3.1. Solidification Methods for Microfiber Generation

Solidification is critical for the formation of microfibers. The diversity of approaches to
solidify polymer solutions to generate functional microfibers/films has been investigated for
a long time. Two reviews simply divided the methods of solidification into photopolymer-
ization and chemical reactions [132]. Photopolymerization mainly uses UV light to crosslink
prepolymers such as poly (ethylene glycol), diacrylate (PEG-DA), and 4-hydroxybutyl acry-
late (4-HBA) then generate the solidified microfibers. Chemical reactions always introduce
a crosslinking agent to react with prepolymers and form solid fibers. For example, sodium
alginate is crosslinked due to the diffusion of calcium ions into a sodium alginate solution.
In their review, the solidification approaches were divided into chemical reactions and phys-
ical processes. In this classification, photopolymerization was collected into the chemical
reactions, as chemical reactions happen during the polymerizations. The physical processes
include ionic crosslinking, solvent exchange, non-solvent-induced phase separation, and sol-
vent evaporation. Based on the solidification time during the fabrication of the microfibers,
we divided them into two groups (Figure 3a). The on-site solidification shows that the
microfibers are solidified inside the devices. A physical or chemical stimulus (such as UV
light, ions, reactive agents, etc.) is applied during the fabrication of the microfibers. The
off-site solidification does not apply any physical or chemical approach inside the devices.
This fabrication approach always needs a solid receiver for the microfibers because they
can only be solidified after solvent evaporation. Many food materials have been used for
the solidification of microfibers, such as alginate, chitosan, glucomannan, and silk pro-
teins. Those fibers with various shapes and functions were applied in different areas of
science and engineering.

3.2. Design Principle of Fibers with Different Shapes

MST is distinguished by constructing micro-/nanofibers with complex shapes (solid,
core shell, Janus, hollow, nano, flat, etc.) by simply regulating the channel shape, solvent
type, solidification methods, flow rates, types, concentration of spinning solution, etc. [133].

It is convenient to prepare solid-shaped fibers through a single channel and a coaxial
multichannel. The size of fibers is commonly influenced by the dimensions of channels,
the flow rates of spinning solutions, and the solidification methods. In general, the size
of a fiber mostly depends on the size of the spinning fluid in the channel in the range
of micrometers to one hundred micrometers [130]. When using different solidification
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methods, such as on-site photopolymerization, it can also effectively adjust the size of
fibers by altering the intensity of irradiation and irradiation time [134]. The on-site ionic
crosslinking-assisted fabrication of biological fibers presents potential advantages in the
fast gelation process. The Ca2+ cross-linker is one of the most commonly applied agents
for this gelation process. It has been used for the solidification of mixed carbon nanotubes
and sodium alginate to fabricate nanofiber-based macroscopic cables [135]. In addition,
the size of fibers was also influenced by the types of solvents and the concentrations of
spinning solutions [136]. One recent study prepared silk fibers with sizes ranging from
54.1 to 102.2 nm by non-solvent-induced phase separation [137].

It is necessary to add other capillary tubes for the injection of different fluids to gener-
ate core–shell and hollow fibers. In a previous report, researchers constructed hollow fibers
utilizing three microchannels, where the innermost tube was filled with a CaCl2 solution.
The second inner tube contained a sodium alginate solution, and the outermost flowed with
a CaCl2 solution. The hollow fiber was formed by two stages of gelation at the intersection
of the tubes, where the core sodium alginate solution gelled with the CaCl2 solution in the
innermost tube, followed by gelation with the CaCl2 solution in the outermost tube [138].
Based on hollow fibers, core–shell fibers can also be prepared by MST by combining a
curable core fluid and a polymerizable shell fluid. For instance, Daniele et al. produced
UV-assisted core–shell fibers composed of polyethylene glycol dimethacrylate (shell) and
gelatin (core) [139]. To further precisely manipulate the thickness of each layer of the
core–shell fibers, the multiphase flow rates should be strictly controlled. Researchers found
that decreasing the concentration of gelatin could lead to a shape change for the fibers.
Janus fibers can be generated by multiphase microfluidic platforms composed of outer
sheath flow inlets and sample flow inlets. One common approach for the preparation of
Janus fibers is to inject a photocurable PU solution into the central microchannel and si-
multaneously inject a sodium dodecyl sulfate solution into the outer sheath microchannels.
Hence, Janus fibers were formed under UV irradiation [140]. Flat-shaped fibers can also
easily be produced by MST. Lee and coworkers investigated whether MST can fabricate
microbelt-shaped fibers consisting of poly(ethylene glycol) diacrylate. During the process-
ing, several poly(ethylene glycol) diacrylate streams were simultaneously introduced into
inlets and generated multiphase jetting without the engulfment phenomenon due to their
similar compositions [141].

3.3. Applications of Microfibers in Analysis and Encapsulations

Microfibers with diverse shapes (such as cylindrical, flat, grooved, porous, core–shell,
etc.) (Figure 3b) fabricated via MST perform many functions (Table 3). The most easily
prepared cylindrical microfibers allow chemical reactions to be performed inside to form
microreactors or sensors for analysis. Yu et al. described a high-throughput photofluidic
platform of mosaic patterned microfibers by generating a layered laminar flow and prepared
mosaic microfibers with the desired configuration for multiple biomolecular analyses [142].
Mu et al. proposed an MST for the fabrication of microfibers with KGM and sodium
polyacrylate (PAAS) [23].

The prepared microfibers can be easily arranged into microarrays and microgrids,
which provides a useful platform for amine molecular recognition. The function of mi-
crofluidic fibers also depends on the inclusion of functional components. The encapsulation
of functional components is one of the commonly used methods for the functionalization of
microfibers, which can further expand the application prospect of microfibers. In general,
functional components are added to a curable precursor solution to obtain a uniform sus-
pension or a uniform solution as a sample stream. Then, the fibers with expected properties
are obtained by MST [130]. By encapsulating various functional components, those mi-
crofibers obtain unique properties that are applied in tissue engineering and the biomedical
area. It has been well-investigated that the microfibers produced via MST are good delivery
systems for cells. One study successfully prepared chitosan–alginate fibers carrying human
liver cancer cells (HepG2) using a coaxial flow microfluidic chip [143]. Another recent work
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described a new alginate microfiber production method using microfluidic technology to
precisely regulate microfibers, thereby improving the vitality and function of embedded
cells [144]. In order to protect the transplanted islets immunologically, an immunoprotected
ultrafine fiber has been newly designed for successful islet transplantation [145]. The
most commonly used alginate-Ca2+ solidification produced many functional microfibers
that can potentially be applied in food science. For example, Chaurasia and Sajjadi made
alginate fibers loaded with oily objects through the arranged internal capillaries, showing
the potential for better triggering reactions [146]. Meng et al. reported an effective microflu-
idic method for the successive production of hollow calcium alginate microfibers with
controlled structure and function, and the addition of active components to the core stream
for encapsulation [147]. Pham et al. proposed a simple method for the self-assembly of
hollow alginate microfibers based on a PDMS microfluidic device [148]. The inner diameter
and wall thickness of the microfibers were controlled by changing the flow velocity of the
core and sheath in the microfluidic channel.

Table 3. Summary of the applications of micro-/nanofibers and films in food processing and analysis.

Materials Solidification Shape Functional Component Applications Refs

Konjac glucomannan/
polyvinylidene fluoride Off-site Solid Epigallocatechin-3-gallate Drug release [63]

Konjac glucomannan/
sodium polyacrylate Off-site Solid Ofloxacin Microreactors [23]

Konjac glucomannan/polylactic acid Off-site Solid Trans-cinnamic Food packaging [24]

Konjac glucomannan/
poly(ε-caprolactone) Off-site Solid Silver nanoparticles Food packaging [149]

Konjac glucomannan/poly
(methyl methacrylate) Off-site Solid Chlorogenic acid Food packaging [150]

Ethyl cellulose/polyvinylpyrrolidone Off-site Solid - Food packaging [64]

Polyurethane/sodium dodecyl sulfate On-site Janus - 3D scaffold [83]

Graphene oxide/ bacterial cellulose On-site Core–shell Silver nanoparticles Antibacterial [151]

3.4. Applications of Microfilms as Food Packaging and Purification Systems

Microfibers can be further integrated to form functional films and exhibit various
properties such as high mechanical, antioxidation, and antimicrobial properties. These
microfilms have potential applications in food packaging [152]. In our group, we prepared
microfilms based on a new kind of biopolymer, KGM, which also promotes wound healing
through new blood vessel formation and the advanced development of hair follicles [153].
We further adopted simple and green strategies and built a series of triple-layer micro-
films, such as a konjac glucomannan/polylactic acid/anti-cinnamic acid micromembrane
(KPTMF) [24] and a konjac glucomannan/poly (methyl methacrylate)/chlorogenic acid
food packing film inspired by the amphiphilic theory [150]. In addition to the packaging,
microfilms produced via MST are also applied in purifications. Inspired by the confor-
mation of spider silk, He et al. manufactured ultrafine fibers with adjustable magnetic
spindle-knotted microfibers [154]. Those fibers contained magnetic Fe3O4 nanoparticles for
controlled 3D assembly and water collection. Wu et al. utilized microfluidic emulsification
and spinning synergy technology to prepare spindle-knotted graphene microfibers that
can absorb oil in the environment of a water–oil mixture [155]. Graphene oxide (GO) fibers
with a spindle junction structure and photothermal response phase change behavior are
manufactured in microfluidics through spinning and emulsification programs, which can
realize fog capture and near-infrared-triggered water collection applications [156].
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4. Droplet Microfluidics for Micro-/Nanoemulsions and Capsules

The continuous production and processing of monodisperse microparticles have al-
ways been a scientific and technical issue. The first advantage of microfluidic equipment in
the fabrication of food products is that it can provide a suitable processing environment for
fluids. In microchannels, food scientists can obtain stable microparticles in a homogeneous
emulsion by controlling the fluid to give them corresponding physical and chemical proper-
ties [157,158]. Therefore, microfluidics has become a widely used advanced technology for
the preparation of microparticles. Another advantage is that this technology can not only
prepare single-component gel particles but can also prepare mixed-component particles
with specific structures and characteristics. In materials science, droplet microfluidics has
been applied to fabricate “Janus” microbeads [159], core–shell microcapsules [42], porous
microparticles [160], and photosensitive [161] and thermosensitive [162] capsule particles.
The third advantage is that the stop and flow technology of a microfluidic system in a flat
plate is creating a revolutionary change in the field of material processing [163]. Traditional
material processing technology can only synthesize spherical materials because of the
effect of surface tension in the emulsion system. In microfluidics, fluid can be projected
into different patterns in the process of microchannel chip flow [164]. This technology
has been applied to the preparation of many microparticles with various shapes, includ-
ing cell-loaded microparticles, some column-shaped evolution particles, high-throughput
particle processing, and combination with fluid aggregation or a large-scale array [165].
Additionally, the use of a microfluidic nebulizer can achieve the application of ultrasonic
spray-drying technology, synthesized RNA-loaded lipid nanoparticles, and microreactors
for controlling the physical and chemical changes in the material synthesis process [166].
Figure 4 and Table 4 illustrate droplet microfluidics for emulsions and microcapsules.
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4.1. Principle of Droplet Microfluidics

The fluid behavior in droplet microfluidics is mainly divided into laminar flow and
droplets [167]. Hence, it is necessary to introduce a driving force to push the fluid into
a microchannel. Pressure is the one of the common driving forces urging the flow at the
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import and export of the channel. We can simply adjust the parameters of the syringe
pump to control the driving forces applied to the fluid. Apart from external driving forces,
the flow of fluid can be promoted by its gravity [168]. When introducing multiphase fluids
into a microchannel, a droplet is generated by the energy from the breakup of fluids, which
provides interfacial energy for the production of emulsions [169]. In this process, there
are two types of methods: passive methods (e.g., coflow, cross-flow, and flow-focusing)
and active methods (e.g., electrical, magnetic, thermal, and mechanical methods), which
are mainly distinguished by the existence of external energy. The principle of droplet
microfluidics was reviewed in detail in a previous report [26].

Microcapsules and emulsions generated by droplet microfluidics have been widely
applied in the field of encapsulation and release. In order to construct microcapsules
and emulsions, a T-junction or cross-junction is usually needed, where the core materials
flowing into the main tube are wrapped by the core materials flowing into lateral tubes. It
is feasible to regulate the size and number of inner droplets by controlling the flow rates.
Apart from the assembly of droplets, designing the multistructure of droplet microflu-
idic devices is another effective strategy. A capillary device combined with continuous
narrowing expansion junctions is an applicable example. In brief, oil droplets are first
produced by flow-focusing. Then, oil droplets flow across continuous narrowing expansion
junctions, where the spherical oil droplets are first squeezed at the narrow export, allowing
the inclusion of water, then relaxed into a spherical shape at the expansive import, and
eventually formed into double emulsions [170]. Another strategy is to combine “co-flow”
and “flow-focusing into” in one capillary device, where two immiscible fluids flow coaxially
and another outer immiscible fluid flows in the opposite direction [171]. When three fluids
flow simultaneously through a tapered tube, double emulsions are formed.

4.2. Droplet Microfluidics for Microcapsules

Microparticles are becoming increasingly important tools for a wide range of applications
in food science, such as probiotic and nutrient delivery [78,172]. Microencapsulation is an
important technology for sustaining cell viability and nutrient activity during food process-
ing [10,11]. Microencapsulation fixes the surface of the emulsion to enhance the stability of
the emulsion and cover the solid, liquid, or gas in a shell to protect or isolate the material in
the shell, prevent the external environment from producing adverse or toxic effects on the
material in the shell, and control the release of the material in the shell [173]. The core of a
microcapsule is generally the cavity or the active substance dispersed in the cavity, which
can be one or multiple substances. The shells may be single, double, or multiple layers
and are usually made of organic polymers [174]. The capsule shell can not only protect the
active ingredient from the damage of pH change, oxidation, water, and other environmental
pressures but also regulates the release of the active ingredient. The microcapsule shape is
relatively rich, including spherical, a grain shape, and amorphous, but a spherical structure is
the most common structure. Microcapsules can be divided into mononuclear microcapsules,
multicompartment microcapsules, irregular microcapsules, etc.

The development of a new type of biomaterial is an urgent need for the application
of food science. Especially in the field of food science, using low-cost and biocompatible
raw materials is a challenging task [175]. Polysaccharides are a kind of robust biopoly-
mer extracted from natural sources. Several of them are ideal materials for application in
microfluidic technology, such as sodium alginate [78], chitosan [176], and konjac gluco-
mannan [24]. Among various possibilities, alginate gel particles are widely used. They
are nontoxic, biocompatible, biodegradable, inexpensive, and relatively simple to produce,
especially as carriers of microencapsulated compounds [177–179].

4.3. Droplet Microfluidics for Emulsions

Food emulsions exist in most food systems [180–182]. The easiest double emulsion
system from microfluidics has long been applied to stabilize the sensitive compounds in
food. For example, Xu and Nisisako fabricated double emulsions using a microcapillary de-
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vice containing a single internal droplet in a core–shell geometry [183]. Nam et al. utilized
poly(ethylene glycol) diacrylate (PEGDA) and droplet microfluidics to obtain the direct
encapsulation of water and oil droplets in PEG microcapsules [184]. Recently, one study
compared the emulsion systems between microfluidics and the conventional homogeniza-
tion method. The microcapsules obtained via microfluidics exhibited many advances, such
as monodispersity, the stability of physical and chemical properties, and the tracking ability
of shell crosslinking [44]. To obtain more stability and various functions of the emulsions,
multiple layers of emulsions were developed in food systems. For example, Kantak et al.
described a new microfluidic technology that utilizes a microcolumn in the channel to
continuously generate, encapsulate, and guide layer-by-layer (LBL) polyelectrolyte micro-
capsules [185]. In less than 3 min, six hydrogen-bonded polyelectrolytes (three double
layers) were adsorbed on each droplet. A new technology recently introduced an ultrathin
water layer between two phases in a triple emulsion and achieved high packaging efficiency
of hydrophobic goods in a hydrophobic polymer shell directly dispersed in water [186].

Table 4. Summary of the droplet microfluidics for emulsions and microcapsules in food processing
and analysis.

Shell Materials Embedding Materials Type Applications Refs

Polycaprolactone Chlorophyll Microparticle Drug encapsulation [47]

Starch Nisin Nanoparticle Drug encapsulation [48]

Silk fibroin/chondroitin sulfate/alginate Bovine serum
albumin/polystyrene latex

Microgel Drug delivery [51]

4,4-methylenediphenyl
diisocyanate/ethylenediamine

Pendimethalin Microcapsule Drug delivery [187]

Chitosan Curcumin/catechin Microcapsule Drug delivery [188]

Sodium alginate Sucralfate Microcapsule Intestinal barriers [189]

Zein Nisin Microcapsule Drug encapsulation [190]

Zein Lecithin Microcapsule Drug delivery [191]

N-isopropylacrylamide/methacrylic acid Lumogen Red Microcapsule Drug delivery [192]

Liposomes Plasminogen activator Liposome Drug encapsulation [193]

Sodium alginate/gelatin Vitamin A O/W emulsion Drug encapsulation [194]

Sodium alginate/cellulose nanocrystals Oil O/W emulsion Lipophilic compound
delivery

[195]

Gelatin β-carotene O/W emulsion Drug encapsulation [196]

Polyvinyl alcohol Rifampicin W/O/W
emulsion

Drug delivery [27]

PDMS-b-PDMAEMA Sucrose/catechin W/O/W
emulsion

Drug encapsulation [34]

Sodium alginate Phycocyanin W/O/W
emulsion

Drug delivery [42]

Sodium alginate/calcium–
ethylenediaminetetraacetic acid

Oil O/W/O
emulsion

Lipophilic compound
delivery

[197]

Silica nanoparticles/
poly(diallyldimethylammoniumchloride)/
polystyrene sodium sulfate

Trypsin W/W emulsion Enzyme delivery [198]

5. Conclusions and Perspectives

Microfluidics has been defined for more than 60 years. Due to the unique fluid prop-
erties in microscale environments, this technology is widely applied in food processing.
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Microfluidics can produce fine droplets to stabilize the multicomponents of dispersed
systems, which is very beneficial for the design of novel emulsion-based foods. Compared
to the traditional phase-dispersion processing, microfluidics is more effective in the use of
energy as well as the control of the shape, size, and size distribution of components. It has
the potential to significantly change the processing of dispersed food systems. In addition
to emulsions, microfluidics is also an efficient approach to prepare solidified microcapsules
for protecting sensitive objects during food processing and storage. Microfibers/films fabri-
cated by microfluidic spinning technology with high mechanical properties can potentially
be applied as functional packaging for various food products. The bioactive components
dispersed or embedded in the fibers/films are critical factors for food preservation and anal-
ysis. On-chip microfluidic systems also provide high-throughput and large-scale analysis
by integrating multiple steps, multiplexing, and parallel analysis in a single device.

It is obvious that the microfluidics can be applied in many fields of food science.
However, most current applications of this new technology are in the development of
functional emulsions. Fibers and films are still in a lab-scale stage, and there are still many
attempts expected from food scientists to scale-up and expand its influences in food science:
(1) Microcapsules produced via microfluidics have been applied for embedding many
sensitive components in food systems. However, those applications are used far less than
traditional methods. More components can be stabilized by introducing this easy-to-use,
stable, and cost-effective technology to produce functional foods. (2) Microfluidic spinning
technology is an efficient way to fabricate microfibers/films. Their potential applications
as functional packaging and microanalysis systems have already been demonstrated by
recent studies from our groups and other peers. However, the solidification of biopolymers
(such as proteins and polysaccharides) and their stabilities during the processing and
application of micro-/nanofibers is still a challenge. More investigations need to be focused
on the design of biopolymers to produce stable fibers and films. (3) There is no doubt
that both MST and droplet microfluidics have aroused wide attention in the field of food
science and technology. However, most applications are currently in the laboratory stage
of development. One challenge for large-scale production in industry is the design of
the microfluidic equipment. In a lab, a chip can be easily produced for the fabrication of
microfibers and droplets. One cannot guarantee that the same design of microchannels will
be applicable in industry. Another challenge is productivity of the microfluidic equipment.
Demonstration is always needed in fundamental research, but mass production is needed
in industry. Although some strategies can fulfill the requirement of ultrahigh throughput,
much more effort should be devoted to exploring the manipulation of the fiber and droplet
generation under complex flows in an extended scale of microchannels in industry.
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