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Abstract: Food production from agriculture depends on irrigation, mainly in poor rainfall zones, such
as the Mediterranean region. Chicory is an important food crop component of the Mediterranean
diet. Considering the increasing incidence of drought due to climate change, this study was carried
out in order to investigate the effect of moderate drought stress on photosynthesis, leaf gaseous
exchange, growth, and tocol and carotenoid composition of chicory under field conditions. Chicory
was subjected to rainfed condition stress in a randomized block design. At 50 days of treatment,
drought stress caused about 48% reduction in dry matter, 30% in leaf relative water content, and
about 25% in photosynthetic rate and stomatal conductance, whereas mesophyll conductance was not
affected. A strong relationship between photosynthetic rates and stomatal conductance was observed.
In the rainfed chicory, at the end of treatment, an increase (about 20%) in carotenoid and tocopherol
content was found, thus, giving further insight into the positive effect of moderate drought stress
on these compounds. This finding suggests that under proper rainfed conditions, it is possible to
increase and save the quality of dry chicory, although yield loss occurs.
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1. Introduction

Chicory (Cichorium intybus L.) is a native plant of the Asteraceae family, common in the
Mediterranean basin and belonging to the so-called Mediterranean diet [1]. It is a widely
spread crop able to tolerate different climatic and soil conditions, and is commercially
cultivated in North America, Europe, and some Asian regions [2]. Several studies have
reported its health benefits [3–5].

Agricultural productivity is strongly dependent on water availability, mainly in arid
and semi-arid zones [6]. In the last years, climatic change caused a rainfall decrease in
different areas of the Mediterranean countries; consequently, a severe deficit in the avail-
able water resources for agricultural production occurred [7]. The irregular distribution
of rainfall became the main limitation to a sustainable crop yield in the drought-prone
areas [8]. Strong water stress limits crop yields and growth, leading to negative economic
consequences [9]. To reduce the negative effects of drought, crops require enough water
availability during summer in order to guarantee growth and high yields. Different papers
report the positive effect of water availability on yield in chicory and the strategies for
mitigating water-deficit stress [10–13]. The reduced water availability imposes changes
to chicory plant morphological traits, such as canopy structure, and negatively affects
biomass accumulation, as in mallow plants [14,15]. Plants may develop different morpho-
physiological and adaptation mechanisms in response to environmental stresses [16]. An
increase in the antioxidant systems, such as enzymes and secondary metabolites (ascor-
bic acid, glutathione, tocols, carotenoids, flavones, and flavonoids) has been observed to
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enhance drought tolerance [17–19], even if this behavior was found to depend on phe-
nological stage, genotype, organs of the plants (fruits and leaves), severity and length of
the stress [20,21]. In some studies on fruits and vegetables under water stress conditions,
an increment of β-carotene and carotenoids was found [22–24], while, in other studies, a
reduced tissue concentration of carotenoids was observed [25,26].

Carotenoids (carotenes and xanthophylls) are yellow, orange, and red pigments biosyn-
thesized by photosynthetic organisms, present in various fruits and vegetables. Xantho-
phylls, in particular, can be found in their free oxygenated form or esterified to fatty acids.
Carotenes have an important function in the diet for their provitamin A, antioxidant and
immunosystem activity, and for intercellular communication. Carotenoids cause a signifi-
cant reduction in the risk for different diseases [27]. In plants, besides their direct role in
photosynthesis, they are involved in the mechanisms of oxidative stress tolerance [28,29].

An increase in α-tocopherol was observed in response to water stress [30–32]. Alfa-
tocopherol is included in a group of vitamers, β, γ, δ- tocopherol (T), and α, β, γ,- tocotrienol
(T3), known as Vitamin E. Tocopherols are involved in plant growth, signal transduction,
phytohormonal balance, abscission, and senescence, as well as in many other metabolic
processes [30,31,33]. They are also known to physically quench and chemically react with
O2 in chloroplasts, thus, protecting lipids, other membrane components, and the structure
and functions of PSI [30,32]. As the major lipid soluble chain-breaking antioxidants in
humans, they have been demonstrated to prevent different chronic diseases [34]. Vegetable
oils are their main sources [35], but they are present to a different extent in several vegetable
products at significant nutritional amounts.

The aim of this study was to investigate how moderate drought stress, through rainfed
conditions, can affect growth parameters, including the physiological, agronomical, and
nutritional traits of field-grown chicory. This in order to verify if it could be an effective agri-
cultural practice to be adopted for chicory in order to increase the quality of plants and to
maintain a sustainable crop productivity in the southern Italy Mediterranean environment.

2. Materials and Methods
2.1. Cultural Practices and Experimental Treatments

Field trials were carried out during 2020 and 2021, on a chicory plant (cv. Choice), at
an experimental field site in Baranello (Molise Region, Italy, latitude 41◦31′ N, longitude
14◦33′ E, altitude 630 m a.s.l.). The experimental field soil had a uniform profile, with
an organic matter content of 1.5% and a clay-sand texture. It contained 0.12% of total N
(nitrogen), 20.5 µg/g of available P (phosphorous), 139 µg/g of exchangeable K (potassium),
and very low active CaCO3. The pH was, on average, neutral and the salinity was low.
The previous crop was Phaseolus vulgaris L. Moderate drought was imposed through
rainfed conditions for 50 days. Rainfed (R) and well-watered (W) plants were compared
following a randomized block design with five replications (3 m2 each plot). Sowing
was carried out manually, placing seeds at a 0.5 cm depth and spacing the rows at 45 cm.
Thinning was made to a plant population of 100 plants/m2. After sowing, in order to
ensure a uniform crop establishment, the same irrigation amount was applied to all fields,
by applying a drip irrigation system on every row. Whenever evapotranspiration (ET)
reached 25 mm, water restorations occurred. The Penman–Monteith formula was used to
calculate ET, from micrometeorological data [16]. At the beginning of the second growing
season (25 April), the plants were cut to 30 mm above the potting media level and rainfed
conditions were imposed. The first defoliation occurred on the 24 May 2021, 30 days after
treatment (30 DAT), when plants showed at least seven fully developed leaves, and was
made manually. The second defoliation occurred on the 15 June 2021 (50 DAT), in the same
manner as the first. All plots were treated with the recommended fertilizer rates of the area,
70 kg/ha of P2O5 and 80 kg/ha of K2O at seedbed preparation and 100 kg/ha of N applied
in two splits. The first split (60% of total N rate) was basally added to the soil the sowing
day, while the second split (40% of total N rate) was supplied at the beginning of the next
growing season. To allow for uniform growing conditions, a buffer strip surrounded the
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field. The weather data (temperature and rainfall) were taken from a meteorological station
situated near the experimental field (Table 1).

Table 1. Monthly accumulated precipitation, and maximum and minimum average air temperature
before and throughout the experimentation.

Month Average Max
Temperature (◦C)

Average Min
Temperature (◦C) Rainfall (mm)

January 14.9 −2.9 102.6
February 20.9 −4.6 22.2

March 20.1 −1.4 17.2
April 26.8 −0.7 10.6
May 28.7 5.8 0.4
June 29.9 7.9 0.0

2.2. Leaf Traits and Gas-Exchange Measurements

Between May and June of the second year (at 30, 37, 43, and 50 DAT), eight leaf
gas-exchange measurements were performed, before the flowering stage, using a portable
infrared gas analyzer (Li-6400; LI-COR, Lincoln, NE, USA). Leaf photosynthetic capacity
(Pn), stomatal (gs), and mesophyll conductance (gm) were calculated, as in Delfine, Loreto,
Pinelli, Tognetti, and Alvito [36]. The leaf gas exchange data were measured to the fully
expanded leaves until 11.30 a.m., in order to avoid the midday depression in photosynthetic
rate. The relative water content (RWC), i.e., the ratio of water content in fresh to turgid
leaves, was also measured on the same leaves used for gas-exchange measurements [10].

2.3. Chemicals and Reagents

Solvents were obtained at the highest purity; other reagents were of analytical grade
(Sigma Chemicals, St. Louis, MO, USA). Violaxanthin, neoxanthin α-carotene, 9-cis-β-
carotene, and 13-cis-β-carotene standards were obtained from CaroteNature (Lupsingen,
Switzerland); lutein, zeaxanthin, and β-cryptoxanthin were purchased from Extrasynthese
(Z.I. Lyon-Nord, Genay, France). All-trans-β-carotene was from Sigma Chemicals; α, β,
γ, and δ-tocopherol standards were from Merck (Darmstadt, Germany); α, β, γ, and
δ-tocotrienol standards were obtained as in [37].

2.4. Nutritional Analysis

Full-expanded leaves from W and R samples were harvested at 30 DAT and 50 DAT.
The non-edible part was removed. From each sample, a minimum of 500 g was collected
and cleaned by removing foreign parts. Then, samples were freeze-dried (Genesis 25SES
freeze dryer, VirTis Co., Gardiner, NY, USA) and ground using a refrigerated IKA A10
laboratory mill (Staufen, Germany), then mixed and stored at −20 ◦C. The AOAC methods
were used to determine moisture, proteins, ash, and fiber [38]; fats were analyzed by
the method of acid hydrolysis [39]. Tocols and carotenoids were extracted according to
Fratianni et al. [3] and determined according to Panfili, Fratianni, and Irano [37,40].

Carotenoids were analyzed through a normal (for xanthophylls) and a reverse phase
(for carotenes) HPLC method, as in [3,40]. Analysis were performed by using a HPLC
Dionex (Sunnyvale, CA, USA) analytical system, comprising a 50 µL injector loop (Rheo-
dyne, Cotati) and a U6000 pump system. Tocol determination was carried out by a Dionex
HPLC, through normal phase, as in [3,37]. All tocols were fluorimetric detected by means of
a Dionex RF 2000 spectrofluorimeter, at an excitation wavelength of 290 nm and an emission
wavelength of 330 nm. Compounds were identified through their spectral characteristics
and by comparison of their retention times with standard solutions. Calibration curves of
each standard solution were used for quantification.
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2.5. Statistical Analysis

Agronomical (fresh and dry biomass) and physiological data (RWC, photosynthesis,
stomatal conductance, and mesophyll conductance) were the means of five replicates.
Results of nutritional composition and bioactive compounds were the average of three
determinations. Data were analyzed by means of the ANOVA test, using a Statistical
Software Package for Windows (SPSS Inc., Chicago, IL, USA). The significance of difference
was set at p ≤ 0.05.

3. Results and Discussion
3.1. Weather Data

The rainfall distribution was that of the period and varied between before and through-
out the trial. It was higher from January to April (maximum 102.6 mm) and almost com-
pletely absent throughout the experimental trial (0.4 mm). Air temperature was that of the
period, with a maximum average temperature of about 30 ◦C (Table 1).

3.2. Fresh Biomass and Dry Matter Accumulation

The aboveground fresh biomass accumulation (g) was significantly affected by drought
stress (Figure 1A). The R treatment resulted in a reduction in chicory biomass of 30% and
52%, compared to W, at 43 and 50 DAT, respectively. Results also showed that drought
stress significantly affected fresh biomass accumulation at 50 DAT, compared to the same
treatment at 30 DAT. At 30 DAT, no significant difference between treatments was observed,
while, at 50 DAT, rainfed plants showed a 48% decrease in dry matter compared to the
well-watered ones, (Figure 1B), The decline in dry matter suggests that the decrease in
photosynthesis resulted in a reduction in translocation of photo-assimilates to plant tissues,
leading to smaller plants [16]. The literature data indicate a reduction in dry matter due to
drought stress in chicory [11–13,41].

3.3. Relative Water Content

Rainfed conditions caused a reduction in relative water content (RWC) in chicory
leaves (Figure 2). At 30 and 37 DAT, no significant difference between treatments was
observed, which may be attributed to the similar tissue water content. At 43 DAT, the
relative water content of R leaves was significantly lower than that of W. At 50 DAT, R
leaves resulted in the lowest RWC, with a 29% reduction compared to W. The leaf RWC
was closely associated with photosynthetic gas exchange parameters during different crop
growth stages.

3.4. Photosynthesis, Stomatal (gs) and Mesophyll (gm) Conductance

Rainfed conditions caused a significant effect on photosynthesis (Pn) at the end of the
trial period (50 DAT) (Figure 3), with the highest photosynthetic rates in W and the lowest in
R. These results suggest that, during the growth stage of rainfed samples, drought-stressed
chicory can experience a serious reduction in the photosynthetic rates that can be higher
than 25%. The reduction in photosynthetic rates can depend on stomatal and non-stomatal
factors [16]. The highest stomatal conductance (gs) was found when the plant was at the
first defoliation (30 DAT), while it reduces, only under rainfed conditions, as the plant
grows to the second defoliation at 50 DAT (Figure 4A). In particular, at 30 DAT, a similar
value of gs was found between R and W, while, at 43 and 50 DAT, it was significantly
affected by rainfed conditions, showing, at the end of treatment, a 24% reduction in R
plants. At 37 DAT, a very strong relationship (r2 = 0.989) between photosynthetic rates
and stomatal conductance was observed. A reduction in the photosynthetic rate during
drought stress, due to stomatal closure, has been reported in chicory [12,13], as well as
in pepper, mint, and rosemary [16,36]. The results found revealed that, throughout the
trial, the mesophyll conductance (gm) of R plants was not significantly different to W
(Figure 4B). The weak relationship (r2 = 0.117) between the mesophyll conductance and the
stomatal conductance suggested that the reduction in stomatal conductance of R plants
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did not affect mesophyll conductance. Similarly, throughout the trial, there was a weak
relationship (r2 = 0.192) between mesophyll conductance and photosynthesis. The reduction
in photosynthesis observed during the end of the trial could be due to stomatal closure; in
this case, a consequent reduction in mesophyll CO2 concentration should be observed [42].
The mesophyll components generally cause an additional resistance to CO2 diffusion
toward the chloroplasts that may increase under stress conditions [16,36,42,43], and it is
likely to be controlled by the mesophyll structure [44]. The similar gm observed in irrigated
and rainfed leaves, during the whole harvest time, indicated that gm did not contribute to
increasing the resistance to CO2 diffusion in rainfed chicory leaves. This result revealed that
photosynthesis was not directly affected by the resistances to CO2 diffusion. The reduction
in stomatal conductance might have resulted from stomatal closure, which prevents CO2
from entering the leaf, leading to a decrease in photosynthetic carbon assimilation. The
strong relationship between Pn and gs indicated that stomatal closure mostly regulated the
reduction in Pn, whereas the weak relationship between Pn and gm demonstrated that the
reduction in Pn was not affected by an additional resistance to CO2 diffusion toward the
chloroplasts [16]. As previously discussed, rainfed conditions restrict chicory plant growth
and productivity, also reducing the uptake and the diffusion of CO2, and such conditions
also alter different biochemical reactions, which further inhibit photosynthesis [16,45].
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3.5. Nutritional Composition

In Table 2 the chemical composition of R and W samples, at 30 and 50 DAT, is reported.
Data are expressed as g 100/g dry weight (d.w.). Results are in accordance with the values
in the literature [5,46]. A slight significant decrease in fats and increase in proteins was
found between the two sampling times. Between the two water regimes, no significant
differences were observed.
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as mean ± standard deviation (n = 5). Asterisks indicate significant differences between treatments
on the given DAT at p ≤ 0.05.

Eight carotenoid compounds were detected and identified, as follows: violaxan-
thin, neoxanthin, lutein, zeaxanthin (xanthophylls), and α-carotene, β-carotene, 9-cis-β-
carotene, and 13-cis-β-carotene (carotenes) (Table 3). Lutein was the main carotenoid (about
55–100 mg/100 g d.w.), while β-carotene accounted for 13–20 mg/100 g d.w. Quite high
amounts of violaxanthin and neoxanthin were also found. Lutein and β-carotene have been
reported as being among the major carotenoids found in green leafy vegetables, even if also
other carotenes and xanthophylls were detected [3,4,47]. Results are in the same order of
magnitude of different data in the literature [3,4,48]. At 50 DAT in R samples, a significant
increment of xanthophylls was observed, ranging from about 27% for neoxanthin to 44%
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for zeaxanthin. No significant increases of carotenes were found. The total carotenoid
amount was, significantly, 22% higher in rainfed samples.

Table 2. Chemical composition of chicory at different sampling times and water regimes (g/100 g d.w.) a.

DAT Samples Protein Fat Ash Carbohydrates b

30
W 19.5 (0.1) 1.8 (0.1) 14.5 (0.6) 64.2 (0.1)

R 18.8 (0.1) 1.8 (0.1) 15.1 (0.1) 64.3 (0.1)

50
W 16.1 (0.4) 2.4 (0.1) 15.2 (0.4) 66.3 (0.9)

R 15.8 (1.2) 2.7 (0.7) 15.1 (0.1) 66.4 (1.8)
a All values are reported as mean ± standard deviation (n = 3). Abbreviations are as follows: DAT, days after
treatment; W, well-watered; R, rainfed. b calculated by difference.

Table 3. Carotenoid content of chicory at different days after water treatment (mg 100/g d.w.) a.

DAT Samples Violaxanthin Neoxanthin Lutein Zeaxanthin α-
Carotene

13-Cis-β-
carotene

β-
Carotene

9-Cis-β-
carotene Totals

30
W 10.7 (0.8) 9.9 (1.0) 57.2 (5.5) 5.2 (1.2) 2.6 (0.4) 2.8 (0.4) 13.3 (3.5) 2.4 (0.3) 104.1 (10.6)

R 11.3 (2.2) 10.5 (1.3) 53.8 (2.1) 5.5 (0.1) 2.4 (0.8) 2.7 (0.5) 13.3 (1.6) 2.1 (0.4) 101.7 (2.5)

50
W 11.3 (1.5) * 12.6 (0.4) * 72.3 (9.3) * 4.1 (0.7) * 2.7 (0.1) 3.4 (0.3) 18.9 (0.9) 3.0 (0.3) 128.4 (0.7) *

R 15.4 (0.5) * 16.0 (1.1) * 96.4 (4.6) * 5.9 (0.5) * 2.4 (0.6) 3.0 (0.2) 15.1 (2.4) 2.5 (0.3) 156.7 (2.5) *
a All values are shown as mean ± standard deviation (n = 3). Abbreviations are as follows: DAT, days after
treatment; W, well-watered; R, rainfed. Asterisks indicate statistically significant difference at p ≤ 0.05, at the
same DAT.

In accordance with other papers in the literature [3,49], only α-tocopherol (α-T), from
about 30 mg/100 g d.w. to 40 mg/100 g d.w., and γ-tocopherol (γ-T), from about 10 mg
100/g d.w. to 18 mg/100 g d.w., were detected. No tocotrienols were found. At 50 DAT,
as compared to W samples, there was a significant 20% increase in total tocols in R plants,
changing from about 15% for α-T to 40% for γ-T (Table 4).

Table 4. Tocopherol content of chicory at different days after water treatment (mg/100 g d.w.) a.

DAT Samples α-T γ-T Totals

30
W 30.9 (2.6) 17.6 (1.1) 48.5 (3.7)

R 31.9 (0.4) 17.5 (0.2) 49.4 (0.5)

50
W 33.4 (1.7) * 11.4 (0.7) * 44.9 (2.4) *

R 38.5 (0.1) * 15.8 (0.6) * 54.3 (0.5) *
a All values are shown as mean ± standard deviation (n = 3). Abbreviations are as follows: DAT, days after
treatment; W, well-watered; R, rainfed. Asterisks indicate statistically significant difference at p ≤ 0.05, at the
same DAT.

The down-regulation of photosynthesis can be linked to damage of the photosynthetic
apparatus and an increased thermal dissipation, as a photo-protective process. Here,
ROS are produced, as a result of over-photooxidation, which disrupts photosynthetic
activities by lipid peroxidation. Alfa tocopherol is reported to be involved in response to
water deficiency [30–33]. This occurs in two phases, as follows: in the first phase, α-T is
synthetized to scavenge the ROS; in the second phase, tocopherol degradation is induced by
a severe stress. The first phase is prevalent in stress-resistant species and, therefore, a higher
tolerance to drought resulted in higher α-tocopherol content [31]. According to our results,
fruits from water-stressed plants were also found to contain more γ-tocopherol than those
from control plants [23]. The induced concentrations of tocopherols depend upon severity
of prevailing stress, its intensity, and species-specific response [20,21]. From the literature,
there are controversial results on the effect of water stress on carotenoids. From our
results, an increase in xanthophylls was observed, similar to the literature papers where an



Foods 2022, 11, 3725 9 of 11

increment in the xanthophyll cycle components was demonstrated in different plant species
under stress conditions [25,50,51]. This cycle consists of the enzymatic interconversions
of violaxanthin, antheraxanthin, and zeaxanthin in the thylakoid membrane. It can be
considered as another important protective mechanism that helps to minimize irreversible
oxidative damage to the photosynthetic apparatus. The physiological function of lutein
in stress tolerance is not well understood, but different papers report an increase under
drought, due to its effect as a secondary barrier [52,53].

4. Conclusions

Information coming from our results confirmed the adverse effect of the absence of
rainfall, and the consequent drought stress conditions, on the agronomical and physiolog-
ical parameters of chicory plants. On the contrary, an increase in tocol and xanthophyll
amounts after water stress imposition was observed. The latter results add information
to the scarce available literature on chicory and give further insights to the evidence that
moderate drought stress can positively affect the content of these components. The overall
findings indicate that drought stress can be practiced on chicory in areas where a challenge
to irrigation water occurs, with important implications for agricultural practices aimed at
saving water in arid and semi-arid growing regions.
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