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Abstract: This study aimed to optimize the postharvest blanching and drying process of blueber-
ries using high-humidity air impingement (HHAIB) and hot-air-assisted infrared (HAIR) heating.
A novel pilot-scale hot-air-assisted carbon-fiber infrared (IR) blanching/drying system was developed.
Fresh blueberries with an average diameter of 10~15 mm were first blanched with high-humidity
air at 110 ◦C and 12 m/s velocity for different durations (30, 60, 90, and 120 s); subsequently, the
preblanched blueberries were dried at different IR heating temperatures (50, 60, 70, 80, and 90 ◦C)
and air velocities (0.01, 0.5, 1.5, and 2.5 m/s), following a factorial design. The drying time (DT),
specific energy consumption (SEC), ascorbic acid content (VC), and rehydration capacity (RC) were
determined as response variables. A three-layer feed-forward artificial neural network (ANN) model
with a backpropagation algorithm was constructed to simulate the influence of blanching time, IR
heating temperature, and air velocity on the four response variables by training on the experimental
data. Objective functions for DT, SEC, VC, and RC that were developed by the ANN model were
used for the simultaneous minimization of DT and SEC and maximization of VC and RC using
a nondominated sorting genetic algorithm (NSGA II) to find the Pareto-optimal solutions. The
optimal conditions were found to be 93 s of blanching, 89 ◦C IR heating, and a 1.2 m/s air velocity,
which resulted in a drying time of 366.7 min, an SEC of 1.43 MJ/kg, a VC of 4.19 mg/100g, and
an RC of 3.35. The predicted values from the ANN model agreed well with the experimental data
under optimized conditions, with a low relative deviation value of 1.43–3.08%. The findings from
this study provide guidance to improve the processing efficiency, product quality, and sustainabil-
ity of blueberry postharvest processes. The ANN-assisted optimization approach developed in
this study also sets a foundation for the smart control of processing systems of blueberries and
similar commodities.

Keywords: infrared; machine learning; blueberry; multiobjective optimization; genetic algorithm;
drying; blanching

1. Introduction

Blueberry (Vaccinium corymbosum L.) is a popular soft fruit grown in broad locations
around the world. The presence of bioactive compounds such as ascorbic acid and an-
thocyanins makes them powerful free radical scavengers [1]. However, fresh blueberries
are highly perishable and should be processed to extend their shelf life and off-season
availability. As one of the oldest food preservation methods, drying is widely used in
preserving seasonal fruit and reducing postharvest losses [2]. The surfaces of blueberries
are covered by a waxy hydrophobic layer, which has low moisture permeability and sig-
nificantly limits mass transfer and slows the drying process [3]. Numerous mechanical,
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chemical, and thermal pretreatments have been used to overcome this limitation of drying.
Chemical dipping and hot water blanching pretreatments can ameliorate the permeability
of the berry skin and enhance moisture transfer. However, the chemical residue may lead
to food safety risks and cause additional environmental problems with wastewater [4]. In
addition, hot-water blanching usually leads to a mass of soluble components lost in the hot
water by leaching. High-humidity hot air impingement blanching (HHAIB) is a unique and
effective thermal treatment technology that combines the advantages of steam blanching
and air impingement technologies. Recently, HHAIB has been used to pretreat peppers [5]
and grapes [6]. In a typical HHAIB process, berries are directly impinged by superheated
steam at a high velocity for a short duration, which destroys the waxy hydrophobic layer
and avoids the loss of water-soluble nutrients [7]. However, the optimal HHAIB conditions
for blueberries remain to be determined.

In order to provide high-quality dried berries to meet the growing demands of health-
conscious consumers, multistage or combined drying technologies have been applied for
berries. Among them, hot air (HA) drying is one of the most extensively used technologies.
However, the low drying efficiency and high energy consumption are not favorable for
the quality preservation and sustainability of the process. Hot-air-assisted IR drying offers
many advantages, such as low capital investments, greater energy efficiency, and a higher
heat transfer rate, which result in reduced drying times and higher drying rates for different
products [8]. However, the conventional infrared emitters, such as ceramic emitters, quartz
emitters, and gas combustion emitters are usually large in size, complex in configuration,
and difficult to install. In recent years, a new type of IR emitter made from carbon-fiber
sheets was developed. The thickness of this new IR emitter is only 2 to 4 mm, and it can
easily be activated by a regular voltage (220 V/110 V). This new emitter has a relatively
simple configuration, a thinner thickness, and a more compact volume, which makes it
easy to install in limited spaces such as an HA drying chamber or a vacuum chamber [9].
The proper design of an HAIR drying system that couples the advantages of both HA and
carbon-fiber infrared heating may be more efficient compared to the single technologies for
the postharvest processing of blueberries.

The main goals of optimizing the postharvest blanching/drying processes for fresh
agricultural products are to maximally maintain quality features, including texture and
chemical composition, and to minimally consume energy and drying time. Rehydration
capability is an important property of dried blueberries, which reflects the irreversible
changes in the microstructure and texture properties of food material subjected to different
processing conditions. A higher rehydration capability usually indicates lower microstruc-
ture damage [10]. Ascorbic acid, a major antioxidant substance in blueberries, is vulnerable
to heating. The content of ascorbic acid in dried blueberries is commonly monitored to track
the nutrient loss during thermal processes. It is often assumed that if sufficient ascorbic
acid is preserved, other nutrients will be preserved as well [11]. Interest in high-quality
dried blueberries has increased in recent years, particularly due to its popularity as an
ingredient in pizza, breakfast cereals, and various vegetable and fruit dishes [12]. In fact,
the optimization of drying conditions is usually multiobjective in nature and involves mini-
mizing the drying time (DT) and specific energy consumption (SEC) and maximizing the
ascorbic acid content (VC) and rehydration capacity (RC). Currently, the highly nonlinear
relationships between drying parameters and objective functions can be simulated using
machine learning approaches, such as artificial neural networks (ANN), which have been
proven to be effective in modeling complicated and ill-defined engineering problems [13].
The multiobjective optimization (MOO) problem using an ANN model is to find a vector of
decision variables that satisfy the restrictions of all objective functions. MOO problems can
be resolved in two different approaches. The typical strategy is to convert other objectives
into constraints or to merge two or more objectives into a single objective variable using
the weighted sum method. However, the weight selection is easily prejudiced by human
subjectivity [14].
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The other approach for solving MOO problems where multiple objective functions
are optimized and obtained under conditions that are in conflict with each other is finding
the Pareto-optimal solution. The Pareto-optimal solution is a set of solutions that are not
dominated by any other solution in the solution space, where improvement in one objective
requires a certain sacrifice of the others [15]. The most critical step in this solving procedure
is to find the Pareto front, which contains a series of Pareto optimal solutions within the
design space. Once the Pareto front is established, it is simple to choose the best one
according to the specific drying requirements. The nondominated sorting genetic algorithm
(NSGA II) is a commonly used method that can be used to find the Pareto-optimal solution
with a high efficiency based on the ANN model. NSGA-II has been successfully used in the
MOO of apple cube drying [16] and dragon fruit slice drying [17].

Taking the above into consideration, the objectives of this study were to: (1) develop
an HAIR dryer using the new carbon-fiber sheet IR emitters; (2) analyze the effects of
the HHAIB blanching time (BT), IR heating temperature (T), and air velocity (v) on the
DT and SEC of the drying process and the RC and VC of dried blueberries; (3) develop
an ANN model to simulate the nonlinear relationships between the drying variables
and the objective functions; and (4) optimize the operating conditions of the blueberry
blanching/drying process using the ANN model via the NSGA-II method to simultaneously
minimize the DT and SEC and maximize the VC and RC. The outcomes of this study provide
an innovative technology for producing high-quality dried blueberries in a more efficient
and sustainable way.

2. Materials and Methods
2.1. Material Preparation

Blueberries (Vaccinium corymbosum L. cv. Southern Highbush) were manually harvested
by experienced cultivators in a local organic farm (Fangshan, Beijing, China), immediately
transported to the lab, and stored in a refrigerator at 4 ± 1 ◦C before use. To reduce the effect
of the variance in the size and density of the fruits on the blanching/drying characteristics
and quality attributes, the harvested blueberries were subjected to a series of size screenings
by a vibrating screener (FXJ-LM, Weiming, Shandong, China), followed by density sorting
using sodium chloride (NaCl) solutions of different concentrations (30.6 g/L and 62.5 g/L)
at 25 ◦C. Only the mature blueberries with a uniform purplish color, an average diameter of
13 ± 2 mm, and a density over 1041 kg/m3 (Figure 1) were selected for the experiments [18].
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Figure 1. Blueberries that were used in the experimental study.

2.2. Design of Processing Equipment

Blanching and drying experiments were conducted with laboratory-scale HHAIB
equipment (Figure 2) and customized high-precision computer-controlled HAIR equipment
(Figure 3), respectively. Both sets of equipment were installed in a Fangshan Yunong
Agricultural Technology Co. Ltd. processing workshop (Beijing, China). The details of
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the HHAIB equipment were reported by Xiao et al. [19] and Zielinska et al. [20]. The
HHAIB system contained a steam generator in an air-impingement chamber. The steam
was accelerated by a centrifugal fan and impinged through a series of round in-line nozzles.
An electrical heating element raised the temperature of the steam to the setting values.
Before blanching, the equipment was preheated for 10 min to reach a steady state. Then, a
single layer of blueberries was spread on a stainless-steel mesh tray and transferred into
the chamber for the treatments.
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Figure 2. Schematic diagram of HHAIB equipment. (1) Steam generator; (2) centrifugal fan;
(3) electric heating assist; (4) impingement round nozzle; (5) material tray; (6) temperature and
humidity sensor; (7) control system.
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Figure 3. Schematic diagram and photos of HAIR drying equipment. (1) centrifugal fan; (2) load
cell; (3) air distribution chamber; (4) temperature sensor; (5) air outlet; (6) control system; (7) infrared
carbon-fiber sheet; (8) tray; (9) air flow; (10) air inlet; (11) air filter.

A schematic diagram and photos of the HAIR dryer as well as key components are
shown in Figure 3. The processing system contained a centrifugal fan (No. 1 in Figure 3) that
was installed above the dryer to draw the air into the system and accelerate air into the air
distribution chamber. The air velocity could be adjusted by 0~4 m/s by an inverter (EV4300,
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Taida, Shanghai, China). The oblique air spoiler in the air distribution chamber kept the
outlet airflow horizontal, parallel to the sample trays. Infrared heating was provided by
carbon-fiber sheet IR emitters (WR6521, Reli, Shanghai, China), as indicated by No. 7 in
Figure 3, the detail information of which was thoroughly introduced in a previous study
by Zhang et al. [21]. The spacing between two adjacent IR emitters was fixed at 70 mm,
and the trays were installed 35 mm below the IR emitters. A thermocouple (SHT25, CLX,
Shenzhen, China) with an accuracy of ±0.1 ◦C was fixed 10 mm blow the carbon-fiber
sheet to measure the heating temperature of the IR emitters. The IR heating temperature
was controlled by a proportional integral derivative (PID) controller (model E5CN, Omron,
Tokyo, Japan). The thermal image embedded in Figure 3 indicates that the heating was
uniform over the entire surface of the IR emitter. Before each drying experiment, the HAIR
dryer was run for 20 min to achieve a stable temperature.

The energy consumption during the drying processes was measured by a digital
power meter (DTSU1717-4P, HangLong, Shanghai, China). Digital load cell systems with a
precision of 0.01 g (HYLF-010, Meikong, Hangzhou, China) were installed at the bottom
of the system to track the weight change of the samples during the drying process with a
10 min interval. A touch screen (EI18B20, Weinview, Shenzhen, China) was installed on the
control system to monitor in real time and record the weight, energy consumption, and
other drying parameters.

2.3. Sequential HHAIB and HAIR Processing Experiments

To evaluate the effects of blanching time BT = {30, 60, 90, 120 s}, IR heating tempera-
ture (T), and air velocity (v) on the quality attributes of blueberries. Natural convection
with v = 0.01 m·s−1, forced convection with v = {0.5, 1, 1.5, 2.5 m·s−1}, and IR heating
temperature with T = {50, 60, 70, 80, 90 ◦C} were selected for experiments following a
three-factor full-factorial design with 80 groups of drying experiments in total. According
to the preliminary experimental results, the blanching experiments were performed with an
air velocity of 12.0 ± 0.5 m/s, a relative humidity of 30 ± 2%, and a blanching temperature
of 110 ± 2 ◦C for different time periods. Subsequently, the HHAIB-treated blueberries were
immediately spread in a single layer on a stainless-steel tray with a loading capacity of
4 kg·m−2 and transferred to the HAIR dryer. Triplicate experiments were conducted in the
same drying conditions. The dried samples were vacuum-sealed in polyethylene bags to
prevent moisture absorption and stored in a refrigerator (4 ◦C) for no longer than 3 days
for further analysis.

2.4. Drying Time

The sample weight was automatically recorded by the control system. The initial
moisture content (MC0) of the dried samples was determined using convective drying
at 105 ◦C for 24 h [22]. The moisture content at drying time t (MCt) was calculated
automatically by control system based on Equation (1). The HAIR dryer was stopped
automatically when MCt was less than 0.05 kg/kg in dry basis. Total drying time t was
recorded by the comprehensive logical judgment of the touch screen terminal.

MCt =
Mt − M0·(1 − MC0)

M0(1 − MC0)
(1)

where MCt is the moisture content in dry basis at a particular drying time t, kg/kg; M0 is
the initial sample weight, kg; and MC0 is the initial moisture content in dry basis, kg/kg.

2.5. Specific Energy Consumption (SEC)

The energy needed to remove 1 kg of water from blueberries was defined as the
specific energy consumption (SEC, MJ/kg). The SEC during dehydration was calculated
using Equation (2) [23]:

SEC =
E

mwater
(2)
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where E is the total electrical power consumed in drying, MJ, and mwater is the mass of the
moisture removed during drying, kg.

2.6. Rehydration Capacity

For each drying condition, 50 g of dried blueberries were put into a stainless-steel
mesh box and immersed in distilled water at 25 ◦C for 60 min. Tissue papers were used to
remove moisture and droplets on the surface before weighing. The following equation was
used to estimate the RC [24]:

RC =
Wt

W0
(3)

where W0 (kg) and Wt (kg) are the weight of the sample before and after rehydration,
respectively, kg.

2.7. Ascorbic Acid Content

The VC content in the dried samples under different drying conditions was determined
using a method reported by Wang et al. [25] with slight modifications. Specifically, 5.0 g of
sample was homogenized with 25 mL of 3% oxalic acid, transferred into a 50 mL volumetric
flask, diluted to 50 mL with 3% oxalic acid, and then shaken gently to homogenize the
solution. The obtained solution was centrifuged at 4000 rpm for 15 min. Then, 20 mL of
supernatant was mixed with 2 g of activated carbon powder, shaken for 1 min, and then
filtered. After filtration, 2 mL of clear solution was added to four glass test tubes. Then,
2 mL of a 2% thiourea solution was added to them. One test tube was used as the blank, and
2 mL of 2% 2,4-dinitrophenyl hydrazine(2,4-DNPH) was added to the other three test tubes.
All four test tubes were kept at 36 ± 0.5 ◦C for 3 h in a thermostatic bath and cooled to
room temperature. Then, another 2 mL of 2% 2,4-DNPH solution was added with constant
stirring, let rest for 15 min, and then transferred to an ice bath for 30 min. After the ice bath,
4 mL of 80% sulfuric acid was gradually added to the test tubes while gentle shaking was
applied. The treated test tubes were allowed to rest in the room conditions for 25 min then
added to 1 cm cuvettes, and the absorbance of the solution was measured at 520 nm using
a spectrophotometer (UV1800PC, HUXI, Shanghai, China). The VC contents in the dried
blueberries were calculated with a predetermined calibration curve and reported as mg per
100 g of blueberry sample in dry weight. The analysis was performed in triplicate.

2.8. Artificial Neural Network (ANN) Model

A feed-forward backpropagation ANN (BP-ANN) model was constructed to simulate
the implicit and nonlinear relationships between the input variables and output variables
of blueberry drying. The fully connected ANN model was composed of three layers as
shown in Figure 4. (1) the input layer contained three input factors, namely the blanching
time (BT), IR heating temperature (T), and air velocity (v); (2) the output layer contained
four output factors: the drying time (DT), specific energy consumption (SEC), ascorbic acid
content (VC), and rehydration capacity (RC); and (3) one hidden layer with the neuron
number to be determined. The input and hidden layer were connected to each other
through weights wh

ij (i = 1, 2, 3; j = 1, 2, 3 . . . n). The hidden layer processed the weighted
sum of the input variables using nonlinear activation functions. The hidden and output
layers were connected to each other through another sets of weights, wo

jk (j = 1, 2, 3 . . . n;
k = 1, 2, 3, 4). Various linear or nonlinear activation functions (including Transig sigmoidal,
Logsig sigmoidal, and Pureline) were used to perform the transformation between the
neurons in the hidden and output layers. Due to the unknown numbers of neurons in the
hidden layer and the activation functions, different topologies were examined to discover
the most appropriate activation functions and the optimal number of neurons in the hidden
layer, denoted by the value of j.
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The experimental dataset containing 80 groups of conditions (80 × 3 replicates) was
randomly divided into three sets, including 70% for training, 15% for testing, and 15% for
validation. The classic Levenberg–Marquardt algorithm was used to train the model. The
adjusted coefficient of determination (R2

adj) and the root-mean-square error (RMSE) were
calculated to evaluate the performance of the ANN model. The qualified fit should have
the highest R2

adj and lowest RMSE. They were given as Equations (4) and (5) [26]:
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where ypre,i is the i-th predicted output value; yact,i is the i-th actual output value; y is the
mean of the actual output value; N is number of observations; and k is the number of
constants and independent variables in the model, respectively.

2.9. Multiobjective Optimization

The purpose of MOO was to determine the optimal HHAIB blanching and HAIR
drying conditions (BT, T, and v) that minimize DT and SEC while maximizing VC and RC.
The constraints of the problem are also shown in Equation (6). The MOO problem in this
study is expressed as follows:

Objectives =



Min DT(BT, T, v)
Min SEC(BT, T, v)
Max VC(BT, T, v)
Max RC(BT, T, v)
30 ≤ BT ≤ 120 s
50 ≤ T ≤ 90 ◦C

0.01 ≤ v ≤ 2.5m·s−1

(6)

The Pareto front for this MOO problem was generated using a nondominated sorting
genetic algorithm (NSGA II) [27].

The calculation was implemented in Matlab (Version Mathworks, Math Works Inc.,
Model-R2018a, Natick, MA, USA). The Pareto-optimal solutions were obtained using the
‘gamultiobj’ function in the MATLAB toolbox. The parameters for the of NSGA II are set
and listed in Table 1.
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Table 1. Parameters of nondominated sorting genetic algorithm (NSGA II).

Population Type Double Vector

Population size 30 × number of variables
Crossover function Intermediate

Crossover rate 90%
Migration function Uniform

Mutation rate 10%
Number of generations 500 × number of variables

Pareto front population fraction 0.30
Selection function Tournament size = 2

2.10. Statistical Analysis

The experimental data are presented as means ± standard deviations (SD). An analysis
of variance (ANOVA) was performed to evaluate the influence of different operating
conditions on the drying characteristics and quality attributes, followed by a post hoc
Duncan’s multiple range test at a significance level of 0.05. A Pearson correlation matrix
was used to study the correlations between different processing conditions and response
variables. Statistical analyses were performed using SPSS statistics software (version 21.0,
SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Drying Characteristics

Figure 5 shows that the DT and SEC were significantly influenced (p < 0.05) by the
blanching time and drying conditions. The effect of blanching time on the DT of blueberries
under a constant drying temperature 80 ◦C and an air velocity of 1.5 m/s is shown in
Figure 5a. The average DTs were 800, 670, 548, and 590 min with blanching times of 30,
60, 90, and 120 s, respectively. The decrease in drying time with the increase in blanching
time ranging from 30 to 90 s should be attributed to the disruption of the waxy layer on
the surface of blueberries, caused by the high temperature and strong air impingement,
which reduced the resistance to moisture transfer during the later drying stages. When
the blanching time continued to increase to 120 s, the cell walls in the surface tissue of
blueberries were severely damaged, which caused the loss of cell integrity and shrinkage
and in return resulted in additional resistance to moisture transfer and drying time. Similar
findings were obtained for the HHAIB processing of grapes [28] and apricots [29]. Therefore,
a suitable blanching time is important for the pretreatment of blueberries for drying time
minimization. Figure 5b shows the DT and SEC under different heating temperatures
at the same blanching time of 90 s and air velocity of 1.5 m/s, where increasing the
infrared heating temperature reduced the drying time, which should be due to increases in
the thermal radiation intensity and the heat and moisture transfer rate, according to the
Stephan–Boltzmann law [30]. Figure 5c shows the drying times of blanched blueberries
under different air velocities at the blanching time of 90 s and the drying temperature of
80 ◦C. The average DTs were 654, 602, 548, and 665 min when the air velocities were 0.01,
0.5, 1.5, and 2.5 m/s, respectively. In general, increases in air velocity benefited a reduction
in drying time, which should be attributed to the enhancement of the moisture transfer
coefficients between the blueberry surface and the air flow [31]. However, it was noticed
that further increases in air velocity to 2.5 m/s led to increases in drying times. Such a
result should be due to the cooling effect of high-velocity airflow at the blueberry surface.
Similar findings were reported by Motevali et al. [32] for the HA drying of mushroom slices
and by Nowak et al. [33] for the IR drying of apple slices.



Foods 2022, 11, 3347 9 of 18Foods 2022, 11, x FOR PEER REVIEW 10 of 19 
 

 

  
(a) (b) 

 
(c) 

Figure 5. Effect of BT, T, and v on the drying time and SEC for (a) an air velocity of 1.5 m/s and a 

heating temperature of 80 °C, (b) a blanching time of 90 s and an air velocity of 1.5 m/s, and (c) a 

blanching time of 90 s and a heating temperature of 80 °C. Note: different characters on the tops of 

columns of the same color denote significant differences between the mean values (p < 0.05). 

3.2. Specific Energy Consumption 

Drying is an extensive energy-consuming process. As shown in Figure 5a, the SEC 

values were 7.7, 6.0, 4.9, and 6.0 MJ/kg when the blanching times were 30, 60, 90, and 120 

s, respectively, when the drying temperature and air velocity were fixed at 80°C and 1.5 

m/s. Figure 5b suggests that the SEC decreased with an increase in the drying temperature 

when the blanching time and air velocity were fixed at 90 s and 1.5 m/s. As for the influ-

ence of air velocity, the SEC values were 6.1, 5.3, 4.9, and 7.1 MJ/kg when the air velocities 

were 0.01, 1,0, 1.5, and 2.5 m/s, respectively, when the blanching time and temperature 

were fixed at 90 s and 80 °C. The influence of different operating parameters on the SEC 

followed a similar trend as the drying time. The correlation between the drying time and 

SEC is shown in Figure 6 with a correlation coefficient of 0.87. According to Equation (2), 

the SEC was calculated based on the total energy consumption and the mass of moisture 

removal. As the moisture removal was almost the same for all processing conditions, the 

SEC should be positively related to the overall energy consumption, which was directly 

related to the power of the HAIR equipment and the length of the drying time. It was 

noticed that the correlation was not strictly linear. This was because the power of the heat-

ing system was not proportional to the increase in temperature. Among the processing 

parameters, the drying temperature had the most influence on the SEC, while the air ve-

locity had the lowest impact. Energy consumption is usually one of the most important 

design and operation parameters in food drying processing. Thus, besides drying time, it 

30 60 90 120
0

100

200

300

400

500

600

700

800

900  Drying time  SEC

Blanching time (s)

D
ry

in
g
 t

im
e 

(m
in

)

0

1

2

3

4

5

6

7

8

C
CD

A

B

c

b

a

 S
E

C
 (

M
J·

k
g

−
1
)

b

50 60 70 80 90
0

100

200

300

400

500

600

700

800

e

d

E

D

c

Cb

B

 Drying time  SEC

Drying temperature (oC)

D
ry

in
g

 t
im

e 
(m

in
)

A a

0

1

2

3

4

5

6

7

8

9

10

11

12

 S
E

C
 (

M
J·

k
g

−
1
)

0

100

200

300

400

500

600

700

c

b

a

C

A

B

0.01                 1.0                  1.5                    2.5 

 Drying time  SEC

Velocity (m/s)

D
ry

in
g

 t
im

e 
(m

in
)

A

cd

0

1

2

3

4

5

6

7

8

 S
E

C
 (

M
J·

k
g

−
1
)

Figure 5. Effect of BT, T, and v on the drying time and SEC for (a) an air velocity of 1.5 m/s and a
heating temperature of 80 ◦C, (b) a blanching time of 90 s and an air velocity of 1.5 m/s, and (c) a
blanching time of 90 s and a heating temperature of 80 ◦C. Note: different characters on the tops of
columns of the same color denote significant differences between the mean values (p < 0.05).

3.2. Specific Energy Consumption

Drying is an extensive energy-consuming process. As shown in Figure 5a, the SEC
values were 7.7, 6.0, 4.9, and 6.0 MJ/kg when the blanching times were 30, 60, 90, and 120 s,
respectively, when the drying temperature and air velocity were fixed at 80◦C and 1.5 m/s.
Figure 5b suggests that the SEC decreased with an increase in the drying temperature when
the blanching time and air velocity were fixed at 90 s and 1.5 m/s. As for the influence of
air velocity, the SEC values were 6.1, 5.3, 4.9, and 7.1 MJ/kg when the air velocities were
0.01, 1,0, 1.5, and 2.5 m/s, respectively, when the blanching time and temperature were
fixed at 90 s and 80 ◦C. The influence of different operating parameters on the SEC followed
a similar trend as the drying time. The correlation between the drying time and SEC is
shown in Figure 6 with a correlation coefficient of 0.87. According to Equation (2), the SEC
was calculated based on the total energy consumption and the mass of moisture removal.
As the moisture removal was almost the same for all processing conditions, the SEC should
be positively related to the overall energy consumption, which was directly related to the
power of the HAIR equipment and the length of the drying time. It was noticed that the
correlation was not strictly linear. This was because the power of the heating system was
not proportional to the increase in temperature. Among the processing parameters, the
drying temperature had the most influence on the SEC, while the air velocity had the lowest
impact. Energy consumption is usually one of the most important design and operation
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parameters in food drying processing. Thus, besides drying time, it is important to consider
the SEC in the selection and optimization of the processing conditions.
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3.3. Ascorbic Acid Content

The orange columns in Figure 7 illustrate the effects of different processing parameters
on the VC content in the dried blueberries. As shown in Figure 7a, the VC contents were
3.60, 4.33, 4.60, and 3.82 mg·100 g−1 when the blanching times were 30, 60, 90, and 120 s,
respectively, when the heating temperature was fixed at 80 ◦C and the air velocity was
1.5 m/s. It was noted that when the blanching time increased from 30 to 90 s, the VC
content increased and decreased when the blanching time was further elongated to 120 s,
showing a reverse trend compared to the drying time. Similar results were reported by
Diamante et al. [34] for the hot-air drying of green kiwifruits. From Figure 7b, the VC
contents were 1.94, 2.83, 3.71, 4.60, and 3.68 mg·100 g−1 when the heating temperatures
were 50, 60, 70, 80, and 90 ◦C, respectively, with a fixed blanching time of 90 s and an air
velocity of 1.5 m/s. The highest VC content was obtained with the heating temperature of
80 ◦C, the blanching time of 90 s, and the air velocity of 1.5 m/s. A further increase in the
heating temperature led to a reduction in the VC content. The photos in Figure 7c show the
appearance of the dried blueberries at different temperatures. It was found that samples
dried at 80 ◦C maintained the dark blue color of the fresh blueberry, and samples dried at
90 ◦C had a dark red color. Such phenomena should be attributed to the overheating of the
blueberries at 90 ◦C, which led to the charring of the blueberry surface and a significant
deterioration of heat-sensitive bioactive compounds. Similar findings were observed by
Nadian et al. [35], who found that the local overheating and scorching of apple slices caused
by higher IR temperatures resulted in significantly lower contents of VC. The effect of air
velocity on the VC content in the dried blueberries is shown in Figure 7c. Increasing the air
velocity had no significant influence on the VC content (p > 0.05), which was also verified
with the correlation analysis (Figure 6). Similar results were found in the jujube drying
process [36].

In fact, the VC contents in dried blueberries were regulated by a series of competing
factors. Since ascorbic acid is susceptible to long exposures to heat and oxygen, the VC
contents in blueberries were directly related to the drying times and temperatures (Figure 6).
On one hand, HHAIB blanching might cause a disruption in the waxy layer on the blueberry
surface, facilitated by the moisture transfer and the reduction in drying time, which was
beneficial for the preservation of ascorbic acid [37]. On the other hand, the disruption of
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the waxy layer might have also improved the permeability of oxygen during processing
and accelerated oxidation [38]. The results suggest that a suitable blanching time and
drying temperature should be selected for the preservation of the bioactive compounds
of blueberries.
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Figure 7. Effects of BT, T, and v on the VC and RC for (a) an air velocity of 1.5 m/s and a heat-
ing temperature of 80 ◦C, (b) a heating temperature of 80 ◦C and an air velocity of 1.5 m/s, and
(c) a blanching time of 90 s and a heating temperature of 80 ◦C. Note: different characters on the tops
of columns of the same color denote significant differences between the mean values (p < 0.05).

3.4. Rehydration Capacity

The rehydration capacity is a quality index for evaluating the microstructural changes
in plant tissues during drying and other treatments [39]. The influence of blanching time
on the RC of dried blueberries is shown in the green columns in Figure 7. In general, the
influence of blanching time on the RC showed a similar trend as the VC content. The RC
values of the samples were 2.34, 2.73, 3.18, and 2.78 when the blanching times were 30,
60, 90, and 120 s, respectively. Samples blanched for 90 s had the highest RC, and further
increases in the blanching time led to reductions in the RC. Such results should be attributed
to the disruption of the waxy layer on the fruit surface and the microstructural changes
in the blueberries. Suitable HHAIB treatments improved the moisture permeability of
the fruit surface, which facilitated the moisture absorption during the soaking. However,
overblanching led to significant damage to the cell wall, microstructure collapse, severe
shrinkage, and case hardening in the blueberries [40], which resulted in lower RC values.
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Similar to the trend in VC content, the influence of air velocity during the drying process
on the RC values of the samples was not statistically significant (p > 0.05). Figure 7b shows
that the RC increased with an increase in the heating temperature. Such a phenomenon
might be because a higher drying temperature led to a higher moisture evaporation rate
and thus resulted in higher porosity. Figure 7c shows that increasing the air velocity from
0.01 to 2.5 m/s had no significant effect on the RC at a fixed blanching time of 90 s and a
heating temperature of 80. Since the blanching time and drying temperature had significant
influences on the RC of the dried blueberries, it was important to optimize the operating
parameters of the process for a better RC.

3.5. Construction of ANN Model

As shown in the experimental results and the correlation analysis, the three operating
parameters were correlated with the four response variables, either positively or negatively,
and the coefficients of the correlations were different from each other. In addition, the
blueberry blanching and drying processes were complicated in that the influences of
different operating parameters on the rates of heat and moisture transfer, quality and
microstructure change, and energy consumption could not be easily formulated in an
explicit way. Therefore, a feed-forward ANN model with a backpropagation algorithm was
suitable to untangle these implicit correlations and was further used for MOO purposes.

To determine the suitable model parameters, including the number of neurons (4, 6,
8, or 10) in the hidden layer, and the activation functions of the hidden layers (‘Transig’
sigmoidal or ‘Logsig’ sigmoidal) and output layers (‘Pureline’ or ‘Logsig’ sigmoidal) of
ANN models with different structures were tested. The values of mean square error (MSE)
and the coefficients of determination (R2) for DT, SEC, RC, and VC under different trained
ANN model structures are summarized in Table 2. It was found that the highest R2 values
for different response variables were achieved under different ANN structures. The highest
R2 for DT was achieved in group 10 (‘Logsig’ sigmoidal + six hidden neurons + ‘Pureline’);
the highest R2

adj for RC was achieved in group 1 (‘Transig’ sigmoidal + four hidden neurons

+ ‘Pureline’); and the highest R2
adj for SEC and VC were achieved in group 3 (‘Transig’

sigmoidal + eight hidden neurons + ‘Pureline’). However, it was only in group 3 that
the R2 values for all four response variables were higher than 0.96 (R2

adj = 0.9854, 0.9605,
0.9827, and 0.9889 for DT, SEC, VC, and RC, respectively). The results suggested that a
suitable topology is required for the best accuracy of the ANN model. The topology in
group 3 was then used for the further analysis. In the current study, an ANN model was
developed with a single hidden layer, which is commonly used in food processing studies,
and the prediction capability of the model was acceptable. Developing an ANN model
with multiple hidden layers might improve the prediction accuracy but with the price
of increasing the computation time and is not desired to be integrated into future smart
control systems and industrial-scale drying practices.

The prediction capability of the ANN model was evaluated by comparing the experi-
mental data with the prediction values. As depicted in Figure 8a–d, the predicted values
for DT, SEC, VC, and RC aligned well with the experimental data. The R2

adj and RMSE
values were 0.996, 0.991, 0.995, and 0.996 and 12.623, 0.447, 0.105, and 0.089 for DT, SEC,
VC, and RC, respectively. The results indicated that the ANN model had an acceptable
ability to predict the influence of the three operating parameters (BT, T, and v) on the four
response variables (DT, SEC, VC, and RC). Thus, it was further used for the MOO of the
blanching and drying process of fresh blueberries.
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Table 2. Test of different ANN structures and activation functions (shaded groups contain the highest
R2 for at least one response variable; bold font indicates the best solution).

Group Activation Function
of the Hidden Layer

Number of Neurons in
the Hidden Layer

Activation Function
of the Output Layer

DT SEC RC VC

R2
adj RMSE R2

adj RMSE R2
adj RMSE R2

adj RMSE

1

Tansig

4

Pureline

0.8587 67 0.7969 0.8780 0.9827 0.1187 0.8858 0.2042
2 6 0.9935 11 0.8926 0.4324 0.9717 0.1330 0.9263 0.1732
3 8 0.9854 20 0.9605 0.4328 0.9773 0.1483 0.9889 0.0678
4 10 0.9924 18 0.9438 0.4790 0.9745 0.1261 0.9766 0.1204

5 4

Logsig

0.5721 115 0.4859 1.4736 0.6351 0.5681 0.5237 0.5914
6 6 0.6837 89 0.6270 1.0315 0.7398 0.4637 0.5465 0.5294
7 8 0.9003 50 0.8493 0.8160 0.8121 0.5457 0.6394 0.5531
8 10 0.5853 110 0.6331 1.1254 0.7102 0.4047 0.6745 0.3672

9

Logsig

4

Pureline

0.8066 64 0.8272 0.7444 0.9713 0.1378 0.7638 0.2926
10 6 0.9952 12 0.9171 0.5504 0.9734 0.1466 0.8578 0.2423
11 8 0.9871 21 0.9182 0.6151 0.9754 0.1568 0.8901 0.2612
12 10 0.9916 13 0.9143 0.6262 0.9817 0.1217 0.9439 0.1691

13 4

Logsig

0.7066 98 0.6498 1.1809 0.3068 0.6656 0.3069 0.6594
14 6 0.6649 100 0.7267 0.9651 0.6338 0.4124 0.5504 0.2915
15 8 0.5240 107 0.7017 0.9545 0.2826 0.5857 0.4679 0.3550
16 10 0.5659 118 0.6749 1.1610 0.8019 0.3870 0.7407 0.3396

Types of activation functions Logsig = 1
1+exp(−n) Tansig = 2

1+exp(−2n) − 1 Pureline = n

Note: The dark background denotes the ANN model structure that was selected for further analysis.
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time; (b) specific energy consumption; (c) ascorbic acid content; and (d) rehydration capacity.

After determining the values of weights (wo
jk) and biases (Bk), the response variables

were written in analytical equations as Equations (7)–(10):

DT = -0.3917F1+0.3925F2-0.0601F3-0.4614F4-0.5823F5-0.3100F6-0.4336F7+0.0142F8+0.1802 (7)
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SEC = -0.6254F1+0.2887F2-0.1322F3-0.3637F4-0.5103F5-0.1851F6-1.2531F7-0.2409F8-0.2779 (8)

VC = 1.0117F1+0.1953F2+0.0236F3+0.1323F4+0.7810F5+0.0119F6+1.5636F7+1.2447F8-0.6516 (9)

RC = 0.7483F1+0.2663F2+0.0102F3+0.0050F4+0.6852F5-0.0594F6+0.6438F7+0.4402F8-0.5921 (10)

where Fj (j = 1,2,3,4,5,7,8) were the values of the activation functions of each neuron in the
hidden layer, which were obtained as:

Fj =
1

1 + exp(−2Dj)
− 1 (11)

where Dj (j = 1,2,3,4,5,6,7,8) were the weighted sums of input variables:

Dj = wh
1j×BT + wh

2j×T + wh
3j × v + Bj (12)

where Bj was the bias of each neuron in the hidden layer. The determined values of weights
wh

ij and bias Bj used in Equation (12) for this ANN model are given in Table 3. The weights
increased the steepness of the activation function in the hidden layer, which had the power
to decide the triggering speed of the activation function, whereas the bias showed the
triggering magnitude of the activation function. The objective functions (Equations (7)–(10))
that were determined from the final trained ANN model were used for MOO.

Table 3. Weights and bias for the CFIR drying of blueberries.

wh
ij wh

1j wh
2j wh

3j Bj

1 −0.3826 1.0233 0.1616 0.8245
2 −2.2399 −0.2557 −0.2111 1.3641
3 1.3779 −0.8164 −2.1741 0.1381
4 −0.4903 −0.1129 −1.0111 0.5771
5 1.5830 0.0897 −0.0504 0.8454
6 −0.2677 −0.2317 2.3441 1.2737
7 −0.4421 1.0577 0.1488 −1.5383
8 0.1699 −3.7173 −0.1564 3.7802

Note: i = 1, 2, 3; j = 1, 2, 3, 4, 5, 6, 7, 8.

3.6. Multiobjective Optimization

An NSGA II method was used to perform the MOO of the blueberry blanching and
drying process using the validated ANN model using the set of parameters shown in
Table 1. The optimization problem converged to the Pareto optimal set after 126 GA
generations. The 30 design points that formed the Pareto front are shown in Table 4. The BT,
T, and v values were in the ranges of 92~96 s, 83.0~89.9 ◦C, and 0.3~2.4 m/s, respectively. It
should be noted that the points on the Pareto front were not superior to each other. Each
group point belonging to this front was optimal in the sense that no improvement could
be achieved in one component of the objective function that did not lead to a degradation
in at least one of the remaining components [40]. The selection of specific optimal sets
depends on the main purpose of the process and the sensitivity of equipment control. For
example, Group 1 could be selected for the lowest drying time of 366.7 min at a blanching
time of 93 s, a heating temperature of 89.1 ◦C, and an air velocity of 1.2 m/s. Furthermore,
a slightly worse result was obtained for Group 4, where the DT and SEC increased by
3.5% and 11.2%, respectively, relative to Group 1, but VC and RC increased by 2.9% and
0.1%, respectively. In addition, the highest VC content of 4.8 mg/100 g (14.6% higher than
Group 1) was obtained in Group 13 with a blanching time of 96 s, a heating temperature
of 83 ◦C, and a velocity of 1.15 m/s. Under this processing condition, the drying time
was 425.1 min (15.9% longer than Group 1), the SEC was 2.6 MJ/kg (82.8% higher than
Group 1), and the RC was 3.25 (3.0% lower than Group 1). Group 20, with a blanching
time of 95 s, a heating temperature of 89.9 ◦C, and an air velocity of 0.34 m/s, led to the
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lowest SEC of 1.3 MJ/kg (9.1% lower than Group 1), the highest RC of 3.4 (1.5% higher than
Group 1), and a similar VC of 4.17 mg/100g (0.5% lower than Group 1), but the drying time
was 472.3 min (28.8% longer than Group 1). The results verified the complexity of food
processing problems, where multiple response variables could not be reached under the
same conditions. The ultimate goal of optimizing the blanching and drying conditions of
blueberries is to maximally preserve the quality (that is, to maintain high VC contents and
RC in the dried blueberries) with the shortest drying time and lowest energy consumption
possible. In Group 13 and Group 20, the highest VC content and RC were achieved but with
the cost of significantly longer drying times and larger energy consumptions. In addition,
the differences in the optimized conditions of BT, T, and v were minor (less than 2 s, 0.6 ◦C,
and 0.04 m/s, respectively), which were comparable to the sensitivity of the equipment
control. Taking these results into consideration, the processing conditions under Group 1
(BT = 93 s, T = 89 ◦C, and v = 1.2 m/s) were selected as the optimal set.

Table 4. Pareto front optimal solutions for HHAIB and HAIR processing of blueberries.

Pareto ID BT (s) T (◦C) v (m/s) DT (min) SEC (MJ/kg) VC
(mg/100g) RC

1 93 89 1.2 366.7 1.43 4.19 3.35
2 93 88.8 1.21 369.7 1.49 4.21 3.35
3 93 88.5 1.24 375.5 1.56 4.24 3.35
4 95 88.4 1.2 379.5 1.59 4.31 3.37
5 93 86.9 1.16 387.5 1.82 4.4 3.32
6 95 88.7 1.1 389.0 1.53 4.27 3.37
7 95 87.0 1.18 389.9 1.82 4.42 3.34
8 94 85.9 1.14 397.5 2.01 4.49 3.3
9 93 83.2 1.19 407.7 2.5 4.71 3.24
10 94 87.9 0.9 412.8 1.68 4.31 3.34
11 96 83.1 1.21 419.5 2.59 4.79 3.25
12 94 86.6 0.89 423.5 1.92 4.43 3.32
13 96 83.0 1.15 425.1 2.62 4.8 3.25
14 95 87.6 0.82 430.7 1.76 4.38 3.35
15 95 86.0 1.54 434.5 2.35 4.5 3.32
16 96 83.8 1.51 448.6 2.78 4.72 3.27
17 92 89.8 0.42 457.3 1.31 4.11 3.36
18 93 89.8 0.35 463.0 1.29 4.13 3.37
19 95 85.2 1.73 463.8 2.74 4.58 3.3
20 95 89.9 0.34 472.3 1.30 4.17 3.4
21 95 84.5 1.85 483.4 3.04 4.65 3.29
22 95 85.5 1.93 486.1 2.91 4.55 3.31
23 95 84.0 1.88 492.2 3.21 4.7 3.27
24 95 84.4 1.99 500.5 3.23 4.66 3.29
25 95 85.1 2.11 510.2 3.22 4.59 3.3
26 95 84.5 2.11 513.7 3.36 4.64 3.29
27 95 84.5 2.16 520.5 3.43 4.65 3.29
28 95 84.8 2.21 524.7 3.44 4.62 3.29
29 95 84.5 2.23 529.5 3.54 4.65 3.29
30 95 84.6 2.35 542.0 3.66 4.64 3.29

Note: The rows with dark background denote the optimum sets in the Pareto front selected.

To validate the optimization results, an additional set of experiments was performed
under the optimized conditions. The experimental values of the DT, SEC, VC, and RC were
372 min, 1.46 MJ/kg, 4.08 mg/100 g, and 3.25, respectively (Table 5). The relative error
values between the experimental data and the prediction values were 1.43%, 2.06%, 2.70%,
and 3.08% for DT, SEC, VC, and RC, respectively, which were considered accurate enough.
The findings suggested that the ANN model developed in this study was valid and accurate
for the simulation, prediction, and optimization of sequential HHAIB blanching and HAIR
drying processes of blueberries for the highest efficiency and preservation of product
qualities at a pilot scale. In recent years, with the development of internet of things (IoT)
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technologies, such as advance sensors and detection techniques, cloud computing, machine
learning, and control algorithms, it has become feasible to integrate them into conventional
industrial food processing systems. For example, affordable and easy-to-implement sensors
(imaging, spectral, acoustic, etc.) that can measure important processing parameters or food
quality/safety indicators in real-time can be combined with ANN models to achieve the
real-time monitoring and prediction of processing performances. Furthermore, adaptive
dynamic programming (ADP) methods can be integrated to achieve the smart control
of food drying processes [41]. The methodology developed in this study contributes to
the digital transformation of the conventional food industry and can also be expanded to
different stages of the food supply chain.

Table 5. Prediction and validation results of response variables under the optimal processing conditions.

Results
Operating Conditions Response Variables

BT (s) T (◦C) v (m/s) BT (min) SEC (MJ/kg) VC (mg/100 g) RC

Prediction 93 89 1.2 366.7 1.43 4.19 3.35

Validation 93 89 1.2 372 1.46 4.08 3.25

Error (%) 1.43 2.06 2.70 3.08

4. Conclusions

A novel sequential HHAIB blanching and HAIR drying technology was develop for
fresh blueberries, which synergized the advantages of air impingement, steam blanching,
and infrared heating. A machine learning model containing a three-layer ANN was estab-
lished to simulate and predict the influences of the operating parameters (BT, T, and v) on
the DT, SEC, VC, and RC. A multiple-objective optimization regime was developed based
on the developed ANN model, a nondominated sorting genetic algorithm (NSGA II), and
the Pareto optimization for the simultaneous minimization of DT and SEC and maximiza-
tion of VC and RC. The optimal operating conditions were determined to be: BT = 93s,
T = 89 ◦C, and v = 1.2 m/s, which led to DT = 372 min, SEC = 1.46 MJ/kg, VC = 4.08 mg/100g,
and RC = 3.35. The novel processing technology developed in this study significantly
improved the drying efficiency and product qualities, reduced the energy consumption
for the efficient and sustainable processing of blueberries, and showed the potential to be
transferred to similar commodities. The ANN-assisted prediction and optimization regime
sets a foundation for the real-time monitoring and smart control of blueberries and similar
food processing systems.
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