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Abstract: Hot air drying is the most common processing method to extend shrimp’s shelf life. Real-
time monitoring of moisture content, color, and texture during the drying process is important to
ensure product quality. In this study, hyperspectral imaging technology was employed to acquire
images of 104 shrimp samples at different drying levels. The water distribution and migration were
monitored by low field magnetic resonance and the correlation between water distribution and other
quality indicators were determined by Pearson correlation analysis. Then, spectra were extracted and
competitive adaptive reweighting sampling was used to optimize characteristic variables. The grey-
scale co-occurrence matrix and color moments were used to extract the textural and color information
from the images. Subsequently, partial least squares regression and least squares support vector
machine (LSSVM) models were established based on full-band spectra, characteristic spectra, image
information, and fused information. For moisture, the LSSVM model based on full-band spectra
performed the best, with residual predictive deviation (RPD) of 2.814. For L*, a*, b*, hardness, and
elasticity, the optimal models were established by LSSVM based on fused information, with RPD
of 3.292, 2.753, 3.211, 2.807, and 2.842. The study provided an in situ and real-time alternative to
monitor quality changes of dried shrimps.

Keywords: shrimp; hot air drying; quality change; hyperspectral images; low field magnetic resonance

1. Introduction

Shrimp (Penaeus vannamei) harvesting is one of the most economically significant fish-
ing activities in China attracting attention from consumers due to the high protein content
and rich nutritional composition of shrimp [1,2]. According to the China Fisheries Statistical
Yearbook, the Penaeus vannamei aquaculture production in China was 1.1977 millions of tons
in 2020. However, the shrimp harvest suffers from rapid deterioration due to biochemical
reactions and microbial activity after death [3–5], which directly affect its shelf life. Hot
air drying, a common and practical method of drying seafood, can prolong the shelf life
of the shrimp harvest [6–8]. As a foodstuff, dried shrimp has the advantages of a unique
flavor, rich nutrition, easy storage, and high consumer demand [9,10]. However, drying
is a complex process involving water evaporation, protein degradation and denaturation,
and the formation of flavor compounds [11,12]. Ineffective drying can adversely impact
the color, texture, and nutrition attributes of the dried shrimp product [13]. Therefore, it is
imperative to monitor and control critical quality parameters during the drying process to
ensure consistency among batches, as well as uniformity of the end-product.

Current analytical methods employed to measure these quality characteristics in
factories, such as oven drying and texture profile analysis (TPA), are time-consuming,
destructive, cumbersome, and restricted to off-line usage [14–16]. Therefore, it is necessary
to develop an effective, rapid, nondestructive, and real-time detection method for dried
shrimp quality control. With the development of optical and spectroscopic technologies,
hyperspectral imaging (HSI) has been successfully applied to evaluate food safety and
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quality, monitor food preparation processes, and identify adulteration [17,18]. HSI si-
multaneously captures both spectral and spatial information of a sample by integrating
spectroscopic and computer vision or imaging techniques into one system [19–21]. Another
unique characteristic is that HSI generates a visual distribution map of reference values
to enable the prediction and quantification of internal sample constituents, as well as the
simultaneous determination of their location on the sample surface [22,23].

Based on these advantages, HSI has been applied to monitor quality changes in meat,
fruit, vegetable, and cereal foods during drying. For example, Sun et al. used HSI to monitor
the moisture contents of scallops during drying, and reported a model prediction accuracy
of greater than 0.9 [24]. Moreover, Netto et al. used HSI to evaluate the water uniformity of
the melon drying process under different pretreatments by visualizing the moisture content
in the samples [25]. However, most existing studies only employ spectral information
for quality indicator evaluation, ignoring image information, such as color and texture
in their modeling. To improve prediction accuracy, the importance of combining spectral
and spatial HIS information has been emphasized by several researchers. This technique
has been used to discriminate between different breeds of chicken [26], predict the storage
time and moisture content of cooked beef [19], and assess the fat and moisture contents
of salmon [27]. The results indicate that a combination of spectral and spatial HSI data is
more comprehensive and intuitional than conventional analyses. Furthermore, considering
that the shrimp drying process involves color and texture changes, it is crucial to include
image information in the spectral model for quality control. To the best of our knowledge,
there are no previous data fusion studies on the visualization of moisture and other quality
indicators in dried shrimp. Additionally, previous studies only predicted moisture and
other quality indicator contents, neglecting the link between moisture distribution and
other quality characteristics, which may clarify the mechanisms governing shrimp quality
changes during the drying process.

Therefore, the purpose of the current study is to explore the correlation between
shrimp water distribution state and other quality indices and combine spatial and spectral
information of the hypercube to measure shrimp quality changes during the drying process.
The specific objectives are: (1) to quantify changes in shrimp during hot air drying through
moisture content measurement, color properties (L*, a*, b*) analysis, and texture profile
analysis (hardness, adhesiveness, elasticity, stickiness, and chewiness); (2) to monitor
the dynamic water sate and water migration by low field magnetic resonance (LF-NMR)
and determine the correlation between water distribution and other quality indicators by
Pearson correlation analysis; (3) to acquire hyperspectral reflectance images of shrimps at
different drying stages, as well as spectral data and color and textural features from the
region of interest (ROI); (4) to establish partial least squares regression (PLSR) and least
squares support vector machine (LSSVM) models based on spectral, image, and fusion
information; and (5) to visualize shrimp quality at the pixel level using the optimal models.

2. Materials and Methods
2.1. Sample Preparation and Drying Experiments

Live shrimp (Penaeus vannamei), each weighing approximately 15 ± 3 g, were pur-
chased from a local market in Baoding, China. The live shrimp were transported to the
laboratory within 30 min and stored in ice water, until their death. The shrimp were boiled
in salt water with a mass fraction of 3% for 2 min and removed to dry the surface moisture.
Then, they were used for constant drying experiments at 55 ◦C using an electrical blast
drying oven. When the moisture content had been reduced by approximately 35%, the
taste of the dried shrimp was optimal. The total dry processing time was 12 h, and shrimp
sample were collected after boiling and drying for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 h.
A total of 16 samples were collected at each sampling point, half were used for color,
moisture determination, and hyperspectral measurement, and the other half were used
for texture analysis, LF-NMR analysis, magnetic resonance imaging (MRI) measurement,
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and hyperspectral measurement. Thus, 104 samples (8 samples × 13 drying levels) were
involved for each quality indicator prediction.

2.2. Quality Indicators Determination
2.2.1. Moisture Content Measurement

The direct drying method found in the National Standards of China (GB 5009.3-2016) was
used to calculate the moisture content of the shrimp samples. The specific steps employed
were as follows. First, the glass flat weighing bottles were placed in a 105 ◦C oven to dry
to a constant weight. Second, 3.0 g of shrimp samples for each drying period were placed
into weighing bottles and the total mass of the bottles and shrimp samples were accurately
weighed, noted as m1. Third, the bottles were placed in an oven at 105 ◦C for drying and
removed after 1 h, then weighed after cooling in the desiccator for half an hour. These
steps were repeated until the total mass was not changing and the final mass was weighed
accurately and noted as m2. The moisture content of the shrimp samples at each time point
during the drying process was calculated as follows:

X =
m1−m2

m1−m3
×100% (1)

where X (unit: g/100 g) indicates the moisture content of the shrimp samples at each time
point during the drying process; m1 and m2 (unit: g) indicate the mass of the weight bottles
and samples before and after drying, respectively; and m3 (unit: g) indicates the mass of
the weight bottles.

2.2.2. Color Analysis

The color of the shrimp samples was evaluated using a CR-400 color difference meter
(Konica Minolta Co., Ltd., Tokyo, Japan) after equilibration to room temperature. The
second abdominal segment of the shrimp was used for color measurement. The color
differences were analyzed using lightness (L*), green to red (a*), and blue to yellow (b*). All
experiments were conducted eight times.

2.2.3. Texture Profile Analysis (TPA)

The shrimp with the head and shell removed were subjected to texture analysis.
Texture variables, including hardness, elasticity, stickiness, adhesiveness, and chewiness,
were obtained using Texture Expert software (TMS-Pro, Food Technology Corporation,
Sterling, VA, USA) The measurement parameters were set to TPA mode; the probe type
was P/5, compression ratio was 45%, detection rate was 30 mm/min, shape variable was
60%, minimum force was 0.5 N, and return distance was 2.5 cm. Each shrimp sample was
measured eight times at each point during the drying processes.

2.3. LF-NMR Transverse Relaxation Measurements

The relaxation measurements were performed on a Meson NMI20-040H-I LF-NMR
analyzer (NMI20-040H-I, NIUMAG Electronic Technology Co., Ltd., Shanghai, China) with
a magnetic field strength of 0.5 T and corresponding resonance frequency for protons of
20 MHz. The shrimp samples were placed in a cylindrical glass tube, and a 30-mm diameter
radio frequency coil was used to collect Carr–Purcell–Meiboom–Gill sequence (CPMG)
decay signals, with a π-value (the time between pulses 90 and 180) of 200 µs; the lengths of
these two pulses were 9.52 µs and 18.48 µs, respectively. The repetition time between two
scans was 1500 ms. Distributed multiexponential fitting analysis was performed on the T2
relaxation data using MultiExp Inv Analysis software (NIUMAG Electronic Technology
Co., Ltd., Shanghai, China). The T2 relaxation spectra were obtained from this analysis;
the lateral and vertical axes represent the relaxation time and signal intensity, respectively
(corresponding to the proportion of water molecules exhibited at that relaxation time).
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2.4. MRI Analysis

MRI was also performed using a Meson NMI20-040H-I LF-NMR analyzer ((NMI20-
040H-I, NIUMAG Electronic Technology Co., Ltd., Shanghai, China)) equipped with a
60-mm radio frequency coil. A spin echo (SE) sequence was applied to obtain T2 weighted
images of the shrimp. The following scanning parameters were used: field of view
(FOV) = 100 mm × 100 mm, slice width = 1.1 mm, slice gap = 1.1 mm, average = 8, read
size = 256, phase size = 192, T2 weighted image echo time (TE) = 20 ms, and repetition time
(TR) = 500 ms.

2.5. Hyperspectral Image Acquisition and ROI Selection

Images of shrimp were acquired using a pushbroom HSI system in the reflectance
mode. The system consisted of 4 components: a charge-coupled device (CCD) camera
(FX 10, Specim Ltd., Helsinki, Finland) with a resolution of 1024 pixels in the spatial
dimension and 224 bands in the spectral dimension, hyperspectral imaging workstation
with a spectral range of 400–1000 nm, 2 halogen lamps, and computer with hyperspectral
image analysis software. The spectral resolution was 5.5 nm, and the imaging speed of full
band acquisition was 330 Frames Per Second (FPS). Before the experiment, the instrument
was preheated for 30 min to ensure its stability. The samples were placed on a mobile
platform for image acquisition. To prevent image oversaturation, it was necessary to set the
speed of the moving platform, camera exposure time, and acquisition distance in advance;
after repeated testing, these three parameters were set to 7.5 mm/s, 50 ms, and 30 cm,
respectively. Simultaneously, black and white correction of the acquired hyperspectral
image was conducted to reduce the influence of the dark current of the CCD camera and
uneven brightness of the light source. The correction formula is given by:

R =
Ro − Rd
Rw − Rd

(2)

where Ro represents the original spectral image, Rw represents the whiteboard image, and
Rd represents the darkfield image.

ROI spectral extraction of the hyperspectral image was performed using ENVI 5.2 soft-
ware (Exelis Visual Information Solutions Co., Boulder, CO, USA). All pixels, except those
corresponding to the shrimp head and tail, were selected to contain as much information
as possible about the sample. As the collected spectral images were clear in all bands, the
entire spectral range with 224 bands was retained for analysis.

2.6. Spectral Pre-Processing and Optimal Wavelengths Selection

Spectral preprocessing involves the use of appropriate mathematical analyses to correct
random noise in the spectra and light scattering generated by the instruments, which is
helpful for highlighting valuable spectral information [28]. In current work, Savitzky–Golay
smoothing and standard normal variable transformation (SNV) method were employed
to remove the interference information from the spectra. Meanwhile, among the collected
spectral information, the spectral data of certain bands could be explained or replaced by
those of other bands. This situation caused a large amount of redundant information in the
spectrum. Owing to the existence of redundant information, the prediction accuracy of the
established model decreased; as the computational burden increased, the computational
speed decreased. To overcome these problems, it was important to select a small set of
optimal wavelengths that reflected the changes in quality to establish the model. The
competitive adaptive reweighting sampling (CARS) method was used to select the optimal
wavelengths in this study.

2.7. Image Color and Texture Information Extraction

Compared with traditional spectroscopic methods, HSI has the advantage of providing
abundant image information related not only to size and shape, but also color and textural
features. Color moments represent a simple and effective means of representing the color
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features, with the first, second, and third order moments commonly used to express the
color distribution of images. Because of its advantages of low feature vector dimensionality
and no color space quantization, color moments are effective for characterizing color
distributions in images [29]. In this study, we extracted the RGB (red, green, and blue)
images synthesized from the hyperspectral images at 647 nm, 550 nm and 460 nm using
ENVI 5.2 (Exelis Visual Information Solutions Co., Boulder, CO, USA), and the first-order
moment and second-order moment information were calculated. Then, the RGB tricolor was
transformed into HSV (hue, saturation, and value) mode, which is based on the intuitive
properties of color, to extract three additional feature variables. Finally, nine color features
were obtained to reflect the image difference of samples with different drying levels.

The gray-level co-occurrence matrix (GLCM) method was used to extract the texture
information about the shrimp images. Four special mutually independent features of
contrast, correlation, energy, and homogeneity were used to describe the co-occurrence
matrix data in four orientations of 0◦, 45◦, 90◦, and 135◦, and the distance of each pixel pair
was set to 1. The contrast value expresses local variations in the gray levels of the GLCM,
the correlation measures the image linearity among pixels, the homogeneity measures
the density of the distribution of elements in the GLCM to its diagonal, and the energy
measures the textural uniformity of the image [30]. All textural values based on the
different directions were then averaged into one value representing the textural features
of the sample for subsequent analysis. Before constructing the texture matrix, principal
component analysis (PCA) was performed to select the optimal characteristic images [31].
The implementation procedures for PC images were performed using the ENVI 5.2 software
(Exelis Visual Information Solutions Co., Boulder, Colorado, USA), and the color and texture
feature extraction were performed in Matlab 2012a (MathWorks Co., Natick, MA, USA).

2.8. Quantitative Analysis Models

In this study, PLSR and LSSVM techniques were compared to establish the quantitative
relationships between spectroscopic data and image information and the measured mois-
ture content, L*, a*, b*, hardness, and elasticity during the drying process. The 104 samples
were divided 3:1 into calibration and prediction sets for L and LSSVM modeling. PLSR is
an effective multivariate regression method that enables regression modeling of multiple
independent variables; it is particularly effective when the variables are highly linearly cor-
related [32]. The LSSVM technique can be applied to both linear and nonlinear regression
models. For nonlinear regression problems, the LSSVM approach first performs nonlinear
mapping from the input space onto a high-dimensional feature space using a nonlinear
kernel function. This method then performs linear regression in the same feature space,
which can be used to solve linear regression problems [33]. The predicted results were
compared with the actual values, and the model performance was evaluated in terms of
the correlation coefficient (R), root-mean-squared error of calibration set (RMSEC) and root-
mean-squared error of prediction set (RMSEP), and residual predictive deviation (RPD).
The afore-mentioned data analyses were implemented using Matlab2012a (MathWorks Co.,
Natick, MA, USA).

2.9. Visualization of Shrimp Quality Indicators

The advantage of HSI is its ability to transfer multivariate spectral data in a pixel-wise
manner by inputting the spectra in each pixel into an established calibration model. In this
study, we selected the final optimal models of moisture content, L*, a*, b*, hardness, and
elasticity for visualization by pseudo-color data processing. All visualization steps were
executed in Matlab2012a (MathWorks Co., Natick, MA, USA). The key steps of the analysis
procedure are summarized in Figure 1.
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2.10. Statistical Analysis

The physicochemical data were statistically analyzed using the Statistical Package
for the Social Sciences (SPSS) version 18.0 software package (SPSS Inc., Chicago, IL, USA).
Data are expressed as mean ± standard deviation (SD), and significance was defined as
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p < 0.05. The correlation between the LF-NMR results and the physicochemical parameters
was determined by Pearson correlation analysis.

3. Results and Discussion
3.1. Quality Indicators Analysis
3.1.1. Moisture Content Analysis

The changes in the moisture content and drying rate of shrimp during the hot air
drying process are shown in Figure 2. The moisture content of the fresh shrimp was 75.87%.
The drying endpoint is 12 h at which point the moisture content decreases to 35.02%. It can
be seen from Figure 2 that within 2 h of drying, the moisture content decreases at a slower
rate; the drying rate at this point is 3.74% w.b h−1; during 2–8 h, the moisture content
decreases at a faster rate and the drying rate reaches a maximum of 5.72% w.b h−1 at 4 h;
and after 8 h, the drying rate decreases slowly. The reason for this phenomenon could
be that, in the early drying stage, due to the high moisture content of shrimp, the oven
space was saturated, and the moisture on the surface of the shrimp could not evaporate in
time [34]. This situation increased the humidity in the oven. With further hot air drying,
the protein denatured because of the heat, which reduced the interaction between matter
and water. The release of water and increase in the drying rate could also have been due to
fiber shrinkage, leading to decreased intracellular spaces and thus facilitating evaporation.
Similar results were obtained by Sun et al., who found that the moisture content of scallops
decreased by approximately 50% during drying at 55 ◦C for 5 h and that the decrease in
moisture content was mainly associated with free water migration [24]. When the moisture
on the surface of the shrimp evaporated, the free water in the body evaporated to a certain
extent, and the remaining bound water could not easily flow and evaporate, resulting in a
slow decline in the moisture content and drying rate. Shi et al. found that the decrease in
the moisture content of beef jerky with increased drying time and temperature was related
to the degree of moisture migration [35]. The current results corroborate these findings.
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3.1.2. TPA

Texture analysis of the shrimp was performed during the drying process, and the
results are shown in Table 1. The TPA parameters include hardness, adhesiveness, elasticity,
stickiness, and chewiness. As shown in Table 1, the hardness of the shrimp samples
significantly increased with increasing drying time (p < 0.05) due to the change of drying
rate and the shrinkage of shrimp muscle fibers during the drying process. Latorre et al.
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explained that the dissociation of actin and myosin, disintegration of muscle fibers, and
myofibril dissociation lead to the formation of small fragments and increase the hardness of
the disordered structure of the muscle fiber [36]. The shrimp showed the least adhesiveness
after drying for 12 h, which highlighted their improved fragility. The elasticity of shrimp
firstly increased and then decreased during drying and reached its highest value at 7 h
of drying. The changes in elasticity were related to the contraction of the muscle fiber.
As muscle fiber contracts, the muscle proteins form a dense reticular structure, which
is prone to irreversible deformation when the muscle tissue is extruded, and the spatial
structure of muscle proteins is small, resulting in reduced elasticity [37]. In addition,
the stickiness and chewiness of shrimp samples increase with increasing drying time.
Chewiness and stickiness are parameters used in comprehensive analysis. Chewiness
represents the energy required to chew solid samples, whereas stickiness represents the
energy required to separate food from its contact material. As hardness and elasticity
showed significant changes during drying, they were chosen as representative indicators
of TPA for further modeling.

Table 1. Effects of hot air drying on the texture of shrimp.

Drying Time (h) Hardness (N) Adhesiveness (N) Elasticity (mm) Stickiness (mJ) Chewiness (mJ)

Fresh 127.96 ± 15.44 f 1.90 ± 0.31 a 0.83 ± 0.13 f 2.84 ± 0.58 h 2.38 ± 0.74 h

Boiled 144.26 ± 16.24 f 1.48 ± 0.17 c 1.96 ± 0.23 c,d,e 12.23 ± 1.99 g 24.37 ± 6.85 g

1 159.64 ± 28.24 e,f 1.45 ± 0.18 c 1.90 ± 0.22 d,e 14.61 ± 3.32 f,g 28.44 ± 9.41 f,g

2 168.89 ± 34.57 e,f 1.36 ± 0.14 c 1.99 ± 0.21 c,d,e 17.06 ± 3.96 e,f,g 34.63 ± 11.19 f,g

3 162.99 ± 20.22 e,f 1.14 ± 0.11 d 1.87 ± 0.16 d,e 14.55 ± 1.24 f,g 27.21 ± 4.07 f,g

4 197.26 ± 45.33 d,e 1.48 ± 0.19 c 1.74 ± 0.18 e 19.40 ± 4.70 d,e,f 34.44 ± 11.17 f,g

5 231.38 ± 41.98 c,d 1.37 ± 0.11 c 1.89 ± 0.18 d,e 20.74 ± 4.40 c,d,e,f 39.41 ± 10.75 e,f,g

6 245.64 ± 52.16 c 1.67 ± 0.32 b 1.91 ± 0.31 d,e 21.20 ± 6.82 c,d,e,f 41.67 ± 18.05 d,e,f,g

7 233.56 ± 56.55 c,d 0.25 ± 0.06 f,g 2.09 ± 0.20 c,d 22.15 ± 5.17 c,d,e 46.59 ± 12.44 c,d,e,f

8 265.54 ± 39.32 b,c 1.00 ± 0.12 d 2.05 ± 0.40 c,d 26.55 ± 5.60 c 55.78 ± 21.14 c,d,e

9 267.03 ± 58.75 b,c 0.33 ± 0.06 e,f,g 1.36 ± 0.23 a,b 26.61 ± 6.87 c 63.47 ± 19.29 c

10 252.94 ± 44.79 b,c 0.41 ± 0.10 e,f 1.23 ± 0.34 b,c 25.95 ± 8.07 c,d 60.13 ± 25.82 c,d

11 296.95 ± 63.08 b 0.47 ± 0.08 e 1.51 ± 0.26 a 37.14 ± 10.70 b 92.36 ± 24.28 b

12 344.78 ± 44.22 a 0.20 ± 0.02 g 1.56 ± 0.35 a 45.01 ± 9.78 a 116.50 ± 34.33 a

Note: All data are presented as mean ± standard error. Mean values with different letters within each line are
significantly different (p < 0.05) with respect to processing.

3.1.3. Color Analysis

The market value of shrimp depends on the visual appearance of their body color,
which is attributed to the presence of astaxanthin [38]. This carotenoid pigment is responsi-
ble for orange red tissue pigmentation in shrimp meat. Table 2 shows the color differences
of the shrimp. The L* value of shrimp increases from 40.71 when fresh to 63.85 after boiling
(p < 0.05), which may be due to the increase in heat during boiling, resulting in protein
accumulation and an increase in opacity. However, the L* value of the shrimp decreases
with more drying (p < 0.05). The blackening of dried shrimp is attributed to the Maillard
reaction during drying [39]. Moreover, a* and b* exhibit similar trends throughout drying.
The a* and b* values of dried shrimp are significantly higher than those of fresh shrimp
(p < 0.05). The formation of redness upon the exposure of shrimp meat to heat is a result of
the release of astaxanthin owing to the breakdown of carotene protein during denaturation.
There are slight decreases in a* and b* values in the late drying period, which may be due to
a slower drying rate and longer drying time, resulting in the slight damage of astaxanthin
from the extension of hot air-drying. Regarding ∆E values, the results for ∆E > 12 show
that the color of shrimp during drying is notably different from that of fresh shrimp.
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Table 2. Effects of hot air drying on the color of shrimp.

Drying Time
(h) L* a* b* ∆E

Fresh 40.71 ± 1.22 f 1.22 ± 0.55 f 3.08 ± 1.39 h -
Boiled 63.85 ± 1.22 a 23.38 ± 2.30 a 29.03 ± 2.46 a 41.304 ± 2.34 a

1 63.89 ± 1.13 a 21.33 ± 1.79 b 25.85 ± 1.96 b 38.261 ± 1.97 b

2 63.68 ± 1.17 a 20.02 ± 1.39 b,c 24.19 ± 2.08 b,c,d 36.460 ± 2.12 b,c

3 63.23 ± 2.17 a,b 19.35 ± 1.87 c 25.16 ± 1.84 b,c 36.493 ± 1.40 b,c

4 63.12 ± 1.61 a,b,c 20.24 ± 1.57 b,c 24.09 ± 1.65 b,c,d 36.158 ± 2.26 c

5 61.79 ± 0.88 b,c 17.56 ± 1.61 d 24.15 ± 1.68 b,c,d 34.043 ± 1.41 d

6 62.04 ± 1.52 b,c 15.86 ± 2.74 d,e 21.94 ± 1.37 e,f,g 32.144 ± 1.49 e,f

7 61.62 ± 2.24 c,d 16.60 ± 2.40 d,e 23.35 ± 1.79 c,d,e 33.025 ± 2.62 d,e

8 60.23 ± 1.28 d,e 15.99 ± 1.95 d,e 22.25 ± 1.77 d,e,f 31.152 ± 2.09 e,f,g

9 59.59 ± 1.58 e 16.93 ± 1.28 d,e 21.78 ± 1.79 e,f,g 30.938 ± 1.52 f,g

10 59.63 ± 1.68 e 15.56 ± 1.06 d,e 20.36 ± 1.75 f,g 29.433 ± 1.60 g

11 59.93 ± 0.56 e 15.44 ± 1.73 e 19.83 ± 2.56 g 29.289 ± 1.80 g

12 59.58 ± 0.79 a 16.08 ± 1.31 d,e 20.25 ± 2.42 f,g 29.617 ± 1.28 g

Note: All data are presented as mean ± standard error. Mean values with different letters within each line are
significantly different (p < 0.05) with respect to processing. “-”represents the blank.

3.2. LF-NMR Analysis

LF-NMR spectroscopy measures the absorption of radio frequency resonance in pres-
ence of an external magnetic field [30]; thus, the spin–spin relaxation time (T2) is closely
related to the water state and dynamics in foods. Protons of all substances are surrounded
by a small magnetic field; thus, each proton creates a tiny magnetic field that is affected
by the magnetic field of other protons [40]. Therefore, as the T2 of a sample is small or
large when the distance between protons is relatively small or large, respectively, T2 value
analysis is a fast and effective method that allows to identify changes in moisture content
and status, and reflects (to some extent) the micro-molecular structure of a sample [41,42].
Since water can alter the interaction between the different components of foods, drying
can significantly modify the microstructure of foods. Herein, the T2 signal amplitude of
shrimp at different drying stages was measured to characterize the change of water state
(Figure 3a). To better investigate the water state in the different samples, the relaxation
times T21, T22, and T23 of shrimp were defined as bound water that was tightly attached to
macromolecules when T21 was 0.01–10 ms, immobilized water entrapped within the extra-
myofibrillar lattice when T22 was 10–100 ms, and free water when T23 was 100–10,000 ms,
respectively. Noteworthily, the levels of bound water, immobilized water, and free water
quickly decreased, as denoted by the shift of the main peaks and signal amplitudes to
the left direction with increased drying time. These results indicate that the remaining
water molecules within the shrimp samples form strong adsorption connections with the
dry matter. The strongest T2 signal amplitudes were observed in fresh and boiled shrimp,
mainly due to their free and immobilized water, whereas the signals of free water gradually
disappeared and those of bound and immobilized water decreased as drying proceeded
(Figure 3a). Moreover, the relaxation times of T21 and T22 decreased from 3.05 to 1.52 and
28.48 to 14.17, respectively, and T23 became 0 ms after 9 h of drying (Figure 3b), which indi-
cates that the free water is the main moisture lost during drying. Therefore, the LF-NMR
results revealed that the mobility of the bound, immobilized, and free water molecules
is reduced due to shrimp muscle contraction and the marked evaporation of free water
during the drying process.

3.3. MRI Analysis

The hydrogen proton MRI has been used as a noninvasive method to evaluate the
distribution of moisture content within food products [43]. The T2 weighted images taken
at the transverse geometric center of each sample during the drying process revealed the
distribution of the water within high-mobility protons (Figure 4). With increasing drying
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time, a continuous decrease is observed in the size of the brighter regions, suggesting the
loss of a longer relaxation signal of water during drying. In addition, a decrease in the signal
intensity from the external surface to the inner region is evident. Similar phenomenon was
also observed by Ling et al. who found that the red region gradually changed to blue, and
the color and size of the blue region remarkably decreased from the exterior to the interior
part with increasing drying time of shrimp [39]. These results confirmed that the water
relaxation signal gradually weakens and the water content continuously decreases during
the drying process, in agreement with the above-described changes observed in moisture
content in shrimp during drying.

Foods 2022, 11, x FOR PEER REVIEW 10 of 22 
 

 

which indicates that the free water is the main moisture lost during drying. Therefore, the 
LF-NMR results revealed that the mobility of the bound, immobilized, and free water 
molecules is reduced due to shrimp muscle contraction and the marked evaporation of 
free water during the drying process. 

 
Figure 3. (a) Distribution of T2 relaxation spectra and (b) change of T2 relaxation times obtained by 
multi-exponential fitting of the continuously distributed Carr–Purcell-Meiboom-Gill relaxation 
curve of different shrimp samples during drying. 

3.3. MRI Analysis 
The hydrogen proton MRI has been used as a noninvasive method to evaluate the 

distribution of moisture content within food products [43]. The T2 weighted images taken 
at the transverse geometric center of each sample during the drying process revealed the 
distribution of the water within high-mobility protons (Figure 4). With increasing drying 
time, a continuous decrease is observed in the size of the brighter regions, suggesting the 
loss of a longer relaxation signal of water during drying. In addition, a decrease in the 
signal intensity from the external surface to the inner region is evident. Similar phenome-
non was also observed by Ling et al. who found that the red region gradually changed to 
blue, and the color and size of the blue region remarkably decreased from the exterior to 
the interior part with increasing drying time of shrimp [39]. These results confirmed that 
the water relaxation signal gradually weakens and the water content continuously de-
creases during the drying process, in agreement with the above-described changes ob-
served in moisture content in shrimp during drying. 

 
Figure 4. T2 weighted MRI images of shrimp dried by hot air drying at different levels. 

  

Figure 3. (a) Distribution of T2 relaxation spectra and (b) change of T2 relaxation times obtained by
multi-exponential fitting of the continuously distributed Carr–Purcell-Meiboom-Gill relaxation curve
of different shrimp samples during drying.

Foods 2022, 11, x FOR PEER REVIEW 10 of 22 
 

 

which indicates that the free water is the main moisture lost during drying. Therefore, the 
LF-NMR results revealed that the mobility of the bound, immobilized, and free water 
molecules is reduced due to shrimp muscle contraction and the marked evaporation of 
free water during the drying process. 

 
Figure 3. (a) Distribution of T2 relaxation spectra and (b) change of T2 relaxation times obtained by 
multi-exponential fitting of the continuously distributed Carr–Purcell-Meiboom-Gill relaxation 
curve of different shrimp samples during drying. 

3.3. MRI Analysis 
The hydrogen proton MRI has been used as a noninvasive method to evaluate the 

distribution of moisture content within food products [43]. The T2 weighted images taken 
at the transverse geometric center of each sample during the drying process revealed the 
distribution of the water within high-mobility protons (Figure 4). With increasing drying 
time, a continuous decrease is observed in the size of the brighter regions, suggesting the 
loss of a longer relaxation signal of water during drying. In addition, a decrease in the 
signal intensity from the external surface to the inner region is evident. Similar phenome-
non was also observed by Ling et al. who found that the red region gradually changed to 
blue, and the color and size of the blue region remarkably decreased from the exterior to 
the interior part with increasing drying time of shrimp [39]. These results confirmed that 
the water relaxation signal gradually weakens and the water content continuously de-
creases during the drying process, in agreement with the above-described changes ob-
served in moisture content in shrimp during drying. 

 
Figure 4. T2 weighted MRI images of shrimp dried by hot air drying at different levels. 

  

Figure 4. T2 weighted MRI images of shrimp dried by hot air drying at different levels.

3.4. Correlation between LF-NMR and Physicochemical Properties

As a rapid, noninvasive method, LF-NMR relaxation is often applied to investigate
water mobility in materials and foods [44]. However, the correlation between water
distribution state and the physicochemical parameters of shrimp during the drying process
needs deeper exploration. Therefore, the relationship between T2 relaxation times (T21, T22,
and T23) and shrimp physicochemical properties was determined by Pearson correlation
analysis (Figure 5). The results indicated good correlations between LF-NMR data and
shrimp moisture content, hardness, adhesiveness, stickiness, and chewiness. Specifically,
moisture content was significantly positively correlated with T21 (R = 0.943), T22 (R = 0.914),
and T23 (R = 0.903), which may be explained by the substantial effect of moisture on the
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proteins and myofibril in shrimps. This was similar to the findings of Cheng et al., who
also reported a positive correlation between the decrease in moisture content and the
change in relaxation times [42]. Regarding shrimp texture, its hardness, stickiness, and
chewiness were negatively correlated with T21 (R = −0.877, R = −0.889, R = −0.852) and
T23 (R = −0.846, R = −0.875, R = −0.844), whereas adhesiveness was positively correlated
with T21 (R = 0.832) and T23 (R = 0.872). These results agree with those of Wang et al., who
reported that T22 was highly correlated (p < 0.01) with hardness, elasticity, and chewiness,
thereby consequently leading to moisture changes that will affect muscle fiber contraction
and alter the texture of shrimp meat [44]. However, the color indicators exhibited a weaker
correlation with the LF-NMR, which may be due to the fact that the color change is mainly
caused by fat and pigmentation, and is weakly related with water splitting. In summary,
the strong correlations between LF-NMR data and shrimp moisture content and texture
properties indicate the potential of LF-NMR as a fast and nondestructive alternative method
of detecting quality changes during shrimp drying.
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texture of shrimp during drying.

3.5. Analysis of Modeling Results Based on Spectral Information
3.5.1. Spectral Characteristics of Drying Processes

Figure 6 shows the average spectra of the ROIs in the shrimp samples. The spectral
reflectance curves of the shrimp samples with different drying levels are smooth and
exhibit the same trends across the entire wavelength region. As shown in Figure 6a, a
prominent absorption peak is centered at approximately 480 nm, which is probably due
to the presence of astaxanthin in the shrimp [45]. Astaxanthins present in the dermis of
the carapace are bound to proteins, and when shrimp are heated at high temperatures,
astaxanthin detaches from the proteins, causing red astaxanthin to become present. Another
intense absorption peak occurred at approximately 960 nm, which was attributed to water
absorption corresponding to the second overtone of O–H stretching [24]. Because water
is the main component of shrimp, it absorbs the radiation of light waves and dominates
the spectral characteristics between 950 and 1000 nm. Figure 6b shows the representative
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reflectance spectra of boiled and processed shrimp at different drying times (3, 6, 9, and
12 h). Over the wavelength region of 400–920 nm, the reflectance of boiled shrimp was
greater than that in the dried samples, and the reflectance of dried shrimp decreased as the
drying time increased. This phenomenon is related to moisture changes during shrimp-
drying, especially to the mechanism of vapor diffusion [46]. Changes in muscle tissue and
pigmentation during drying also contribute to this phenomenon.
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3.5.2. Prediction Models Using Whole Spectra

After spectral pretreatment, PLSR and LSSVM calibration models were established
using the mean spectra from 400–1000 nm (224 bands) to predict quality changes in shrimp
during drying. The main statistical parameters used to evaluate model performance are
shown in Table 3. The two models exhibited reasonable and similar performance. For
shrimp moisture content, both PLSR and LSSVM models yielded satisfactory results with
Rp > 0.92 and RPD > 2.5. Both models performed well for the prediction set, with RPD
values of 2.623 and 2.814, respectively, indicating that the LSSVM model is superior. For
shrimp color (L*, a*, and b*), the Rp values of L*, a*, and b* obtained with the LSSVM model
were 0.898, 0.919, and 0.906, respectively, showing excellent accuracy. Compared with
the LSSVM results, the Rp values of L*, a*, and b* obtained with the PLSR model were
0.853, 0.887, and 0.891, indicating a decrease of 0.045, 0.032, and 0.015, respectively. The
performances of the PLSR and LSSVM models were much better than those obtained in a
previous study by Wu et al. in which low Rp values of 0.864, 0.736, and 0.798 were achieved
respectively for L*, a*, and b* prediction in salmon [47]. Significant correlations between
the color parameters (L*, a*, and b*) and reflectance spectra could imply that the color
changes indicate the shrimp chemical composition that indirectly influences the reflectance
spectra. Compared to the PLSR model, the RMSEP for hardness and elasticity decreased
from 32.663 N to 20.486 N and from 0.181 mm to 0.151 mm, respectively, in the LSSVM
model, whereas RPD increased from 2.162 to 2.226 and from 2.118 to 2.208, respectively.
These findings prove that the LSSVM model is more effective in terms of hardness and
elasticity prediction, and demonstrate the potential of using HSI to estimate shrimp quality
during the drying process.

3.5.3. Prediction Models Using Characteristic Wavelengths

As multivariable (high-dimensional) data are extracted from hyperspectral images;
they contain many inter-band correlations, resulting in long data processing times and low
accuracy and robustness of the models [48,49]. After the SNV spectral pretreatment, the
CARS algorithm was employed to identify the optimal wavelengths that carry the most
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information, which is useful for determining the moisture content, L*, a*, b*, hardness, and
elasticity. The number of Monte Carlo sampling runs was set to 1000, and the number of
selected wavelengths was determined by 10-fold cross-validation. As a result, 42, 25, 39, 20,
29, and 18 optimal wavelengths were selected from the 400–1000 nm range, which occupied
<19% of the entire wavelength range (224).

Table 3. Prediction models for moisture content, L*, a*, b*, hardness, and elasticity values using
224 wavelengths.

Parameters Pre-Processing Model
Calibration Set Prediction Set

RPD
Rc RMSEC Rp RMSEP

Moisture
content

SNV PLSR 0.929 4.369 0.925 4.512 2.623
SNV LSSVM 0.959 3.378 0.938 4.312 2.814

L*
SNV PLSR 0.891 0.975 0.853 1.257 1.944
SNV LSSVM 0.906 1.002 0.898 1.031 1.958

a*
SNV PLSR 0.905 1.010 0.887 1.249 2.016
SNV LSSVM 0.937 0.998 0.919 1.181 2.246

b*
SNV PLSR 0.937 1.045 0.891 1.325 1.894
SNV LSSVM 0.940 0.875 0.906 0.945 2.065

Hardness
SNV PLSR 0.957 16.545 0.941 32.663 2.162
SNV LSSVM 0.968 12.758 0.915 20.486 2.226

Elasticity SNV PLSR 0.937 0.116 0.928 0.181 2.118
SNV LSSVM 0.958 0.073 0.910 0.151 2.208

Based on the identified optimal wavelengths, simplified PLSR (CARS-PLSR) and
LSSVM (CARS-LSSVM) models were established for the prediction of quality parameters
of shrimp during the drying processes, and the results are presented in Figure 7. Compared
with the PLSR and LSSVM models based on full spectra, the CARS-PLSR and CARS-
LSSVM models achieved a better prediction result for all quality indicators (L*, a*, b*,
hardness, and elasticity) except moisture content, which could be attributed to the selection
of effective wavebands during optimal wavelength selection in the CARS method. For
shrimp moisture content, the RPD based on the characteristic wavelengths model was
slightly lower than that determined using the full spectra because the process of filtering
the characteristic wavelengths misses some important information. For shrimp color and
texture, the prediction results of the characteristic wavelengths models were significantly
improved, and the LSSVM models results were better than the PLSR model results. The
RPD of the LSSVM model reached 2.541, 2.550, and 2.795 for L*, hardness, and elasticity,
respectively. Overall, it is reasonable to select the optimal wavelengths by employing
the CARS method, which removed approximately 80% of the wavebands, significantly
decreasing the data processing time and increasing the working efficiency. The newly
developed model based on optimal wavelengths exhibits a powerful ability to predict the
quality parameters of shrimp during drying.

3.6. Analysis of Modeling Results Based on Image Information
3.6.1. Color Feature Information Extraction

The hyperspectral images at 647 nm, 550 nm, and 460 nm were used to synthesize
RGB images as the target images for color feature extraction. The first- and second-order
moment statistics for the R, G, and B components were calculated and listed in Table 4.
Owing to the large amount of data, the color moment information of the eight samples was
averaged. The first-order moment represents the average strength of the color component,
whereas the second-order moment represents the color variance (i.e., non-uniformity) [29].
As shown in Table 4, the first-order moments show an overall increasing trend, and the
second-order moments exhibit a decreasing trend; it indicates that the average intensity
of the image color increases, and the color distribution becomes more uniform. These
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characteristics may be due to the oxidation of astaxanthin in shrimp with increasing drying
time, resulting in a darker color. Because the RGB color space does not match human
color perception, this space was converted into a visual-perception-oriented HSV space to
calculate the histogram and quantify information. The mean grayscale values of the H, S,
and V components are listed in Table 4. As the drying time increases, the overall S and V
values increase, whereas the difference in H is small, indicating that shrimp images with
different degrees of drying show less variation in hue.
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Table 4. Extracted image feature information of color.

Drying Times (h)
First Order Moments Second Order Moments

H S V
R G B R G B

Boiled 62.284 56.703 62.217 38.837 35.045 27.693 0.487 0.595 0.307
1 61.977 55.456 60.337 37.209 34.035 27.374 0.482 0.605 0.301
2 60.761 57.174 64.857 36.829 33.947 26.746 0.496 0.605 0.311
3 61.490 55.945 62.807 38.330 34.523 27.186 0.495 0.615 0.309
4 60.892 55.974 62.138 37.353 33.333 25.926 0.488 0.615 0.308
5 61.110 56.265 62.507 35.692 32.388 25.120 0.490 0.607 0.309
6 63.739 58.015 62.952 34.702 31.067 23.947 0.479 0.613 0.318
7 65.538 59.785 62.133 35.201 30.905 24.029 0.459 0.609 0.322
8 60.655 55.422 60.712 36.566 31.897 24.553 0.481 0.623 0.308
9 64.497 57.990 61.884 36.441 31.830 24.614 0.479 0.600 0.317

10 63.540 58.484 63.141 38.164 32.466 24.667 0.476 0.622 0.322
11 63.438 57.540 62.576 36.181 31.338 23.793 0.483 0.621 0.321
12 68.387 61.024 64.176 36.032 31.173 23.693 0.471 0.609 0.334

3.6.2. Texture Feature Information Extraction

As important as visual characteristics, texture features can also reflect differences in the
chemical composition and structure of foods [50]. In this study, PCA was conducted for each
individual image to evaluate the spatial variability of the samples; the top three principal
component images (PC1, PC2, and PC3) with a cumulative contribution of 99.58% were
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selected for GLCM to obtain the contrast, correlation, energy, and homogeneity. The PCA
process and average trends of the four textural features of the eight samples with different
drying times are shown in Figure 8. It was clear that the contrast of the samples differed
with increasing drying time, as denoted by the large differences in the gray value of the
images, firstly exhibiting an increasing trend followed by a decrease in contrast (Figure 8a),
which may be related to changes in the muscle texture during the shrimp-drying process.
The correlation varies less (Figure 8b), fluctuating from 0.7 to 0.9, indicating that the texture
uniformity of shrimp images with different drying levels is similar. As the drying time
increases, the energy firstly decreases and then increases (Figure 8c). Homogeneity shows
an opposite trend, reaching a minimum value at the seventh hour of drying (Figure 8d).
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Figure 8. PCA process and texture features of shrimp samples, (a–d) stand for the change of contrast,
correlation, energy, and homogeneity, respectively.

3.6.3. Image Information Modeling Results

To verify whether the color and texture features of the hyperspectral images can be
used to predict the quality indicators of shrimp during drying, nine color variables and four
texture variables were selected and used to construct PLSR and LSSVM prediction models.
The color variables were used to predict L*, a*, and b*, the texture variables were used to
predict hardness and elasticity, and 13 integration variables were used to predict moisture
content. The PLSR and LSSVM model results based on image information are presented in
Table 5. The LSSVM model yielded better predictions than the PLSR model. Specifically,
the LSSVM model results for color were good, with RPD values of 1.642, 1.510, and 1.544
for L*, a*, and b*, indicating that images can be used to predict shrimp color. However, the
hardness and elasticity predictions were relatively poor, which may be because the amount
of extracted textural information was not sufficient to accurately reflect shrimp hardness
and elasticity. Overall, the models based on hyperspectral image information were inferior
to those based on spectral data, which highlights the inadequacy of using only external
image features to predict the quality indicators of shrimp during drying.

3.7. Analysis of Modeling Results Based on Fusion Mapping Feature Information

To further verify whether the integration of the image and spectral data from shrimp
samples could optimize the prediction model and improve the accuracy for moisture
content, color (L*, a* and b*), and texture (hardness and elasticity), the variables from
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the optimal spectra and HSI color and texture information were integrated by feature-
level fusion using the normalization technique. Thus, fusion data comprising the optimal
wavelength of each indicator and 13 color and texture features were used to establish new
PLSR and LSSVM models. The prediction results of full bands, characteristic bands, and
fusion information are given and compared in Figure 9. Regarding shrimp moisture content
(Figure 9a), the fusion models achieved limited improvement. The LSSVM model using
full-band spectral information exhibited the best performance for dried shrimp (Rc = 0.959;
Rp = 0.938; RPD = 2.814). For L*, a*, and b* (Figure 9b–d), the fusion-based PLSR and
LSSVM models exhibited substantial improvement. The LSSVM model was superior to
the PLSR model, with RPD values for L*, a*, and b* of 3.292, 2.753, and 3.211, indicating
an increase in the prediction performance of 0.866, 0.172, and 0.859 than the PLSR model,
respectively. For hardness and elasticity (Figure 9e,f), the fusion-based LSSVM model also
showed excellent results compared to the fusion-based PLSR model, with the RPD values
increasing from 2.612 to 2.807 and from 2.717 to 2.842, respectively. Thus, combining the
internal components and external attributes of shrimp can more fully explain the color and
texture changes of shrimp during drying, leading to better prediction results.

Table 5. Results of PLSR and LSSVM models based on image information.

Parameters
PLSR LSSVM

Rp RMSEP RPD Rp RMSEP RPD

Moisture
content 0.695 9.569 1.065 0.730 8.564 1.197

L* 0.690 2.323 1.243 0.798 1.845 1.642
a* 0.701 2.570 1.317 0.762 1.901 1.510
b* 0.655 2.609 1.287 0.794 2.010 1.544

Hardness 0.591 46.198 1.088 0.685 40.103 1.395
Elasticity 0.581 0.332 1.192 0.698 0.207 1.404
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3.8. Visualization of Quality Indicators

A unique advantage of HSI technology compared with traditional spectroscopy or
computer imaging technology is visualization of the prediction index of tested samples.
Figure 10 visualizes the moisture content, L*, a*, b*, hardness, and elasticity of shrimp
generated by the optimal model selected from the modeling results. In the maps, the
distribution of shrimp moisture content is expressed by a linear color bar ranging from
blue (low value) to red (high value). The boiled shrimp have a high moisture content of
73.02%. The moisture content of the samples then gradually decreases with drying time to
a final value of 35.02%. As for shrimp color, L*, a*, and b* values tend to decrease during
the drying process. Although this difference cannot be observed by visual inspection, the
spatial distribution of color features within the shrimp was detected in the final distribution
map generated by analyzing the hyperspectral image of the sample. Furthermore, the
visualization maps show a clear increase in the hardness of shrimp, whereas the distribution
of elasticity is more complex. Thus, the distribution maps of shrimp moisture content,
color, and texture provide an intuitive analysis of changes in the quality reference values
for dried shrimp, which are unlikely to be observed by the naked eye or an RGB image.
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In more detail, the moisture content distribution is non-uniform and asymmetric.
This may be attributed to complex changes in protein decomposition, lipid oxidation, etc.
Furthermore, drying temperature and time may accelerate the degradation of ruptured
tissue and cells in meat, leading to further uneven water loss [51]. Following shrimp
drying, the L* value decreases with the oxidization of myoglobin and hemoglobin into
metmyoglobin and methemoglobin [52]. In addition, the color of shrimp becomes orange,
with yellow or orange-red colors resulting from the oxidization reaction and the presence
of astaxanthin. The hardness and elasticity of shrimp exhibits a non-uniform distribution
that is related to the distribution of fat, pigments, and collagen [53]. In summary, HSI
combined with data fusion can achieve the nondestructive detection and visualization
of shrimp color and texture during drying. Specifically, the distribution maps of quality
indicators generated using HSI clarify the location and movement of water, color, and
textures through the shrimp samples during the hot air drying process. Such maps help
consumers intuitively understand the dynamic changes in shrimp quality and the shelf life
of dried shrimp production. Thus, we present a valid alternative to traditional methods of
monitoring shrimp drying that has substantial potential for further development and can
be applied to detect freshness or other indexes during aquatic production.

4. Conclusions

In this study, we described the changes in shrimp quality, evaluated the correlation
between shrimp water distribution state and other quality indices, and combined spectral
and image information of the hypercube to monitor shrimp quality changes during the
drying process. Throughout the process, the moisture content showed a downward trend,
the hardness and elasticity reached 344.78 N and 1.56 mm, respectively, and the color
turned bright yellow at the end of drying. Significant correlations between the moisture
content, TPA parameters (hardness, adhesiveness, elasticity, stickiness, and chewiness),
and LF-NMR parameters (T21, T22, and T23) were observed. The HSI system in the spectral
range of 400–1000 nm was used to monitor the quality changes (moisture content, L*, a*, b*,
hardness, and elasticity) of shrimps during drying. The results demonstrate the following:
first, the ability of the HSI method to evaluate the quality changes of shrimps during drying;
second, the optional wavelengths selected by the CARS method carried the most effective
information, which reduced the spectral dimension and accelerated the calibration process;
and finally, the spectral information model predicts better than the image color and texture
information model, and the LSSVM built by combining image information with spectral
information in characteristic bands has powerful and accurate prediction capabilities. Thus,
HSI can be utilized to visualize the quality changes in shrimps in a pixel-wise manner both
quantitatively and automatically, reducing the overall production cost, saving time, and
avoiding subjectivity and discrepancies.
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