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Abstract: Sodium is a necessary nutrient for regulating extracellular fluid and transferring molecules
around cell membranes with essential functions. However, the prevalence of some diseases is related
to unnecessary sodium intake. As a result, a particular problem for the food industry remains a
matter of sodium content in foods. It is considered that customer acceptance is associated with
salt perception dynamics related to the evolution of food production. It is a significant challenge
and technique to minimize the salt content of various foods and provide replacement products
with substantial reductions in salt levels. This review summarizes salt reduction strategies related
to health problems based on traditional review methodology, with practical and methodological
screening performed to determine the appropriate reference sources. Various technological (salt
replacement, food reformulation, size and structural modifications, alternative processing, and
crossmodal odor interaction) and behavioral strategies (memory process, gradual salt reduction, and
swap) are identified in this work, including a deeper understanding of the principles for reducing
sodium content in foods and their effect on food characteristics and potential opportunities for the
food industry. Thereby, the food industry needs to find the proper combination of each strategy’s
advantages and disadvantages to reduce salt consumption while maintaining product quality.

Keywords: salt reduction; strategy; hypertension; salty food; low salt

1. Introduction

Health authorities suggest that dietary salt should be gradually reduced because
excessive sodium intake causes many diseases. High salt intake is correlated with cere-
brovascular, heart disease, ventricular hypertrophy, kidney injury, and other damage to
the target organs [1–4]. Salt contains 40% sodium and 60% chloride. Table salt provides
approximately 90% of the sodium in the diet [2]. About 75% of salt consumption (NaCl)
comes from processed foods, not only for sensory but also for microbiological problems
avoidance [4–7].

The World Health Organization (WHO) proposes to lower NaCl intake in targeted
foods by 35% by 2025, such as bread, dairy products, soups, cheeses, meats, fish, and other
foods. In most cases, sodium consumption is well above the recommended intake level.
Therefore, reducing the amount of sodium intake in foods remains an essential concern for
the food processing industry. However, in most countries, dietary salt consumption is well
above the threshold level of <5 g/day, and salt restrictions on population consumption
have been rated as one of the least expensive interventions to minimize cardiovascular
disease [8]. Several national salt reduction initiatives, including interventions in schools,
workplaces, fast food chains or restaurants, hospitals, and government offices and other
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arrangements, food reformulation, front-of-pack labeling, consumer education, and salt
taxation, demonstrate the seriousness of efforts to reduce daily salt intake [9–16].

Efforts to reduce salt consumption gradually and sustainably through salt reduction
programs have been successful in several countries, including the United Kingdom (UK),
Finland, Poland, and Japan. The most successful nutritional program is the UK salt
reduction model. The method involves gradually changing the salt reduction of more than
80 food categories produced by the industry over a set period [17]. Over four years, this
strategy successfully lowered salt by at least 16% [18]. This accomplishment is measured
by the fact that individuals do not notice a difference in the taste of food that its salt content
gradually lowered. In Finland and Poland, salt reduction reduced the prevalence of stroke
by 10.1% and 23.1%, respectively [19]. Furthermore, Japan managed to decrease salt intake
from 14.5 g to 9.5 g from 1973 to 2017 [20]. These encouraging results have to be applied in
other countries.

Furthermore, salt reduction can have an impact on food characteristics as well as on
customer acceptance. Consumer taste is associated with the complexity of salt perception.
The challenge of salt reduction is that NaCl plays multiple roles in food products. Salt is
a vital tool for controlling water activity (Aw) in food preservation, delivering nutrients,
and serving as a source of electrolytes [21–24]. An inappropriate salt reduction will impact
food characteristics and consumer perceptions. As a result, a decrease in salt content will
reduce global food acceptance, leading to a decline in interest and a negative economic
effect—changes in food preparation connected with the intake of salty foods [25]. Thus, the
primary challenge is to lower the salt concentration while maintaining acceptability [26].

Strategies that are further advanced from the technological aspects of reformulation,
replacement, substitution, particle size modification, advanced processing technology,
memory process, or behavioral aspect, such as gradual salt reduction, swap, and further
traces of consumer perception of salt in food, are growing. This review aims to provide
an overview of salt reduction strategies and their effect on food characteristics based on
published research. Various databases, including Science Direct, Google Scholar, and Web
of Science, were used to conduct this review. The review was limited to published reports,
experiments, book chapters, and review papers. It goes through the ideas for lowering the
salt levels in foods, their relevance to health, and their impact on food characteristics.

2. Salt Content and Contribution to Various Food Products

Salt or sodium chloride (NaCl) is a specific food ingredient commonly used in food
service and common food processing. In some countries, there is usually a label on
packaged products that indicates the salt content used in the product. The salt content
category in products is classified into several sodium groups per serving. There are
sodium-free (<5 mg), very low (<35 mg), low (<140 mg), reduced sodium (<25%), light
sodium (<50%), and no salt added during processing [27]. However, a front-of-pack label
promoting salt reduction may have a negative impact on salt use and taste perception [28].
It is important to note that different countries have different regulations for salt labeling [29].
According to various sociodemographic variables, information on salt content varies among
countries. In some countries, the terms sodium and salt content are used on food labeling.
For instance, Malaysia uses salt levels listed on the food label [30]. In comparison, the
Percentage of Nutrient Reference Value (%NRV) is used in China [31]. However, a study
in 12 countries showed that consumers were confused about dietary guidelines and the
connection between salt and sodium [32]. This result remains a challenge in food labeling
concerning efforts to reduce salt intake. In order to discourage consumers from consuming
a high salt intake, reliable and effective food labeling is important for customers to guide
them to choose healthier food [33].

Fresh foods usually have moderate amounts of sodium, while processed food products
mainly contribute to the dietary sodium intake [34]. For example, eggs and milk contain
80 and 50 mg/100 g of sodium, while processed foods, such as pizza, bacon, bouillon
cubes, soy sauce, and pretzels, may contain about 250–20,000 mg/100 g [27]. Food-dense
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and some solid freezes, such as pizza, cheese, and sausages, are the saltiest in the food
segment [35]. Of the dominant contributors to sodium purchased by consumers, 23% were
table salt, 18% cooked meat, 13% bread and bread products, 12% dairy products, and 11%
sauces and spreads [36].

Salt is widely used to provide a salty taste, improve flavor, and act as a preservative.
Salt is a major contributor to human food consumption due to its widespread use in foods.
Salt inhibits certain enzymatic reactions in foods, which contributes to activating reactions
that facilitate the characterization of color, texture, and taste properties [37,38]. Salt also
adds flavor and bitter taste masks in foods, regulates yeast and the growth of fermented
bacteria, and promotes proteins or other binding components in foods to achieve the de-
sired texture [12,34]. In application, salt has technical properties, such as the arrangement
of meat and pasta, the preservation of pickles, meat, margarine and milk spoilage, and
changes in enzyme production in cheese [1,37]. In terms of preservatives against spoilage
microorganisms and foodborne pathogens, NaCl is the sodium-containing molecule most
effectively used in food and impacts food safety and quality in a microbiological view [4,37].
The salt content in the water phase of food affects the microorganisms. Preservation mech-
anisms also include redox potential and chemical preservatives. Salt’s osmotic impact is
responsible for changing the metabolism of foodborne pathogens, spoilage microorganisms,
and preserving various components of foods [21]. This result is related to the shelf life of
products because the addition of sodium ions to the products causes water to flow through
the semipermeable membrane of bacteria, resulting in water loss from cells and osmotic
shock, which leads to bacterial cell death or serious injury, thereby resulting in a significant
reduction in bacterial growth [39]. Another mechanism of salt related to extending the
shelf life is the role of salt as an essential tool for controlling Aw in food, which prevents
the growth of bacteria that can extend food shelf life [40].

3. Strategies to Reduce Salt Content in Various Food Products

To meet Na+ and Cl− population intake objectives, systemic programs should en-
courage health- and technology-based awareness, experience, and skills relevant to salt
intake reduction [2,14,41,42]. However, reduced salt or salt substitutes often produce poor
sensory quality [39,43]. Due to the significant contribution of food to dietary salt intake,
various technical strategies to develop low sodium foods without compromising food
quality are being developed. Chemical stimulation to increase salt taste in the periph-
ery, cognitive mechanisms to increase sensitivity or change salt tolerance, and product
structures designed to maximize salt distribution to the tongue to increase the salty taste
are the principal strategies that can be undertaken [21]. Therefore, providing alternative
processes and techniques with significant salt content reductions is an important challenge
in the food industry. In general, salt reduction strategies are related to technological and
behavioral aspects.

3.1. Technological Strategy
3.1.1. Salt Replacement Strategy

One of the salt replacement strategies can be replacing salt using cations that are
beneficial for blood pressure. Potassium can reduce some of the adverse effects of a high
sodium intake. Lowering blood pressure is most likely due to a substantial increase in
potassium and a reduction in average sodium intake [44]. Charlton et al. [45] successfully
reduced salt by 32% and partially replaced it with cations known to lower blood pressure,
notably potassium (K), magnesium (Mg), and calcium (Ca), without compromising bread
quality [45]. Salt substitutes can also increase flavor to minimize sodium levels by at least
25% and concurrently increase the content of calcium chloride (CaCl2), potassium chloride
(KCl), or magnesium chloride (MgCl2) [45,46]. Meanwhile, NaCl partially replaced with
other electrolytes allows for maintaining electrolyte levels necessary to optimize process
efficiency and has potential health benefits rather than simply reducing NaCl. However,
substituting KCl in the diet has serious and potentially fatal repercussions for people who
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need to limit their potassium intake. One third of Australian Chronic Kidney Disease
patients exceed the safe limit for dietary potassium consumption when NaCl in bread is
replaced by KCl (20–40%) [47]. As a result, improved food labeling is required to help
customers avoid excessive consumption.

NaCl substitution using anions, glutamate, and adenosine is more effective than other
anions in inhibiting bitterness related to sodium cation [48,49]. A low-sodium diet us-
ing umami seasoning (L-glutamate) was reported by Kawano et al. [50] in a single-blind
crossover intervention study. Clinical schizophrenics were given a low-sodium diet with
monomagnesium di-L-glutamate and had a 25.9% reduction in dietary sodium. In addition,
no decrease in daily energy intake and no significant changes in body mass index, body
weight, blood pressure, abdominal circumference, or nutrient intake were observed [50].
Some yeast extracts, which have a taste without contributing any additional odor, can also
replace salt in food. According to Zheng et al. [51], the salty peptide fractionation of FA31
(Angel Yeast) could be determined through ultrafiltration, gel permeation chromatography,
and preparative fluid chromatography (pre-HPLC) using a sequence of salty peptide com-
ponents, including Asp-Asp, Glu-Asp, Asp-Asp-Asp, Ser-Pro-Glu, and Phe-Ile. According
to the typical characteristics of the five peptide sequences, Asp-Asp and Glu-Asp have
salty, umami, and sour tastes; Asp-Asp-Asp has a salty and an umami taste; Ser-Pro-Glu
has a salty and sour taste, and Phe-Ile has a salty and bitter taste [51]. The incorporation of
5% yeast extract indicated that the formulation for promoting healthier salted salmon with
good sensory acceptability and low sodium content could be used [52].

In addition, herbs, spices, and mixes also impart novel flavors and sensory sensations
that may mask the absence of salt. Several plant-derived seasonings (e.g., garlic, herb
blends, saffron, deadnettle family, and spicy spices) have shown good consumer acceptance
when applied as salt substitutes [53]. Many different types of herbs can still be used as a
seasoning with ethnic characteristics. Lovage, for example, is a popular flavoring ingredient
used for salt substitutes [54]. This result proves that the development of a salty perception
by flavor boosters and aromas can decrease salt intake [21]. The replacement urges for
improved technological performance to be maintained.

3.1.2. Food Reformulation Strategy

Food reformulation could play a significant role in rebalancing dietary consump-
tion [55]. Some antagonistic and synergistic sodium reduction effects in complex food
products have also been investigated. For example, the considerable influence of salt per-
ception shows that salt, as opposed to fat, plays a significant role in the attraction of savory
fatty foods [56]. However, acid flavors, such as citric, lactic, and tartaric acids, can enhance
the perception of saltiness at low concentrations while having no impact or suppressing it
at high concentrations; this result is related to pairwise interactions among salty, sour, and
bitter elements accounting for a significant fraction (∼30–50%) of the potential binary taste
interactions [57]. Although there is a significant correlation between perceived sweetness
and suppression of salt perception in cream-based products, studies reveal that lactose
or dry glucose syrup reduces salt perception through taste–taste interactions due to the
interaction between sweetness and viscosity [22].

In emulsion-based foods, saltiness can increase with increasing fat and salt content
concentrations in the aqueous phase. In this case, the use of unsaturated and essential
fats appears to be beneficial. In addition to increasing the salty taste with reduced salt
content, it can also provide consumers with health benefits. For example, by increasing the
concentration of canola oil up to 40%, the salty intensity of NaCl and KCl will increase [58].
A water-in-oil (W/O) emulsion would appear less salty than an oil-in-water (O/W) emul-
sion [59]. By adjusting the mass fraction of the aqueous phase, the water-in-oil emulsion
(W/O) saltiness perception can be modified [60]. According to the emulsion’s formula
structure, more research is still needed to investigate the O/W saltiness and W/O emulsion.
While internalized salt stabilized with gelatinized waxy rice starch can improve the salt
reduction strategy of W/O/W emulsions food products, the aim is to release exposed salts
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due to amylase-induced instability during oral processing [61]. The encapsulated aqueous
salt phase with octenyl succinic anhydride (OSA)-starch was studied in vitro, in vivo, and
a sensory analysis revealed that it was feasible to reduce salt reduction by 23.7% without
affecting the perception of saltiness [62]. Another study shows that double starch W/O/W
quinoa starch granule pickering emulsion at 0.1 and 0.2 M salt encapsulation was able
to maintain more than 90% stability after 21 days [63]. Thus, the reformulation strategy
should focus on the balance of taste and product stability to produce a product that adheres
to the suggested salt consumption while retaining the product’s features

3.1.3. Modification of Size and Structural Strategies

Spray drying, electromagnetic atomization drying, ultrasound, and other advanced
technology were used to modify the size and structure of common salts. For instance, salt
particles with a smaller size and lower bulk density can be produced by using a spray dryer.
The substitution of NaCl with 30% KCl combined with spray dryer treatment with a lower
feed flow rate resulted in salt particles with a higher salinity level [64]. Furthermore, hollow
salt particles (~10 µm) produced by simple spray drying could be turned into vehicles for
boosting flavor performance while lowering sodium intake and delivering hydrophobic
bioactivity in food systems [65]. Moreover, the production of nanoscale salt crystal sizes
of 520 nm using electromagnetic atomization drying (EAD) also increases saltiness and
reduces sodium content by up to 65% in potato chip products [66]. Spray drying and
atomization techniques are also used in a mixture of a salt dissolved in a solvent combined
with a nonhygroscopic organic material (e.g., Gum Arab or maltodextrin) to produce a
salt product size that is less than 100 µm [67]. The saltiness and higher dissolution of
the maltodextrin/NaCl complex using spray drying were determined by atomization
strength and inlet temperature [68]. One of the atomization techniques is the production
of salt–hydrogel marbles from salt microcrystals and an aqueous gelling agent solution
(Figure 1). Salt–hydrogel marbles form in cooling air columns by atomizing droplets of
hydrogel solution, followed by hydrogel microbeads produced in beds of micrometer-sized
salt particles [69].
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Ultrasound techniques can also be used for atomization. Ultrasound treatment
achieved a 0.75% decrease in salt size, resulting in a loss of about 30% of the sodium
content [70]. Salt particles with a diameter of 20 µm have a greater dispersion in the food
matrix, resulting in a saltier flavor [71]. Different types of physical salts are mixed with
the size of salt crystals. The physical form of salt, the binding of surface area relative to
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volume, can produce a greater saltiness. Thereby, the product’s salt content can be reduced
by 25–15% in different product applications [72].

Varying salt crystal morphologies have different porosities, solubilities, dissolution
rates, and salt perceptions (Figure 2). There are some different salt crystal morphologies,
including: (1) rock salts, which are regular cubes with a smooth surface, high density,
and few cracks and pores; (2) aggregated sea salts, which are assembled entities of small
agglomerated crystals with small crystals attached to large crystals; (3) flake salts, which
have a larger surface area and low density; and (4) pyramidal sea salts, which have a hollow
pyramid structure and a relatively rough surface [73,74]. The porous structure of the crumb
is a strategy that can be used for salt reduction in bread because the coarse-porous bread
shows a faster release of sodium than fine-porous bread [75]. The application of a hollowed
microsphere of regular salt crystals on tuna and shrimp products is proven to maintain
product quality [76].
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The heterogeneous distribution of salt in foods is a viable method for developing
foods with decreased salt content while preserving the desired texture and taste [78]. This
technique was reported by Li et al. [35] in that sensory evaluations showed an increase
in salty semisolid food with an inhomogeneous salt distribution that decreased sodium
levels by 30% with maintained flavor and texture properties. Inhomogeneous sodium
distribution in bread using coarse-grained NaCl also greatly increased sodium release and
salt taste, as shown in Figure 3 [79].
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Moreover, encapsulated salt crystals cause the spatial distribution of salt in a solid
product, such as bread, to be inhomogeneous, with local zones of high salt concentrations.
Small encapsulates (1000 µm) provide salt concentration gradients that allow for a salt
reduction of 50% and have no effect on saltiness intensity or customer acceptance [80].
Another study shows that encapsulation is an efficient way of maintaining high-salted spots.
A total of 25% of encapsulated salts create a high-salted area and allow a salt reduction
of 50% [81]. The encapsulating material also has a large influence on salt dissolving.
Wax is regarded to be more effective than fat in inhibiting salt granule dissolution [77].
Furthermore, the encapsulation technology for nonvolatile oleoresin compounds may
provide standardized taste and aroma products for salt reduction in food systems through
different techniques [82]. Sensory contrast structures and a faster sodium release are a
function of sodium’s kinetic release when chewing, suggesting that Arabic gum induces
the swelling of the mucin layer to increase salinity and the acceleration of sodium diffusion
with the Arabic coacervate protein/gum [35].

3.1.4. Alternative Processing Strategy
High-Pressure Processing (HPP)

The advanced processing technology is a viable option for reducing salt in food. The
high-pressure processing (HPP) technique is often used to tenderize fresh meat while
forming a stable structure of processed meat [83]. HPP can boost protein solubilization, re-
ducing cooking loss, and improve salt distribution to produce sodium-reduced meat [84–86].
Two stages of HPP at 300 and 600 MPa employed in ready-to-eat chicken breasts reduced
salt content up to 50% with enhanced product quality and microbiological safety [84],
while the pressure intensity of 200 MPa, in combination with heating, can be utilized to
make the required gel product, for instance, treatment on meat dough can produce meat
products with a low salt gel type [86]. At a pressure of 200 MPa, more free water is attracted
by the protein or trapped in the gel structure than transferred to bound or immobilized
water [85]. However, HPP used in processing pork with a low salt content (0.5–2.5%) at
150 MPa for 5 min shows that while there were adverse effects on color, texture, supination,
and firmness, sensory levels of up to 2% were still acceptable [39]. In contrast, HPP at
600 MPa on ham and dried-cured pork increases salty levels in meat without adding salt
concentration [87]. HPP was also successfully applied at 300 MPa for 3–5 min at 4–25 ◦C
in meat products before cooking with a reduced salt content of 25–50% without affecting
critical quality attributes [84,88]. In other meat products, HPP at 150 MPa is also a viable
technology for making low-salt breakfast to 1.5% in breakfast sausages without adverse
changes in sensory quality [89]. Overall, the increase in saltiness in meat products is due to
treatment-induced interactions between sodium ions and protein structures, resulting in
a significant release of sodium on taste receptors on the tongue [87]. Furthermore, HPP
can inactivate vegetative cells and bacterial spores in the complex food matrix [90]. This
result is most likely due to low Water Activity (Aw) due to high solute concentration,
physical elimination of water via dehydration, or the presence of oil/fat. Therefore, HPP
is a technology that doubles function in meat products by inactivating microorganisms
and a technique to improve water binding, making HPP a promising technology in the
food industry [83]. However, there are disadvantages to using this technology; its efficacy
depends on the product’s characteristics and requires a high initial investment.

Moreover, immersion is a technology often used in the meat industry to increase
the shelf life of products, flavor, juiciness, and softness compared to immersion in static
techniques. At the time of immersion, the HPP approach can also increase the distribution
of salt in meat more effectively, resulting in a stronger salt perception even when the
real level of NaCl is low [91]. The rapid curing process also increases salt taste levels,
providing advantages, such as better regulated enzymatic softening and lower levels of
NaCl in immersion solutions, yet causing structural damage to soaked foods [92]. It
is also similar to ultrasound intensity, which increases the time transfer of salt during
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immersion. The effects of ultrasound treatment on beef tissue also increase the NaCl gain
rate perception [93–95].

High Hydrostatic Pressure (HHP)

High hydrostatic pressure (HHP) processing is also an effective nonthermal means of
improving food safety and shelf life for meat products as a postprocess intervention [96].
For the HHP application in ready-to-eat fish products with a NaCl reduction of 25%,
a feasible alternative is to employ UV-C at 0.310 J/cm2 or HHP at 300 MPa for 5 min,
effectively maintaining the cooking loss, instrumental color, texture, and salty taste [97].
However, the interaction between changes in the conformational structure (secondary and
tertiary structures) of meat product gel characteristics and product quality utilizing the
HHP approach remains unknown [98].

Cold Processing Phases (CPP)

Another strategy was investigated by Pinna et al. [99], the strategy of cold processing
phases (CPPs) in ham products. The CCP was made to produce ham with a 25% reduction
in salt. The Aw decreases during the process, increasing the shelf life, while the color
properties of the finished product are unaffected by the salt reduction and process modifi-
cations. Furthermore, proteolysis rises when the salt in the ham decreases, resulting in an
increasingly softer texture. However, increased salt diffusion of the back skin may assist in
compensating for the increased proteolysis of the bicep femoris muscle, which is depleted
of salt during the decreased salt ham phase [99].

3.1.5. Crossmodal Odor–Flavor Interaction Strategy

Evidence of crossmodal integration between taste and odor is extensively provided.
The enhancement of retronasal odors by a sweet stimulus is the result of an adaptive sensory
mechanism designed to increase the salience of nutritive food flavors [100]. For instance,
the aroma of strawberries enhances the sweetness of sweetened whipped cream [101].
Crossmodal odor–flavor interactions are also a way to enhance the saltiness of food through
modifications caused by odors in taste perception. Thomas Danguin et al. [4] reported
that salt-related odors could increase saltiness in a water solution with a low NaCl content.
The increase in odor-induced salty perception (OISE) depends on the concentration of salt
(intensity) (Figure 4). OISE is considered to be an efficient strategy to decrease salt content.
However, its effect on texture depends on the low amount of salt in the solid version.
Variance in nutrient matrix ingredients affects the release of salt and the general salty
taste. Only models of foods with soft textures are found to increase saltiness significantly
even though techniques that combine the heterogeneous stimulus and OISE are found in
cream-based food systems to compensate for and reduce salt content by more than 35%
without a substantial lack of acceptance [4].

3.2. Behavioral Strategy
3.2.1. Memory Process Strategy

Memory processes influence eating behaviors, and efforts to improve memory of eating
have produced varying degrees of success in reducing future eating [102]. Herbert et al. [103]
analyzed the effects of various forms of repeated exposure to memory with low-salt broth
flavor using memory processing techniques. The results showed that multiple experiences
with test soups did not affect taste memory. However, the participants remembered that
the final exposure soup was saltier than the low-salt preparations and recalled the salt
concentrations associated with the individual’s ideal salt concentration [103]. This result
could be a useful intervention to reduce overconsumption because it is related to improving
eating memory [102]. However, little is known about factors that affect eating memory,
especially salt intake.
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3.2.2. Gradual Salt Reduction Strategy

Gradual salt reduction investigated by Toft et al. [8] shows how the effect is tested
using a linear mix model. Their study evaluated statistical differences among three fractions
(gradually salt-reduced bread, salt-reduced bread, and dietary counseling to reduce salt
intake further and increase potassium intake or standard bread). Other results showed
that reduced salt consumption by lowering salt levels in bread with intervention alongside
nutrients might improve salt flavor sensitivity, resulting in a preference for low-salt bread
(0.4 g salt/100 g) [104]. In addition, the implementation of the salt reduction program has
succeeded in gradually lowering salt levels in bread by 35% (from 1.7 ± 0.2 g/100 g to
1.1 ± 0.1 g/100 g) for three years without consumers noticing [105].

Moreover, one method that can be used in Salt Reduction Intervention (STRIVE) is
to facilitate the evaluation of the gradual salt reduction strategy. Trial et al. [106] report
that a STRIVE study was used to evaluate bread consumption on metabolic, chronic, and
health impacts with decreased salt levels or accompanied by a nutritional counseling model.
STRIVE is designed as an instructional tool for assessing and advocating adjustments in salt
consumption. These findings reveal that the mechanism affects the sympathetic nervous
system, the renin–angiotensin–aldosterone system, and the formation of salt preference
limitations [106]. This method can be used to assess the gradual salt reduction strategy for
various products to obtain more comprehensive results that are useful in the future.

3.2.3. Swap to a Low-Salt Food Strategy

Swap, a strategy researched by Riches et al. [107], can reduce salt intake to give
customers the option to switch to a low-salt diet during online shopping. They provide a
broader range of salt-related alternatives to salt reduction rates. The salt reduction from
the swap market is similar but with a minimum salt content for substantial salt reductions,
including preferred foods. The first group received the same alternative with 5–20% less
salt, while the second group received the same less salt swap and an option with >20%
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medium less salt. The results showed that providing replacement products with substantial
salt reductions, such as theoretically different products, would not minimize acceptance
and significantly reduce the salt content of the shopping cart [107].

Furthermore, He et al. [108] found that lowering salt intake led to a lower soft drink
consumption. This result relates to the link between salt consumption and total fluid
consumption. Salt is a key cause of thirst, and increasing salt intake will increase fluid
consumption, mainly of sugary drinks [17,109]. Conversely, lowering salt intake may also
reduce sugar intake, which is also good for health. However, further research into the
relationship between salt reduction and sugar intake in other food categories is required
because of the lack of data about salt’s direct effect on blood glucose levels [110].

4. Effects of Low Salt Content on Food Characteristics and Food Safety
4.1. Bread Products

Reducing the quantity of salt in food has a variable influence on food properties. For
bread products, reducing salt levels (<1.2%) has an impact on decreasing dough resistance
to extensibility and complex modulus without affecting the liquid–solid ratio [111]. In
comparison, the significance of salt in a small amount (1.5%) in the reinforcement of the
wheat gluten network (≤86%) increases dough gas retention and affects yeast activity [112].
However, from a taste perspective, the 10% reduction in NaCl in common brands of
pizza dough is imperceptible [113]. The salt reduction directly impacts texture, which has
implications for undesirable products. As a result, determining the precise decrease of salt
content is critical for determining the rheology of bread. For instance, to prevent excessive
expansion when the salt level is decreased, the dough base can contain starch with a high
concentration of amylopectin [114].

Moreover, Diler et al. [81] found that a 25% salt decrease may be achieved by main-
taining 50% of the salt in the dough to maintain the dough characteristics and retaining
25% as salt grains to produce a high saltiness area, hence raising the perception of the
saltiness of the dough. It was accomplished by using the salt grain encapsulation technol-
ogy to create very salty specks and optimizing the dust system to ensure a homogenous
dispersion of the encapsulated salt grains in the dough during the laminating process [81].
This result aligns with the sensory contrast technique, which employs encapsulated salt
crystals ranging from 1000 to 2000 µm, allowing for salt reductions of up to 50% while
preserving customer preference for the bread product [80]. Furthermore, instead of simply
depending on conventional salt reduction, it is expected that integrating different strategies
will provide better products.

The salt concentration is also related to the formation of aroma in bread products. One
of the sensory properties of the bread assessed its aroma, which describes several factors: the
composition of the ingredients and yeast, the degree of mechanical and enzymatic damage
caused by kneading and yeast, and the strength of thermal reactions that occur during
baking [115]. Furans are usually caused by the oxidation of thermal sugars and the Maillard
reaction, along with pyrrols, pyrazines, and strecker aldehydes, which are important to
form the aroma of cakes or bread crusts [116]. The salt concentration significantly influences
the volatile profile, which results in a higher methyl pyrazine 2-methyl furan concentration.
Even though, if measured from the color aspect, strecker aldehydes and diacetyl (2,3-
butanedione) in bread contain 20 g/kg of salt, Maillard browning is more critical at higher
salt concentrations [115]

4.2. Cheese Products

In cheese products, salt levels and pH have the necessary effects on the rheological
profile of cheese and the fat droplet scale [117]. The reduction of NaCl in cheese can reduce
the cheese’s elasticity, while changing the cations from sodium to potassium can increase
the cheese’s elasticity [23]. Moreover, salt affects complex ingredients or texture interactions
in semisolid food, which influences how salty a food product is perceived [22]. Reducing
salt concentrations also decreases insolubility significantly. Protein solubility decreases at
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a high ion strength, and the protein escapes from the solution [118]. With an increase in
dry matter content, it was shown that the diffusion coefficient of NaCl (*D NaCl) reduced,
which influences the growth of viscoelasticity and the reduction of cavity volume [119].
This result, aligned with increased dry matter content, resulted in a declining salt release,
which reduced the perception of saltiness [117].

Furthermore, the proteins in cheese react with each other, fat, water, and salt, depend-
ing on the cheese’s manufacturing conditions and ionic atmosphere and the level of such
interactions [120]. There is a link between the ionic strength of the salt type and protein
solubility at different pH levels in protein-based foods [121]. A low protein content will
affect the decrease in salt concentration in cheese related to the low solubility of casein in
decreasing salt levels [122]. Additionally, low-protein cheese has a lower sodium-bound
fraction and a longer relaxation time, which results in higher sodium mobility and fewer
ionic interactions between casein and sodium molecules [123]. NaCl in cheese or protein
suspension increases the ion potency of the system, solid behavior, shear-thinning, and
frequency-dependent viscoelastic behavior [124]. In addition to its relation to protein, a low
lipid/protein ratio makes cheese firm and hard, decreasing the sodium’s mobility during
salt release [123]. This is consistent with the fact that adding fat to the protein gel system
can increase saltiness by 26% [125].

In application, reducing salt by up to 50% boosted melting and slightly decreased
stretch in mozzarella, whereas a 60% reduction in salt-restricted melting and consumer
liking fell as salt was reduced [126]. In comparison to storage duration, the salt concentra-
tion has little effect on the texture properties of cheddar or the thawing and stretching of
mozzarella cheese [126]. This result aligns with the salt content being less influential than
pH on rheological behavior, dressage tribology, and sensory. Tribological behavior changes
with time, and lower NaCl concentrations are becoming less acceptable to customers. While
in another type of cheese, there are suggestions that reduced-salt cottage cheese sauce with
2.2% and 0.73% NaCl formulations at pH 5.0 is similar to the full-salt formulation [127].

Furthermore, salt content also significantly impacts Aw evolution and the microbi-
ological profile survival in meat and cheese products related to food safety [5–7,24,128].
In cheese products, salt is essential because it maintains and controls lactic acid bacteria
(LAB) growth of certain bacterial contaminants and pathogens in the final cheese. The
water content is also related to most of the peptides identified and their salt concentrations.
The salt reduction caused the ratio of peptides to proteinase activity to decrease signif-
icantly [129]. While in cheddar cheese, proteolysis and the overall speed of maturation
are faster as salt concentrations decrease, and a higher percentage of salt decreases cause
αs-casein degradation, yet no variation in the degradation of β-casein was identified [130].

4.3. Meat Products

Reduced salt in meat products has a different effect, especially on the structure, tex-
ture, and shelf-life of meat products. For meat products treated by ultrasound, the total
liquid release is reduced along with the salt release. The sample with 0.75% salt displays
microcracks in myofibrils and increased sensory acceptability of cooked ham [70]. This
result aligns with removing sodium by 34.64% does not affect the properties of Bologna
sausages, and the Aw values remained unchanged due to salt reduction, indicating that
the salt substitute used did not affect the concentration of free water [131]. While a 1%
reduction in salt reduced cooking loss, it increased moisture content, decreased fat levels,
and produced a firmer, springier, and chewier final product than sausages with higher salt
concentrations [132]. Salt also affects flavor, and palatability enhancers are employed to
increase sensory features by attenuating bitterness and sweetness. A higher salt concentra-
tion (0.8–2.2%) in pork breakfast sausage has a higher level of customer acceptance than
low salt content (1.4%) [133].

Pinna et al. [99] found increased proteolysis in reduced salt ham using the cold phase
strategy, helping soften the texture. Furthermore, a combination of some additives can
be used, such as microbial transglutaminase, as a preventive measure to prevent texture
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occurrence in meat and significantly prevent texture damage due to salt reduction [134].
Partial salt replacers, including L-his and L-lys, were also shown to lower Na by 53.79%,
and another advantage is that lipid oxidation is delayed, resulting in an increased lipolysis
and a higher free fatty acid concentration and higher phospholipase activity in the final
stage of ripening dried loin [135].

In terms of meat product food safety and shelf life, salt usually employed in fermented
meats prevents the growth of unwanted microorganisms while promoting the growth of
salt-tolerant lactic acid bacteria [136–138]. Stringer and Pin [139] evaluated the implications
of reducing salt in different foods based on pH, moisture content, and concentration of ham,
bacon salt, smoked salmon, chicken rolls, cottage cheese, and beef burgers by modeling the
growth of food pathogens (Listeria monocytogenes, Yersinia enterocolitica, and Bacillus cereus).
The results revealed that the growth rate of foodborne pathogens was much higher in the
reduced salt products than in the other products. Moreover, salt-sensitive organisms, such
as Clostridium botulinum, did not grow in products containing 5.5% aqueous salt in this
study, yet had the potential to grow in 4 weeks at 8 ◦C if the aqueous salt concentration
is reduced to 2.85% [139]. This result is also related to the shelf life of meat, with lower
NaCl content products having a shorter shelf life than those regularly formulated [39]. For
example, low-salt bacon (2.3% w/w NaCl) has a shelf life of just 28 days, whereas control
bacon (3.5% w/w NaCl) has a shelf life of up to 56 days [139].

The function of Na is critical to the product’s shelf life. Therefore, the salt replacer
method is typically applied in this case. A reduction in NaCl of up to 40% in substituted
cooked meat products with a commercial mixture of potassium lactate and sodium diac-
etate, for example, can extend shelf life for 6–7 days [140]. A similar result was also found
in salami products. The replacement of NaCl with 1.6% potassium lactate (2.8% NaCl
content) was successful in preventing microbiological growth without sacrificing product
quality compared to salami products containing 4% NaCl [141].

The substitute component impacts the product’s taste, texture, and food safety, which
depends not only on the type of replacer employed but also on the meat product and its
formulation [142,143]. Therefore, proper consideration is needed in combining several
strategies to maintain product quality. Table 1 summarizes the various salt reduction
techniques and their impact on breads, meats, cheeses, snacks, fish, and seafood products.

Table 1. Summary of various treatments to reduce salt levels and their impact on food characteristics.

Food Category Strategy Treatment Characteristics of Food Effects Reference

Bread Products

Durum wheat bread Reduced Salt Decrease of 50% NaCl (10–20
g/kg NaCl).

Less intensely colored crust and a
weaker toasted aroma positively

affected bread-specific volume and
crumb consistency.

[115]

Wheat bread Partial salt substitute

Addition of 1.5–3% salt
substitute Pansalt® (NaCl

57%, KCl 28%, MgSO4 12%,
lysine hydrochloride 2%,

silica 1%, and iodine
0.0036%).

Similar effects on bread control
sensory attributes, yet unable to

maintain the same level of
perceived saltiness, produced a

perceptible increase in bitter taste
and aftertaste in the crust.

[144]

Brown bread Partial salt substitute

Salt substitute with
potassium (K) (55.2%),

magnesium (Mg) (69.0%),
and (Ca) calcium (34.8%).

Baking quality, appearance,
texture, and taste are acceptable

and achieved 32.3% reduced
sodium.

[45]

Wheat bread Partial salt substitute

Substitution of 40% salt with
potassium (K) or calcium

chloride (CaCl2) or
magnesium (Mg) salts.

There is no negative impact on the
rheology of the dough. [145]
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Table 1. Cont.

Food Category Strategy Treatment Characteristics of Food Effects Reference

Wheat flour Partial salt substitute Addition of 25% substitution
of KCL, MgCl2, and CaCl2.

No difference in the dough
production timing and the
dough’s stability increases.

[146]

Bread Partial salt substitute

Replacement:
-75% by Na-gluconate
-50% by K-gluconate

-100% by
Na-gluconate/K-gluconate

-In partial replacement (75% and
50% Na or K gluconate), there was
no change in the bread rheology or

volume, nor was there any
significant effect on overall desire.
-In 100% replacement, decreased

resistance to extension

[147]

Ground beef patties Salt mixture Addition of low-sodium salts
with 2% Pansalt® (PS)

Detrimental impact on sensory
quality of ground beef bread made

using Pansalt® combination
compared to bread containing

NaCl.

[148]

Bread Partial salt substitute 0.3% addition of KCl
combined with glutamate

Because it covers the bitter
aftertaste, it is acceptably sensory
and achieves 75% reduced NaCl

[49]

Bread Partial salt substitute Potassium (K) salt replaces
30% sodium

Sensory characteristics are
acceptable [149]

Wheat bread crust Coarse-grained NaCl In addition, coarse-grained
NaCl (2−3.5 mm)

Increased saltiness as a result of
sensory contrast, yet faster sodium
release during mastication while

preserving taste quality and
achieving 25% reduced NaCl

[79]

Pizza crust Partial salt replacement
Replace 30% NaCl by KCl or

coarse-grained NaCl
(0.4–1.4 mm)

Enhancement of saltiness through
taste contrast and an accelerated
sodium delivery measured and

achieved 25% reduced NaCl.

[150]

Bread Encapsulated salts Encapsulated salt
crystals 1000–2000 µm

No apparent loss of the salty flavor
and achieved 50% reduced NaCl [80]

Sheeted dough Encapsulated salts

Holding 50% of the salt in
the dough recipe to maintain

the dough properties and
save 25% as salt grains

Enhance the saltiness perception
and achieve 25% reduced NaCl [81]

Cheese Products

Prato Salt reduction 25% and 50% salt reduction

-25% reduction has a similar
peptide profile, hardness, and

sensory acceptability.
-50% salt reduction was less firm
and less sensory acceptable than

the control cheese

[151]

Mozzarella Salt reduction 50–60% salt reduction

Lowering salt by up to 50%
boosted melting and slightly

reduced stretch, whereas reducing
salt by 60% inhibited melting.

[126]

Cheddar Salt reduction Salt reduction of 0.5–3% Reducing salt has a negative
impact on the taste and texture. [152]

Cheddar Partial mineral salt
replacement

Addition of 298–388 mg
CaCl2 and MgCl2,

Significant off-flavor in cheese
(bitter, soapy, and metallic taste) [153]
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Table 1. Cont.

Cheese Products

Mozzarella Partial mineral salt
replacement Addition of <25% KCl

It has a higher pH, metallic taste,
and moisture content than cheeses

with a higher K concentration.
However, it melted with less

hardness.

[154]

Cheddar Partial replacement of
mineral salts

Addition of 60% low-sodium
mixture of NaCl and KCl

Adding KCl at a level that
maintains Aw leads to a slight
bitterness, controllable salinity,

and acceptable consumer
acceptance. The same effective

salt-to-moisture ratio.

[155]

Cheese
Partial salt

replacement-based
emulsifying salts

Application of hydrocolloids:
-Modified starch (with bound

sodium octenyl succinate)
-Low methoxyl pectin (alone

or combined with lecithin)
-Locust bean gum,
k-carrageenan, and

i-carrageenan

The products containing 1% (w/w)
ic-carrageenan or i-carrageenan

were homogenous but hard with a
fracturable texture.

[156]

White cheese Partial salt replacement
Application of hydrocolloids:

guar gum, carrageenan,
xanthan gum, and gelatin

Reduced salt in the brine ≤8%
caused no defects because

stabilizers prevented water entry
into the cheese by retaining water.

[157]

Feta cheese Salt replacement and
alternate processes

Addition of KCl and milk
ultrafiltration treatment at a

volumetric concentration
factor of 4.5:1

Adding KCl promoted syneresis,
and only 25% replacement by KCl

had the maximum sensory
acceptance.

[128]

Processed cheese Partial salt replacement

Xylooligosaccharide (XOS),
salt reduction, and taste
enhancers (arginine and
yeast extract) addition.

Enhanced the rheological,
physicochemical, and sensory

attributes.
[158]

Meat Products

Dry-cured loin and
fermented sausage Partial salt replacement KCl, potassium lactate, and

glycine addition

Significant flavor defects were
detected with replacement of >30%

in both products replaced with
K-lactate and KCl, and loss of

cohesiveness at a replacement rate
of >50% with glycine and > 30%

with K-lactate.

[159]

Fermented sau-sage Partial salt replacement
Addition of KCl (40%),

K-lactate (30%), and glycine
(20%) addition

Resulting in flavor and texture
defects and having little effect on

microbiological stability
[160]

Packaged cooked
meat Partial salt replacement

Sodium diacetate, potassium
lactate, and combination

2–3% addition.

Sensory quality and shelf life were
increased while lowering NaCl

levels by 40%.
[140]

Ham Partial salt replacement 70:30% NaCl:KCl or
70:30% NaCl:MgCl2

No organoleptic or quality
changes were observed compared

to control.
[161]
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Table 1. Cont.

Cheese Products

Fermented cooked
sausages Partial salt replacement

KCl concentrations of 50%
and 75% substitute and MSG,
disodium guanylate, lysine,

disodium inosinate, and
taurine are added

Masking unpleasant flavors
produced by lower salt levels [162]

Chicken breast meat Partial salt replacement

Sodium tripolyphosphate
and β-glucan addition and
HPP at 40 ◦C and 600 MPa

pressure

There is a negligible effect on
color properties. [163,164]

Bologna sausage Partial salt replacement Citrus fiber addition Most physical, chemical, and
sensory aspects did not change. [165]

Ready-to-eat chicken
breast

Partial salt replacement
and alternative

processing

Replacing 50% NaCl with
KCl and HHP at 600 MPa for

3 min

The salt replacement did not affect
the microbial counts, and HHP

processing improved the hardness
and sensory attributes of the

sodium-reduced

[84]

Dry cured loin Partial salt replacement

The salt substitute contained
39.7 g/100 g of NaCl,

51.3 g/100 g of KCl, and a
mixture of L-histidine and

L-lysine (9.0 g/100 g)

Decrease of 53.79% in Na
content delayed lipid oxidation
and produced slightly higher
lipolysis, resulting in larger

content of free fatty acids and
higher phospholipase activity

[135]

Chicken meat batters Alternative processing
strategy

Heat under pressure (HUP)
treatment at 200 MPa 75 ◦C,

30 min

Improved the gel qualities,
resulting in glossy coarse, loose

gels with high water loss, and low
acceptability.

[86]

Snack Products

Shoestring potatoes Reducing the size of
particle salt mixture

Reducing particle sizes of
salt mixture (NaCl, MSG,
and KCL) of 60 µm and

88 µm

No, significantly changing the
sensory quality and achieved a

sodium decrease of 69%
[166]

Shoestring potatoes Reducing the size of
particle salt

Reducing particle sizes of
26 µm particles

Maintained the same perception of
salty taste and sensory quality and

achieved a sodium decrease of
51%

[167]

Cheese crackers Reducing the size of
particle salt

Reducing 3 logs from regular
salt to nano spray-dried salt

Maintained low counts of yeasts
and absence of molds, did not

adversely influence sensory
quality attributes and achieved a

sodium decrease by 25–50%

[168]

Soup Product

Tomato soup Salt reduction

Internalized salt solution
stabilized with

nonchemically modified
waxy rice starch (WRS) and
octenyl succinic anhydride

(OSA)

Enhanced for gelatinized WRS
compared to OSA starch stabilized
emulsions and achieved a sodium

decrease of 25%

[61]

Fish and Seafood

Cooked fish batter Salt reduction and
alternative processing

The isolated and combined
effect of UV-C (0.310 J/cm2)

and high hydrostatic
pressure (HHP; 300 MPa for

5 min at 25 ◦C)

The treatments did not affect
sodium chloride concentration,

redness, yellowness, cohesiveness,
springiness, or resilience and were

reduced by 25% NaCl.

[97]
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Table 1. Cont.

Fish and Seafood

Smoke-Flavored trout
Salt mixture and

alternative processing
strategy

Substitution of NaCl with
30% combined with spray

dryer

Higher hygroscopicity and
saltiness because of their lower
bulk density and existence of

agglomeration, surface roughness,
and macro pores.

[64]

Smoke-flavored
salmon Partial salt replacement

Addition of 50% KCl with
smoke flavoring by water
vapor permeability bags

It did not significantly affect the
quality and shelf-life [169]

Cold-smoked salmon Salt reduction and
alternative processing

Sodium-reduced samples
(2.7–3.7 g salt/100 g) with
cold smoking + vacuum

packaging

Regarding aerobic and anaerobic
mesophilic counts, organoleptic

properties, texture, color, and the
growth of Listeria monocytogenes
did not differ significantly from

the commercial reference product

[170]

Fish ball Partial salt replacement

Addition of 20% KCl +15%
sucrose +15% citric

acid with 25% + corn flour +
75% peanut flour or 25%

barley flour +75% pea flour

Physicochemical and sensory
evaluation, emulsion stability,

cooking yield, and overall
acceptability

[171]

Fermented fish Partial salt replacement Addition of 25% and 50%
KCl

Higher hardness, adhesiveness,
and springiness [172]

Salmon Partial salt replacement

-70% NaCl + 30% KCl
-50% NaCl + 50% KCl

-70% NaCl + 20% KCl + 10%
CaCl2

-70% NaCl + 30% KCl + 5%
yeast

-70% NaCl + 30% KCl +
0.25% taurine

-70% NaCl with KCl had
lower sensory damage

-50% KCl depicted the best a*
value

-Treatment with the addition of
CaCl2 exhibited the highest L*

value, highest springiness,
hardness, and chewiness

-Addition of yeast extract best
improved the sensory defects

caused by KCl
-Addition of flavor enhancers

could improve the poor
flavor of the salted salmon caused

by the KCl addition

[52]

Fermented shrimp
paste Partial salt replacement In addition, 25 and 50% KCl

Reduced lipid oxidation, oxidative
rancidity, and antioxidant

activities were maintained.
[173]

Sushi (tuna and
shrimp) Salt microspheres

-Addition of 87–99%
hollowed microsphere of

regular salt crystals
-Addition 38% KCl

-The quality of sushi products
made from tuna or shrimp was

preserved by hollowed
microsphere salt

-KCl addition improved the
bitterness in maki shrimp and

reduced the saltiness in nigiri tuna.

[76]

Seabass sausages Salt reduction and
partial salt replacement

-50% NaCl + 50% oleoresins
microcapsules

-50% NaCl + 50% KCl

-Replacement of 50% NaCl with
KCl microcapsules or oleoresin

showed the best results in
reducing Na content (30.9–36.3%)

while maintaining sausage quality.
-Substitution with KCl resulted in

a product richer in K
(997.2 mg/100 g)

[174]
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Table 1. Cont.

Fish and Seafood

Smoked sea bass
(Dicentrarchus labrax L.)

Partial salt replacement
and cold smoking

Addition of 50% NaCl + 50%
KCl

Effective in preventing lipid
peroxides and keeping the total
volatile basic nitrogen value is
below the decay threshold. Salt
substitution with the K did not

change the quality of
smoked fillets.

[175]

Smoked salmon
(Salmo salar) Partial salt replacement

-75% NaCl + 25% KCl + 0.1%
commercial masking agent

-50% NaCl + 50% KCl l+ 0.1%
commercial masking agent

No significant difference in
physicochemical properties in the

smoke sample with 50% KCl,
while the sample with 25%
substitute did not show a

difference with control
(100% NaCl)

[170]

Salmon pate (Salmo
salar) Partial salt replacement 20% NaCl + 80% substitute

with KCl

Substitution of 80% with Saltwell®

at a reduction of 22% sodium does
not affect microbial activity. In
comparison, there were small

differences in three of the twelve
sensory attributes evaluated

(coherent texture, salty taste, and
canned fish taste).

[176]

5. Salt Reduction Effects on Consumer Acceptance

Salt used during food processing or preparation is the primary source of sodium. Salt
influences not only the perception of saltiness but also the taste perception that determines
food taste. Decreasing the salt content will reduce food acceptance related to food intake.
The priority challenge is reducing salt concentration while maintaining consumer accept-
ability of food [25,26,117]. Therefore, it is essential to integrate all sensory information
acquired throughout the application of the salt reduction strategy.

Each salt reduction strategy has a different impact on consumer acceptance. For
instance, salt replacement using KCl has different effects on different food categories.
Sensory properties are less preferred due to the bitterness and metallic taste of potassium
salts. Partial salt replacement with 40% KCl in fermented sausage products results in flavor
and texture defects while having no impact on microbiological stability [160]. In line with
this result, replacement with >30% KCl has a significant flavor defect in dry-cured loin [159].
While salt replacement with KCl promotes syneresis in cheese products, only 25% have
maximum sensory acceptance [128]. However, in bread products, partial salt replacement
with 30% KCl has acceptable sensory characteristics [149].

Furthermore, in different processes, improvements in the consistency of reduced-salt
bread with remilled salt did not affect its acceptance or consumer acceptance [115]. This
result is in line with no significant instrumental variations and no visually observable color
differences found for ham with salt replacement during preparation, nor was there any
effect on customer acceptance [70]. Moreover, ultrasound treatment impacts the improved
sensory acceptance of cooked ham altered with 0.75% NaCl [70]. Replacing 60% NaCl
with flavor enhancers affects emulsion stability, microstructure, and consumer acceptance
of Bologna sausage [131]. This result aligns with the fact that NaCl removal affects the
microstructure of Bologna sausages and the effect on consumer acceptance, along with the
consistency of emulsions and instrumental textures [70]. Meanwhile, in cheese products,
cheeses with a 50% reduction in salt have less sensory acceptance and are less stable,
while cheeses with a 25% reduction in salt resulted in a similar firmness, peptide profile,
and sensory approval relative to regular cheeses [151]. Overall, some researchers report
decreasing salt content in various food products and processes with different effects on
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consumer acceptance. In conclusion, more specific research is needed for each product and
process with a reduced salt strategy to meet the product criteria consumers expect.

6. Conclusions

Changes in food production practices have minimized possible health risks, but
diverse factors affect how customers perceive salt in food. Reducing salt content will benefit
food companies by increasing food quality without affecting customer acceptance and
meeting prescribed daily intake limits. Prominent food industry strategies have included
technological strategies (salt replacement, food reformulation, size and structural changes,
and alternative processing). These varied strategies have also been widely implemented,
particularly on products with high salt contents, such as bread, cheese, meat, soup, fish,
and seafood. This result is demonstrated by the numerous findings from various research
studies that have been published.

The application of diverse strategies affects each product category differently due to
changes in product qualities, such as solid, semisolid, and liquid. Because of this discrep-
ancy, choosing the best technique for decreasing NaCl in the food is challenging. As a result,
it is critical to understand the fundamental principles of product processing, the interaction
of the components that comprise the product, and the factors that influence consumer taste
perceptions. Thereby, the decision of the suitable strategy and a deeper understanding
of its effects on the various physical properties of salt will give salt tremendous poten-
tial to be structurally altered and ultimately involved in the production of salt-reduced
food products.
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