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Abstract: In this work, rutin (RT)–loaded zein–carboxymethyl starch (CMS) nanoparticles were
successfully prepared by the antisolvent precipitation method. The effect of CMS on composite
nanoparticles at different concentrations was studied. When the ratio of zein–RT–CMS was 10:1:30,
the encapsulation efficiency (EE) was the highest, reaching 73.5%. At this ratio, the size of the
composite nanoparticles was 196.47 nm, and the PDI was 0.13, showing excellent dispersibility.
The results of fluorescence spectroscopy, FTIR, XRD, and CD showed that electrostatic interaction,
hydrogen bonding, and hydrophobic interaction were the main driving forces for the formation of
nanoparticles. It can be seen from the FE–SEM images that the zein–RT–CMS nanoparticles were
spherical. With the increase in the CMS concentration, the particles gradually embedded in the
cross–linked network of CMS (10:1:50). After RT was loaded on zein–CMS nanoparticles, the thermal
stability and pH stability of RT were improved. The results showed that zein–CMS was an excellent
encapsulation material for bioactive substances.

Keywords: zein; carboxymethyl starch; rutin; nanoparticle; interaction; formation mechanism

1. Introduction

Dietary polyphenols are widely distributed in vegetables, fruits, and medicinal plants,
and have attracted extensive attention due to their biological activities [1,2]. Flavonoids are
the main category of dietary polyphenols [3]. Rutin (RT), also known as vitamin P, is a kind
of flavonoid that widely exists in citrus fruits (2.7–8106.7 µg/g), apples (350–4780 µg/g),
and tea (303–479 µg/g) [4–7]. RT has good antioxidant, free radical scavenging, anti–
inflammatory, anti–cancer, antibacterial, cardiovascular, and neuroprotective properties [8].
However, RT is unstable due to its polyhydroxy structure, which is easily affected by
environmental factors such as heat (>75 ◦C) and pH (strong acid and alkaline conditions);
in addition, both the benzene ring and hydroxyl group exist in one molecular structure,
resulting in poor solubility of RT [9]. Therefore, the application of RT in the food industry
is limited. In view of the above shortcomings, encapsulation technology has gradually
received attention in the food industry. At present, various liposomes, emulsions, micelles,
and particles are used to encapsulate bioactive components [10–13]. The preparation
of liposomes, emulsions, and other systems requires the addition of a large number of
organic solvents and surfactants, which may be incompatible with the food industry.
Nanoparticles have been proven to be excellent materials for encapsulating polyphenols.
Nanoparticle encapsulation systems are not only simple to operate, but also can achieve
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high encapsulation efficiency and high solubility with or without the usage of organic
solvents, which has attracted widespread attention [14,15].

The choice of encapsulation materials is very important for the stability of bioactive
components. In recent years, natural biopolymers (proteins, polysaccharides, etc.) have
been widely used as encapsulation carriers for bioactive components because of their safety,
non–toxicity, biodegradability, and biocompatibility [16,17]. Food–grade proteins, such as
soy protein isolate, casein, gelatin, and zein, have been used as packaging materials [18–20].
Zein is the main storage protein of corn, which has excellent self–loading characteris-
tics [21]. Therefore, nanoparticles loaded with hydrophobic bioactive substances can be
constructed by using self–loading properties [22]. The results showed that hydrophobic
polyphenol–loaded protein nanoparticles could significantly improve the stability and
solubility of polyphenols [23,24]. However, nanoparticles with a single protein have strong
surface hydrophobicity, which makes the particles vulnerable to environmental impact
and easy to aggregate [25]. Natural polysaccharides are considered to be effective stabi-
lizers for zein carriers, such as gum, xanthan gum, and alginate. Muhammad et al. [26]
used a zein–pectin carrier to load quercetin, which improved the thermal stability and
photostability of quercetin. However, the high viscosity and low charge density of some
polysaccharides limit their application [27]. Therefore, more polysaccharides that can be
used to stabilize particles needs to be explored. Starch is the most common carbohydrate,
and is a polysaccharide formed by the aggregation of glucose molecules. Its cost is low
and it is easy to modify at the molecular level. Carboxymethyl starch (CMS) is a modified
anionic starch ether. Compared with the native starch and other polysaccharides, it has high
hydrophilicity, electronegativity, weak retrogradation, high transparency, and freeze–thaw
stability [28]. Some studies showed that CMS also had low sensitivity to bacteria or heat,
which was due to the steric hindrance of the formation of macromolecular chains in the
structure of CMS [29]. In addition, CMS–based drug delivery systems have been studied.
For example, Saboktakin et al. [30] studied chitosan–CMS nanoparticle carriers to trans-
port 5–aminosalicylic acid to the colon; Zhang et al. [31] alternately deposited CMS and
cationic quaternary ammonium salt starch to prepare nano–capsules, which could further
deliver proteins to the digestive tract. However, there are few reports on the preparation of
nanoparticles by zein and CMS, which is a direction worthy of further exploration.

In this study, RT–loaded zein–CMS nanoparticles were prepared by the antisolvent
precipitation method. The particle size, polymer dispersion index (PDI) and ζ–potential
were studied. In addition, the encapsulation efficiency (EE) and loading capacity (LC) of
zein–CMS nanoparticles for RT were studied. Finally, the structure and physicochemical
properties of zein–CMS nanoparticles and zein–CMS nanoparticles loaded with RT were
characterized. The results of this study may help to develop a protein–polysaccharide
delivery system for bioactive ingredients so as to expand the application of bioactive
ingredients in the food industry.

2. Materials and Methods
2.1. Materials

Zein (purity ≥90%, average molecular weight: 25,000~45,000) was acquired from
Macklin (Shanghai, China). Rutin (purity ≥95%), and dimethyl sulfoxide (purity ≥98%)
was purchased from Sinopharm Chemical Reagent Co. LTD. (Shanghai, China). Car-
boxymethyl starch (purity ≥95%, degree of substitution 0.3–0.6) was acquired from Aladdin
(Shanghai, China). All other reagents were analytically pure.

2.2. Preparation of RT–Loaded Zein–CMS Nanoparticles

Composite nanoparticles were prepared by the antisolvent precipitation method based
on the work of Liu et al. [32] with some modifications. First, CMS was dissolved in
deionized water and stirred for 2 h as a stock solution. Zein (0.2 g) was added to 20 mL
of 75% ethanol solution with agitation at 600 rpm for 1 h, then RT (0.02 g) was added and
stirred in the dark for another hour; the mixed solution of zein and RT was dropped into
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the aqueous solution of CMS at a volume ratio of 1:4 and agitated at 600 rpm for 1 h in the
dark. The ethanol in the sample was removed by rotating the evaporator (Temperature of
40 ◦C, vacuum of 0.1 MPa) and the volume was supplemented with deionized water. Then,
the sample with the supplemented volume was centrifuged at 1000× g for 10 min at 4 ◦C
to remove unembedded RT and macromers. Finally, the freshly prepared samples were
subjected to freeze–drying, and then the dried samples were further analyzed. The samples
were prepared at room temperature conditions (temperature of 25 ◦C, humidity level of
40–50%).

2.3. Determination of Particle Size, Polydispersity Index (PDI), ζ–Potential, and Turbidity

The particle size, polydispersity index (PDI), and ζ-potential of the nanoparticles were
measured by a Zeta–sizer nano ZS (Malvern company, Malvern City, UK). The sample used
for the measurement was diluted 10 times with deionized water (pH = 4) to ensure that
the particle size and the ζ–potential of the samples was accurate. The freshly–prepared
sample was diluted 2 times, then its turbidity was measured at 600 nm using a UV–vis
spectrophotometer.

2.4. Characterization of the Complex
2.4.1. Fluorescence Spectrum Analysis

The fluorescence of the raw materials (zein, RT, and CMS) and samples (zein, zein–RT
and zein–RT–CMS nanoparticles) were analyzed through the fluorescence spectrophotome-
ter (F–7000, Hitachi, Tokyo, Japan) using the method described in the work of Dai et al. [33]
with some modifications. The measured samples were diluted to a proper concentration
using deionized water (pH = 4). The excitation wavelength was set to 280 nm, the acquisi-
tion wavelength range was 290–450 nm, and the scan speed was 240 nm/min. Excitation
and emission bandwidths were set to 5 nm. All data were collected at room temperature
conditions (temperature of 25 ◦C, humidity level of 40–50%).

2.4.2. Fourier–Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of the raw materials (zein, CMS, and RT) and samples (zein–RT
and zein–RT–CMS nanoparticles) were analyzed by the FTIR spectrometer (IS10, Bruker,
Billerica, MA, USA). The samples were mixed with potassium bromide (KBr) at a ratio
of 1:100 and grounded until there were no visible particles, then pressed into transparent
circular flakes (circular flakes was 13 mm and the thickness was 0.1–0.5 mm), which were
determined by FTIR. The scanning range of FTIR was 400 cm−1–4000 cm−1.

2.4.3. X–ray Diffraction (XRD)

The crystal structures of the raw materials (zein, RT, and CMS) and samples (zein,
zein–RT, and zein–RT–CMS nanoparticles) were determined through XRD (D2 PHASER,
Germany Brock AXS Co., Ltd, Karlsruhe, Germany). The 2θ angle was from 5◦ to 45◦.

2.4.4. Circular Dichroism (CD) Spectroscopy

The structures of zein were determined by CD (Chirascan V100, Applied Optical
Physics, Dublin, UK). The samples (zein and zein–RT–CMS nanoparticles) were diluted
to a concentration of 0.2 mg/mL with deionized water (pH = 4). Under constant nitrogen
flushing, the far–UV region was 180–260 nm, the pathlength in the far–UV region was 0.1
cm, the recording speed was 40 nm/min, and the bandwidth was 1 nm.

2.4.5. Field Emission Scanning Electron Microscopy (FE–SEM) Analysis

The microstructures of the freeze–dried samples (zein, zein–RT, and zein–RT–CMS)
were observed using FE–SEM (SU8100, Hitachi High–Tech Co., Tokyo, Ltd. of Japan) at
an accelerating voltage of 5 kV. Before observation, the sample (2–3 mg) was uniformly
smeared on the stage and then sprayed with gold [34].



Foods 2022, 11, 2827 4 of 18

2.5. Encapsulation Efficiency (EE) and Loading Capacity (LC) of Curcumin

The evaluation of the encapsulation efficiency and loading capacity of bioactive substances
was one of the evaluation indicators for measuring the performance of the carriers. Freshly–
prepared samples (2 mL) were centrifuged (4 ◦C, 12,000× g) for 30 min to acquire the liquid
supernatant. The supernatant (600 µL) was evenly mixed with dimethyl sulfoxide (DMSO).
Then, its absorbance at 364 nm was measured by UV–vis spectrophotometer. The amount of RT
in the samples was determined using a calibration curve established with a standard solution
(0–32 ug/mL free RT in DMSO), and the resulting standard curve is y = 0.0534x, R2 = 0.9994.
The EE and LC of RT were calculated according to the following formulas:

EE(%) =
total RT − f ree RT

total RT
× 100

LC(%) =
total RT − f ree RT

total amount o f complex
× 100

2.6. Stability of Complex
2.6.1. Thermogravimetric Analysis (TGA)

The thermal stability of the raw material and nanoparticles was determined by TGA
(TGA2, Mettler Toledo Instruments Co., Ltd., Zurich, Switzerland). The samples (<3 mg)
were added to the crucible and analyzed at a nitrogen flow rate of 10 ◦C/min and the
temperature range of 30–600 ◦C.

2.6.2. pH Stability

The pH stability of the samples was determined according to the method of Jiang
et al. [35]. The pH value of the samples (10 mL) was adjusted to 2–8 with 1 M HCl or 1 M
NaOH. The particle sizes, PDI, and ζ–potential of the samples was determined using the
Zeta–sizer nano ZS (Malvern Company, Malvern City, UK).

2.7. Statistical Analysis

All experiments were repeated for at least three groups. The data are expressed as the
mean ± standard deviation. SPSS–20 software was used for significance analysis, and the
difference was significant when p < 0.05.

3. Results and Discussion
3.1. Particle Size, PDI, ζ–Potential, and Turbidity

The change in particle size, PDI, and ζ–potential affects the stability of the nanoparti-
cles. Figure 1A,B showed the particle size, PDI, and ζ–potential of the nanoparticles (zein,
zein–RT, and zein–RT–CMS nanoparticles). The particle size of pure zein nanoparticles was
104.10 nm [36]. The particle size of the zein nanoparticles loaded with RT was 104.77 nm.
Compared with pure zein nanoparticles and zein–RT nanoparticles, the particle size of the
zein–CMS nanoparticles loaded with RT increased significantly, as shown in Figure 1A.
Moreover, with the increase in the CMS concentration, the particle size gradually increased
from 159.13 to 289 nm, which was similar to the study by Wang et al. [37]. The possible
reasons for this phenomenon were as follows: on the one hand, the increase in the CMS
concentration resulted in the formation of a thick coating on the surface of the zein [38];
on the other hand, a large amount of CMS may interfere with the formation of nanoparti-
cles [22]. PDI is an important index to characterize the dispersion of nanoparticles [39]. It
can be seen from Figure 1B that the PDI of zein–RT–CMS nanoparticles was better than that
of zein–RT nanoparticles. The PDI of zein–RT–CMS nanoparticles was less than 0.3, while
the PDI of zein–RT nanoparticles was 0.45, which indicated that the addition of CMS can
significantly improve the dispersion of nanoparticles. In addition, the PDI of zein–RT–CMS
(10:1:30) nanoparticles was the minimum. A possible reason is that CMS might be evenly
wrapped on the surface of zein at the ratio of 10:1:30, thus showing good dispersion [40].
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Figure 1. (A) Particle size and PDI of zein, zein–RT and zein–RT–CMS nanoparticles (at different
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Electrostatic interaction plays an important role in protein–polysaccharide complexes.
In Figure 1B, the ζ–potential of zein nanoparticles was +31.63 mV when the pH was 4. The
potential of CMS was −20.8 mV. With the increase in the CMS concentration, the ζ–potential
value became negative, indicating that zein and CMS may be bound through electrostatic
interaction. Hu et al. [16] also reported a similar phenomenon, wherein zein and pectin
form complexes through electrostatic binding. Moreover, the negative ζ–potential of the
complex also decreased with the increase in the CMS concentration, indicating that the
ζ–potential of the complex was mainly controlled by CMS [41]. The absolute value of the
ζ–potential of the ternary complex was between 20–35 mV, indicating that the particles had
good stability [42].

Figure 1C shows the turbidity of the samples. Generally speaking, the turbidity
depends on the particle size, concentration, and refractive index of particles [43]. It can be
seen from Figure 1C that the turbidity of pure zein nanoparticles was the lowest. There
were two possible reasons: first, it is related to the particle size. The smaller the particle
size, the lower the turbidity. From the previous discussion, it can be seen that the particle
size of pure zein nanoparticles was the smallest; second, it is related to refractive index. The
lower the refractive index, the lower the turbidity. At the same temperature, the lower the
concentration, the lower the refractive index. The concentration of pure zein nanoparticles
was the lowest compared with the dispersion with foreign substances. When the level of
CMS was between 10:1:10–10:1:40, the turbidity of the samples was proportional to the level
of CMS, which may be due to the formation of large–sized nanoparticles after the addition
of CMS. Under higher levels of CMS (10:1:50), the turbidity of the samples decreases. A
possible reason was that the excess CMS cannot be combined with zein, and the unbound
CMS was finally dissolved in the dispersion in a soluble state [44]. Chen et al. [45] also
found a similar phenomenon. When the zein–hyaluronic acid ratio was 100:25 and 100:30,
the turbidity of zein–hyaluronic acid complex decreased.

3.2. Characterization of Nanoparticles
3.2.1. Fluorescence Spectrum Analysis

The fluorescence signal emitted by proteins can be used to evaluate the interaction be-
tween additives and proteins [46]. A large number of tryptophan and tyrosine residues are
presented in zein, which are the two main fluorescent groups at the 280 nm wavelength [47].
As shown in Figure 2, under the excitation wavelength of 280 nm, the fluorescence emission
peak of zein was at 308 nm, which was similar to the study by Liu et al. [22]. According
to Figure 2A, the addition of CMS increased the fluorescence intensity of zein, which may
be due to the combination of CMS with the hydrophilic groups of zein, thereby exposing
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the tryptophan residues in zein [45]. However, after encapsulating polyphenols, the flu-
orescence intensity of zein–RT nanoparticles and zein–RT–CMS nanoparticles decreased,
which may be caused by molecular rearrangement, energy transfer, and collision quench-
ing [48]. Figure 2B shows the relationship between the fluorescence intensity and the level
of CMS. At a low level of CMS (10:1:10–10:1:20), the fluorescence intensity of zein–RT–CMS
nanoparticles was stronger than the zein nanoparticles alone. It may be that the addition of
CMS resulted in the exposure of tryptophan residues in zein, and CMS cannot completely
adhere to the surface of zein particles, thereby enhancing the fluorescence. When the level
of CMS (10:1:30–10:1:50) increased, the fluorescence intensity of the complexes decreased.
The possible reason was that excess CMS was wrapped on zein–RT nanoparticles, which
resulted in the aggregation of particles and shielding of fluorophores [45]. However, when
the zein–RT–CMS ratio was 10:1:30, the fluorescence intensity was the lowest. A possible
reason was that more RT was encapsulated in zein–CMS nanoparticles because RT can
reduce the polarity around tryptophan. Therefore, the fluorescence intensity of the complex
was significantly reduced. This was similar to the study by Chen et al. [49].
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at different levels of CMS.

3.2.2. Fourier–Transform Infrared (FTIR) Spectroscopy

FTIR is generally used to study the interaction between molecules in nanoparticles
and can effectively identify characteristic functional groups (Figure 3). The characteristic
functional group is associated with the characteristic peaks in the spectrum. The interaction
between molecules can be inferred from the shape, position, and intensity of the peaks
in the spectrum [50]. As shown in Figure 3A, for zein, the characteristic peaks were
3310.45 cm−1 (O − H stretching vibration of hydroxyl), 1654.34 cm−1 (amide I band,
mainly C = O stretching), and 1546.12 cm−1 (amide II band, related to C − N stretching
and N − H bending mode) [51]. For RT, the characteristic peaks were 3417.58 cm−1

(O − H stretching vibration), 1656.92 cm−1, 1601.49 cm−1 (mainly C = O stretching),
1504.74 cm−1 (C = C, aromatic), 1361.55 cm−1 (C − O (phenolic group)), and 1203.78 cm−1

(C – O − C). Other studies have reported similar results [52]. For CMS, the characteristic
peaks were 3432.42 cm−1 (O − H stretching vibration), 1599.19 cm−1 (distribution of
νCO in COO− group), 1420.31 cm−1 (− CH2 scissoring), and 995.52 cm−1 (aliphatic ether
group C – O − C in CMS) [53]. Compared with zein, the O − H vibration stretching
peak of zein–RT nanoparticles moved from 3310.45 cm−1 to 3303.31 cm−1, indicating the
hydrogen bond interaction between zein and RT. In addition, the characteristic peaks of RT
between 1000 cm−1 and 1500 cm−1 almost disappeared, indicating that RT was successfully
encapsulated [54]. The O – H vibration stretching peak of zein–RT–CMS nanoparticles
moved from 3310.45 cm−1 to 3411.17 cm−1, indicating that there was a strong hydrogen
bond between zein and CMS [55]. Moreover, the characteristic peak of CMS appeared
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in the characteristic peak of the zein–RT–CMS nanoparticles, and the amide band also
changed significantly, indicating that there was an electrostatic interaction between zein and
CMS [25]. Furthermore, since zein and RT are highly hydrophobic molecules, hydrophobic
interactions also occur during the formation of ternary complexes. The study of m [54] also
confirmed this assumption.
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From Figure 3B, with the increase of CMS concentration (10:1:10–10:1:50), the charac-
teristic peaks of O – H bands were 3407.2 cm−1, 3412.98 cm−1, 3411.17 cm−1, 3413.12 cm−1,
and 3422.27 cm−1, respectively. This similar phenomenon was also found in the study
of Chen et al [45]. In addition, the characteristic peaks of zein–RT–CMS nanoparticles at
the amide band, especially at the amide II band, gradually disappeared, indicating that
more CMS were wrapped on the surface of zein–RT nanoparticles. It is noteworthy that
the zein–RT–CMS nanoparticles have characteristic peaks at 1024.89 cm−1, 1023.41 cm−1,
1022.27 cm−1, 1021.79 cm−1, and 1021.85 cm−1, and the peak intensity of these characteristic
peaks became more and more significant. It was speculated as follows: on the one hand,
CMS maybe interacted with RT molecules, which the aromatic ring of RT reacting with
the aliphatic ether group of CMS; on the other hand, there may be non–covalent binding
between zein and CMS, which may be the interaction between the C – O – C bond in CMS
and zein. The above two reasons synergistically promote the generation of characteristic
peaks (1024.89 cm−1, 1023.41 cm−1, 1022.27 cm−1, 1021.79 cm−1, and 1021.85 cm−1) and
make the peak intensity more and more significant.

3.2.3. X–ray Diffraction (XRD)

XRD is often used to analyze the crystallinity of samples. Figure 4 shows the XRD of
the raw materials and samples. According to Figure 4A, zein had wide diffraction peaks
at 9.3◦ and 19.5◦, indicating that zein was amorphous. This was similar to the research by
Sun et al [56]. The XRD of CMS showed that its main diffraction peaks were 15◦, 17◦, 18.3◦,
23◦, and 32.1◦, which proved that it was a polycrystalline with a certain crystal form [57].
RT showed many diffraction peaks at 5–45◦, which proved that it was crystalline [58]. From
the XRD of zein–RT nanoparticles, it can be seen that the diffraction peak of RT disappeared,
which indicated that RT was successfully encapsulated and became amorphous [22]. This
was consistent with the results of FTIR. However, the zein–CMS nanoparticles loaded with
RT showed the characteristic peak of CMS at 32.1◦ and the other characteristic peaks of
CMS disappeared, indicating the interaction between CMS and zein–RT nanoparticles [40],
which agreed with the FTIR analysis. As far as we know, the peak intensity of XRD
is positively correlated with the height [59]. From Figure 4B, with the increase of CMS
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concentration, the characteristic peak height of zein–RT–CMS nanoparticles at 32.1◦ tended
to increase first and then decrease, which also indicated that the characteristic peak strength
of nanoparticles at 32.1◦ showed a trend of first increasing and then decreasing. When the
ratio of zein–RT–CMS was 10:1:30, it was found that the peak intensity of zein–RT–CMS
nanoparticles was the largest, indicating that the interaction between zein–RT–CMS was
strong. This was consistent with the results of the fluorescence spectrum analysis.
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3.2.4. Circular Dichroism (CD) Spectroscopy

CD is often used to characterize the secondary structure changes of proteins. Figure 5
shows the changes in the secondary structure of zein. Zein had a positive peak at 195 nm,
two negative peaks at 204 nm and 223 nm, and a zero crossing at 202 nm, which were the
characteristic secondary structures of zein [60]. A CDNN program was used to calculate
the content of α–helices, β–sheets, β–turns, and unordered coils of zein (Table 1). The
α–helices, β–sheets, β–turns, and unordered coils of zein were 20.7%, 28.37%, 17.93%,
and 36.67%, respectively. When RT and CMS were added, the contents of α–helical and
unordered coils showed an upward trend, but the contents of the β–sheets and β–turns
were opposite. With the increase in the CMS concentration (10:1:10–10:1:50), α–helices
decreased from 23.70% to 21.47% and unordered coils decreased from 40.77% to 40.33%,
while β–sheets increased from 25.33% to 28.17% and β–turns increased from 16.70% to
17.20%. This trend was similar to that of Sun et al [61]. Some studies have found that the
increase in β–sheets may promote protein aggregation [62]. Therefore, when high–level
CMS was present, the aggregation phenomenon of the complex may also be caused by the
increase in β–sheets [63]. In addition, the increase in α–helices could make the secondary
structure of the protein more compact [44]. The structural expansion and recombination
of zein were caused by the addition of RT and CMS. This may be related to their non–
covalent interaction, which can also be confirmed by fluorescence spectroscopy and FTIR.
In addition, there may be cross–linking between higher levels of CMS, which may affect
the conformation of the composite particle [64].
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Table 1. Secondary structure contents of zein in composite nanoparticles.

Zein Zein–RT Zein–RT–CMS
(10:1:10)

Zein–RT–CMS
(10:1:20)

Zein–RT–CMS
(10:1:30)

Zein–RT–CMS
(10:1:40)

Zein–RT–CMS
(10:1:50)

α–Helix (%) 20.70 ± 0.21 e 21.93 ± 0.12 c 23.70 ± 0.25 a 23.30 ± 0.26 b 22.17 ± 0.10 c 22.07 ± 0.15 c 21.47 ± 0.06 d

β–sheet (%) 28.37 ± 0.31 a 26.67 ± 0.12 c 25.33 ± 0.30 e 25.80 ± 0.29 d 27.20 ± 0.17 b 27.33 ± 0.06 b 28.17 ± 0.12 a

β–Turn (%) 17.93 ± 0.06 a 17.60 ± 0.06 e 16.70 ± 0.12 f 16.80 ± 0.06 e 17.03 ± 0.00 d 17.03 ± 0.06 d 17.20 ± 0.00 c

Random coil
(%) 36.67 ± 0.15 d 36.77 ± 0.21 d 40.77 ± 0.30 a 40.67 ± 0.26 ab 40.40 ± 0.10 bc 40.53 ± 0.10 abc 40.33 ± 0.06 c

Note: Different superscript letters among the data in the same row indicate significant differences (p < 0.05).

3.2.5. Field Emission Scanning Electron Microscopy (FE–SEM) Analysis

Figure 6 shows the FE–SEM image of the zein, zein–RT, and zein–RT–CMS nanopar-
ticles. Zein nanoparticles were typically spherical, which was consistent with previous
reports (Figure 6a) [65]. It can be seen from Figure 6b–g that the morphology of zein–RT–
CMS nanoparticles also showed a spherical form. Through the analysis of particle size,
fluorescence spectrum, FTIR, and XRD, it can be seen that RT was successfully encapsulated
in the particles, and CMS combined with zein nanoparticles by non–covalent binding force
to form a spherical shape with smooth surface [61]. As can be seen from Figure 6g, at
higher levels of CMS, self–cross–linking of CMS was generated. It was interesting that with
the increase in the CMS concentration, zein–RT–CMS nanoparticles were embedded in
the cross–linking network of CMS. A similarly interesting phenomenon was also found
in the study by Chen et al. [49]. In this study, the increase in hyaluronic acid caused the
nanoparticles to gradually transform into reticular gel.
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Figure 6. FE–SEM of composite particles: (a) zein, (b) zein–RT, (c) zein–RT–CMS (10:1:10), (d) zein–
RT–CMS (10:1:20), (e) zein–RT–CMS (10:1:30), (f) zein–RT–CMS (10:1:40), and (g) zein–RT–CMS
(10:1:50).

3.3. Encapsulation Efficiency (EE) and Loading Capacity (LC) of RT

The EE and LC of RT are shown in Figure 7. It can be seen from Figure 7 that
the EE of zein–RT nanoparticles was 51.52%, which was lower than that of zein–RT–
CMS nanoparticles. This may be due to the following reasons: Firstly, the non–covalent
interaction between zein, RT, and CMS improved the EE of RT, which can be seen from the
analysis of fluorescence spectroscopy, FTIR, and XRD [54]; secondly, zein and CMS have a
synergistic effect on RT encapsulation [66]. In addition, when the ratio of zein–RT–CMS
was 10:1:30, EE was 73.5%, which was the highest. A possible reason is that at this ratio,
the non–covalent interactions between zein, RT, and CMS were the strongest, leading to
the improvement of the EE. Similar results were also obtained in the study by Liu et al. [67].
In Liu’s study, when the carboxymethyl cellulose was increased, the EE of the composite
also showed a trend of first increasing and then decreasing. In addition, we can see that the
LC of RT gradually decreases, contrary to the trend of EE. This may be because the higher
the content of CMS, the higher the total mass of nanoparticles, which was similar to the
results from Li et al. [68].
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3.4. Stability of Composite Nanoparticles
3.4.1. TGA

TG is mainly used to evaluate the weight loss of samples with temperature [69].
Figure 8 shows the thermal stability of the raw materials and samples at 30–600 ◦C. As can
be seen from Figure 8A, the thermal decomposition of RT can be divided into two main
stages (30–300 ◦C). The first step was between 30–150 ◦C, and its mass loss was about 8.53%,
which may be caused by the loss of water and the breakage of the single–bond molecular
chain of RT [70]. The mass loss of the second step was about 22.58% at 200–300 ◦C, which
may be caused by the loss of some chemisorption water and the breaking of most C–O bonds
in the structure [71]. There were two main degradation stages for zein–RT nanoparticles
and zein–RT–CMS nanoparticles. One was the mass loss caused by water loss in the range
of 30–150 ◦C, and the other was caused by the pyrolysis and fracture of the molecular
structure in the stage of 200–600 ◦C [72]. The mass loss of zein–RT nanoparticles was about
78.60% between 200–600 ◦C, while the zein–RT–CMS nanocomposites was 62.28%. The
decrease in mass loss indicated that the thermal stability of the composite particles was
improved after the addition of CMS [73]. The pyrolysis process was further analyzed
by the mass change rate of the thermal analysis process (Figure 8B). RT has a maximum
thermal degradation rate at 255 ◦C, and the maximum degradation peak shifts from 255 ◦C
to 293 ◦C with the addition of CMS. The maximum degradation peak of zein–RT–CMS
shifted backward compared with the pure CMS. It showed that the interaction between
the ternary complex increases the maximum thermal degradation temperature. Although
the maximum thermal degradation peak of zein–RT was 345 ◦C, its mass loss was more
than that of the ternary complex, thereby indicating that the ternary complex was more
helpful for improving the stability of RT. It was further explained that the addition of
CMS improved the thermal stability of RT [74]. This result showed that zein–CMS, as an
encapsulation carrier of polyphenols, could expand the application of polyphenols in the
hot–processed food industry (such as frying, baking, cooking, etc.).
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3.4.2. pH Stability

The core–shell structure of protein–polysaccharides is easily affected by pH. The
particle size, PDI, and ζ–potential can intuitively show the stability and dispersion of
composite particles, which is also the most common characterization means [75]. Figure 9
shows the difference in particle size, PDI, and ζ–potential between zein–RT nanoparticles
and zein–RT–CMS nanoparticles at pH 2–8. It can be seen from Figure 9 that zein–RT
nanoparticles gathered and settled at pH 5–8, especially near the PI of zein (pH 5–6). This
was mainly due to the increase in pH, which made the electrostatic repulsion between zein
almost disappear, thereby leading to aggregation and precipitation. It was fully explained
by the change of potential in Figure 9C. In addition, the process was irreversible [76]. On the
contrary, the nanoparticles with CMS showed good stability and dispersion in a wide range
of pH 3–8 (Figure 9). When the pH value was 2–3, zein–RT–CMS resulted in aggregation
and sedimentation, especially when the pH value was 2, its particle size was greater than
1000 nm, and PDI was 0.92. This may be due to its ζ–potential value tending to 0, thereby
leading to a sharp decrease in the electrostatic repulsion force between nanoparticles, which
led to a decrease in the stability and dispersion of particles (Figure 9C). In addition, under
strong acid conditions, the properties of CMS may be changed, which may also lead to
particle aggregation [77]. With the increase in pH, it was found that the dispersion and
stability of zein–RT–CMS nanoparticles remained at a good level (particle size < 550 nm,
PDI < 0.45, ζ–potential absolute value > 25 mV).
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Figure 9. (A) Particle size of zein–RT and zein–RT–CMS nanoparticles; (B) PDI of zein–RT and
zein–RT–CMS nanoparticles; (C) ζ–potential of zein–RT and zein–RT–CMS nanoparticles; (D) The
photograph showed the appearance of zein–RT nanoparticle at different pH; (E) The photograph
showed the appearance of zein–RT–CMS nanoparticles at different pH.

4. Formation Mechanism of Composite Nanoparticles

The possible formation mechanism of zein–RT–CMS nanoparticles is proposed in
Figure 10. Under the condition of magnetic stirring, zein and RT dissolved in 75% aqueous
ethanol solution were dropwise added into the solution of CMS. Subsequently, the ethanol
in the dispersion was removed by rotary evaporation. The formation of composite nanopar-
ticles was mainly driven by hydrogen bonds, electrostatic interaction, and hydrophobic
interaction, which was confirmed by the analysis of fluorescence spectra, FTIR, and XRD.
Through the characterization of the properties and structures of the composite nanopar-
ticles, it can be inferred that the level of CMS has a certain impact on the formation of
nanoparticles. With the increase of CMS, the particle size and the absolute ζ–potential of the
nanoparticles was increased. At a low level of CMS (10:1:10–10:1:20), CMS was not enough
to be fully loaded on the surface of nanoparticles, resulting in weak non–covalent binding
and poor stability. When the ratio of zein–RT–CMS was 10:1:30, the particle surface was
completely covered by CMS, showing better EE and stability. Due to the high adhesiveness
of CMS itself, as the level of CMS gradually increases (10:1:40), the particle size and PDI of
composite nanoparticles increased. At the high level of CMS (10:1:50), cross–linking began
to appear between CMS, which reduced the dispersion of nanoparticles and made them
easier to aggregate. In addition, the particles changed from a typical spherical structure
to a reticular structure filled with particles, which was proven by the FE–SEM. Moreover,
zein–CMS nanoparticles have a higher encapsulation efficiency and better stability than
pure zein nanoparticles.
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5. Conclusions

In this study, RT–loaded zein–CMS nanoparticles were successfully prepared by the
antisolvent precipitation method. The effects of CMS on the composite nanoparticles
were evaluated. Through the particle size, ζ–potential, and PDI characterization of the
composite nanoparticles, it was found that CMS improved the stability and dispersion
of the composite nanoparticles, especially when the ratio of zein–RT–CMS was 10:1:30.
Moreover, the EE of zein–CMS as an encapsulation carrier for RT was better than that of zein
alone. In addition, the structural characteristics of the composite nanoparticles showed that
there were hydrogen bonds, electrostatic interactions, and hydrophobic interactions among
zein, RT, and CMS. The morphological characteristics of the composite nanoparticles
were studied, and it was found that the composite nanoparticles presented a typical
spherical shape. Furthermore, the formation mechanism of zein–RT–CMS nanoparticles
was proposed according to the structural and morphological characterization. In the
presence of higher–level CMS, nanoparticles gradually filled the cross–linked network
of CMS. Finally, through the study of the stability of the composite nanoparticles, it was
found that the thermal stability and pH stability were improved by the addition of CMS.
In summary, these results suggested that zein–CMS as an encapsulation carrier not only
made up for the shortcomings of easy aggregation of corn zein as an encapsulation carrier
alone, but also improved the EE and the stability of the encapsulation material. This study
provides a new idea for the loading of other active substances. In addition, this carrier
(zein–CMS) in hot–processing food is also worth exploring in the future.
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Glossary

RT rutin
CMS carboxymethyl starch
EE encapsulation efficiency
LC loading capacity
PDI polydispersity index
FTIR Fourier transform infrared
XRD X–ray diffraction
CD Circular dichroism
FE–SEM Field Emission Scanning Electron Microscopy
DMSO dimethyl sulfoxide
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