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Abstract: The pH values of sausages stuffed in natural hog casings with different modifications
(soy lecithin, soy oil, orange extracts (OE) from waste orange peels, lactic acid in slush salt, and
treatment time) after 16-day 4 ◦C storage were evaluated for the first time by hyperspectral imaging
(350–1100 nm) coupled with response surface methodology (RSM). A partial least squares regression
(PLSR) model was developed to relate the spectra to the pH of sausages. Spectral pretreatment,
including first derivative, second derivative, multiplicative scatter correction (MSC), standard normal
variate (SNV), normalization, and normalization, with different combinations was employed to
improve model performance. RSM showed that only soy lecithin and OE interactively affected
the pH of sausages (p < 0.05). The pH value decreased when the casing was treated with a higher
concentration of soy lecithin with 0.26% OE. As the first and second derivatives are commonly
used to eliminate the baseline shift, the PLSR model derived from absorbance pretreated by the
first derivative in the full wavelengths showed a calibration coefficient of determination (R2) of 0.73
with a root mean square error of calibration of 0.4283. Twelve feature wavelengths were selected
with a comparable R2 value compared with the full wavelengths. The prediction map enables the
visualization of the pH evolution of sausages stuffed in the modified casings added with OE.

Keywords: casing modification; orange extracts; hyperspectral imaging; response surface methodology;
partial least squares regression

1. Introduction

Due to their special bite and unique flavor, natural casings are widely utilized in
sausage production. Nevertheless, the high bursting incidence hinders the rapid and
efficient large-scale manufacture of sausages. Nature casings are required to bear the high
pressures generated during stuffing or precooking without compromising sausage quality.
Previous studies have proven that casings can become more porous after modification and
reduce the bursting that occurs during immersion vacuum cooling [1]. Due to the change
in the microstructure of modified casings, microorganism invasion and oxidation can easily
occur; therefore, a food-grade antioxidative or antimicrobial reagent is required to prolong
the shelf life of modified casings for better commercial utilization.

Citrus fruit peels, which possess a large amount of useful and helpful biologically
active compounds for human beings, are currently either directly discarded to landfills as
fertilizer, used as animal feed, or sold as dried orange peels in China, serving as one of
the ingredients of Chinese herbal medicine [2]. The waste of orange peels not only causes
environmental problems, but it is also highly costly to deal with waste in accordance with
the Food Recycling Law in Japan [3]. As a member of the flavonoids family and rich in the
peels of citrus fruits, hesperidin has been demonstrated to be effective against liver cancer
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and lung cancer [4], possessing antioxidant [5] and antimicrobial properties [6,7]. The
latest literature also reveals that flavonoids such as hesperidin and rutin can be regarded
as the starting point for therapeutics against COVID-19 [8]. If the waste of orange peels
can be taken full advantage of, it can not only reduce environmental issues but also utilize
value-added products and increase industrial income [9]. As modified casings require an
antioxidative or antimicrobial reagent, it is meaningful to add extracts from these waste
orange peels. Fernández-López (2007) studied the quality of dry-cured sausages according
to different concentrations of orange fiber powder (mixture of albedo, flavedo, and pulp)
with a 28-day dry-curing time of 15 ± 1 ◦C and relative humidity of 75% [10]. The pH
values of all samples decreased during the first week and then returned to similar values
after 4 weeks. Fernández-Ginés et al. (2003) observed that a lower pH value was obtained
when a higher concentration of orange fiber was used [11]. The reason for using citrus fiber
was that it possesses better quality than other dietary fibers due to the presence of bioactive
compounds such as flavonoids, polyphenols, carotenes, and antioxidant properties [11].

Response surface methodology (RSM) is a useful statistical method that can interpret
the relationship between food processing parameters and the quality attributes of food
products [12–17], especially if the effects of variables on the response are unknown. As a
powerful design that can greatly reduce the number of experiments compared with a full
experimental design, the central composite design (CCD) has been employed in several
studies by RSM with a single run of different variable combinations and replicates only at
the center point [18–20]. Currently, however, there are no relevant studies on combining
sausage casing modification and orange extracts from waste orange peels by using RSM,
which merits investigating their effects on sausage quality.

Hyperspectral imaging (HSI) is more advantageous than conventional spectroscopic
methods, as it can provide the spectral information and spatial distribution of a subject
simultaneously [21]. Prediction maps can provide more detailed information on how many
and where attributes are exactly located. The pH changes of large Japanese sausages under
different storage conditions were investigated by HSI via a distribution map developed by R
statistics [21]. The results showed that the pH values of samples stored at 35 ◦C for 1, 3, and
5 days started to decrease in the surrounding area [19]. Compared to a conventional digital
pH meter that can only identify the measuring spot, distribution maps generated by HSI
can elaborate on how many different pH values exist in every spot in different test samples.
The Cantonese sausage grade was classified by using multiple linear regression (MLR)
and partial least squares regression (PLSR), and the best classification was achieved by
using a successive projections algorithm coupled with MLR, with a predictive accuracy of
100% [22]. Shi et al. (2019) employed HSI to classify colonies from food fragments (sausage,
bacon, and millet fragments) in an agar plate [23]. Kamrruzzaman et al. (2022) studied the
moisture of red meat and corn using six different methods to select the wavelength in terms
of model performance and demonstrated that competitive adaptive reweighted sampling
(CARS) in tandem with PLSR is superior to PLSR models when developing models between
the moisture and spectra of red meat and corn using a full spectral range [24]. Siripatrawan
and Makino (2018) evaluated the changes in physicochemical, microbiological, and sensory
attributes of packaged bratwurst (a type of sausage) during 20-day storage at 4 ± 1 ◦C [25].
Lightness, thiobarbituric acid, total viable counts, lactic acid bacteria, odor, and overall
acceptability were found to be highly correlated with reflectance [25]. All these studies
accentuate an unyielding interest in the application of HSI as an emerging method to detect
different types of meat products.

Although previous studies have investigated the pH [26], color [27–29], and triphos-
phate content [30] of sausages by using HSI, scarce information has been obtained on
evaluating the effects of extracts from waste orange peels on the pH of sausages after
addition in a modified solution by using RSM and HSI combined with the PLSR algorithm.
The novelty of the current study is:
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(1) The simultaneous effects of five variables (different concentrations of soy lecithin, soy
oil, lactic acid, orange extracts, and treatment times) on the pH of sausages during
15 days of storage were elucidated by RSM.

(2) The pH of sausages stuffed in modified casings after adding orange extracts was elab-
orated for the first time by HSI. The pH changes of each pixel in casings responding
to different concentrations of orange extracts were clearly illustrated via prediction
maps. The results can provide a better understanding of how pH reacts with orange
extracts and provide useful information for future investigations.

(3) The relationship between pH and spectra from the surface of cylindrical sausages
with modified casings was established for the first time by PLSR.

The purpose of this study is to evaluate the effects of five variables on the pH of
sausages by using RSM. Following this, a quantitative model relating spectral data to
the reference pH of sausage with this new type of casing is established. Consequently,
wavelengths with high predictive power are chosen, and the distribution map of pH with
differently treated casings is developed using image processing algorithms.

2. Materials and Methods
2.1. Soxhlet Extraction

The peels of Valencia sweet orange (Citrus sinensis) were first dried at 45 ◦C for
7 days. The dried orange peels were finely blade-milled into powder, and an average of
40.70 ± 0.52 g of orange powder was added to a cartridge sealed with cotton for Soxhlet
extraction using 250 mL of 100% methanol. The crude extracts were separated from the
solvent using a rotary vacuum evaporator. The crude extracts were placed in a flow hood
overnight, allowing the solvent to be fully evaporated. Subsequently, the crude extracts
were washed with distilled water of twice their weights, filtered, dried, and stored in a
desiccator to finally obtain the dried precipitate extracts for further usage. The efficiencies
of crude extract and precipitation were calculated based on the weight ratio of crude and
precipitation with orange powder. A total of 35 repetitions were conducted to obtain
enough orange extracts.

2.2. Experiment Design and Casing Modification

The simultaneous effects of five treatment variables (soy lecithin (X1), soy oil (X2),
orange extracts (X3), lactic acid (X4), and treatment time (X5)) on pH were studied using
RSM. The ranges of the independent variables were defined as follows: 2.12–4.20% for X1,
1.18–2.39% for X2, 0.12–0.40% for X3, 18–21 mL/kg NaCl for X4, and 60–90 min for X5. The
experimental plan was designed by Minitab 21.1 software with an alpha (α) of 2 (Kozo
Keikaku Engineering Inc., Tokyo, Japan). A total of 32 experiment matrices, including
6 replicates of the central point, were conducted in a random order to avoid erroneous
conclusions due to extraneous sources of variability [1,17]. A quadratic polynomial equation
was employed to establish the relationship between YpH and independent variables (Xa;
a = 1–5).

YpH = β+ ∑
a=1

βaXa + ∑
a=1

βaaXaXa + ∑
a=1

∑
b=a+1

βabXaXb (1)

where β, βa, βaa, and βab are the coefficients of constant, linear, quadratic, and interaction,
respective. The F test was employed to estimate the significance of the regression parameters.

The surfactant solution was made by dissolving soy lecithin and soy oil with distilled
water via magnetic agitation at 500 rpm and 60 ◦C. The orange extracts were added when
the modified solution was cooled to 25 ◦C and mixed well with the magnetic agitation.
A length of 30 cm natural hog casing (Pakumogu.com, Niigata Prefecture, Japan) section
was desalted and placed in surfactant solution added with orange extracts with magnetic
agitation at 500 rpm. The casings after treatment time were picked up and placed in the
slush salt with lactic acid for another treatment time. The composition of the surfactant
solution with orange extracts, slush salt with lactic acid, and treatment time are shown in
Table 1.
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Table 1. Casing modification treatment combinations.

Treatments

Surfactant Solution with Orange Extracts Slush Slat with Lactic Acid

Soy Lecithin
Concentration
(X1, %, w/w)

Soy Oil
Concentration

(X2,%, w/w)

Orange
Extracts (X3,

%, w/w)

Treatment
Time (X5, min)

Lactic Acid (mL/kg
NaCl, X4)

Treatment
Time (X5, min)

1 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
2 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 22.50 (A, +α) 75 (C, 0)
3 4.20 (F, +1) 1.18 (F, −1) 0.40 (F, +1) 90 (F, +1) 18.00 (F, −1) 90 (F, +1)
4 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 16.50 (A, −α) 75 (C, 0)
5 2.11 (F, −1) 2.38 (F, +1) 0.12 (F, −1) 90 (F, +1) 21.00 (F, +1) 90 (F, +1)
6 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
7 2.11 (F, −1) 2.38 (F, +1) 0.40 (F, +1) 60 (F, −1) 21.00 (F, +1) 60 (F, −1)
8 1.07 (A, −α) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
9 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 105 (A, +α) 19.50 (C, 0) 105 (A, +α)

10 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 45 (A, −α) 19.50 (C, 0) 45(A, −α)
11 3.16 (C, 0) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
12 2.11 (F, −1) 1.18 (F, −1) 0.40 (F, +1) 90 (F, +1) 21.00 (F, +1) 90 (F, +1)
13 4.20 (F, +1) 2.38 (F, +1) 0.12 (F, −1) 60 (F, −1) 21.00 (F, +1) 60 (F, −1)
14 4.20 (F, +1) 2.38 (F, +1) 0.40 (F, +1) 60 (F, −1) 18.00 (F, −1) 60 (F, −1)
15 4.20 (F, +1) 1.18 (F, −1) 0.40 (F, +1) 60 (F, −1) 21.00 (F, +1) 60 (F, −1)
16 2.11 (F, −1) 1.18 (F, −1) 0.12 (F, −1) 90 (F, +1) 18.00 (F, −1) 90 (F, +1)
17 3.16 (C, 0) 2.93(A, +α) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
18 4.20 (F, +1) 1.18 (F, −1) 0.12 (F, −1) 90 (F, +1) 21.00 (F, +1) 90 (F, +1)
19 2.11 (F, −1) 1.18 (F, −1) 0.12 (F, −1) 60 (F, −1) 21.00 (F, +1) 60 (F, −1)
20 4.20 (F, +1) 2.38 (F, +1) 0.40 (F, +1) 90 (F, +1) 21.00 (F, +1) 90 (F, +1)
21 2.11(F, −1) 1.18 (F, −1) 0.40 (F, +1) 60 (F, −1) 18.00 (F, −1) 60 (F, −1)
22 4.20(F, +1) 1.18 (F, −1) 0.12 (F, −1) 60 (F, −1) 18.00 (F, −1) 60 (F, −1)
23 3.16 (C, 0) 1.78 (C, 0) 0.53(A, +α) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
24 5.16 (A, +α) 1.78 (C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
25 2.11 (F, −1) 2.38 (F, +1) 0.40 (F, +1) 90 (F, +1) 18.00 (F, −1) 90 (F, +1)
26 3.16(C, 0) 1.78(C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
27 4.20 (F, +1) 2.38 (F, +1) 0.12 (F, −1) 90 (F, +1) 18.00 (F, −1) 90 (F, +1)
28 3.16 (C, 0) 1.78(C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
29 3.16 (C, 0) 1.78(C, 0) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
30 2.11 (F, −1) 2.38 (F, +1) 0.12 (F, −1) 60 (F, −1) 18.00 (F, −1) 60(F, −1)
31 3.16(C, 0) 1.78 (C, 0) 0.00 (A, −α) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)
32 3.20(C, 0) 0.60 (A, −α) 0.26 (C, 0) 75 (C, 0) 19.50 (C, 0) 75 (C, 0)

Note: A: axial, C: center, F: factorial; the numbers α −1, 0, 1, and +α in the brackets mean coded variable level.

2.3. Sausage Production

Sausage batter was made of lean pork (4020 g), fat (1720 g), Chinese white wine
(718.6 g; ethanol content: 52%, v/v), salt (200 g), sugar (120 g), black pepper (73.9 g),
coriander powder (37.6 g), spicy pepper (42.4 g), turmeric powder (16.8 g), and garam
masala powder (17.5 g). The meat and fat were sterilely cut into small pieces and mixed
well with spices and wine. The mixed batter was filled into the modified casings and
desalted untreated natural hog casings (as a control) by using a stuffing machine (STX-4000-
TB2-PD-BL, Electric Meat Grinder & Sausage Stuffer, STX International, Lincoln, NE, USA).
The sausage sections after stuffing were immediately dried in a sterilized oven at 45 ◦C for
24 h and aged at 20 ◦C for another 48 h. Subsequently, the sausage sections were vacuum
packaged and stored in a fridge (4 ◦C) for 16 days for the following post-analysis.

2.4. Hyperspectral Imaging System

A laboratory visible near-infrared HSI (NH-4-KIT, EBA Japan, Tokyo, Japan) with
a spectra range of 350 nm–1100 nm was employed for push-broom line-scanning of the
sausage surface. A 10-bit charged coupled device camera was used, and the flame rate
was 100 fps with an exposure time of 12.47 ms. The total contiguous spectral bands were
151 with 5 nm intervals. The halogen lamp light source was fixed on three sides of the
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camera, and the white sheet was used to render the light source to have an even distribution.
The HSI system was calibrated by a dark reference (with 0% reflectance) by completely
covering the camera lens with its opaque cap and calibrated by a white reference with 100%
reflectance before measuring. Imaging acquisition was conducted using a reflectance mode
of HSI with a dark room temperature of 20 ◦C. The corrected images reflectance (Rci) was
expressed as the following equation using the software of the imaging system

Rci =
Rr − Rd
Rw − Rd

(2)

where Rr, Rd, and Rw are the reflectance images of raw, dark, and white, respectively. The
absorbance profiles were transformed using the following equations:

A = −log R (3)

A black background (low reflectance surface) was used to achieve a good contrast
between the sample and the background. Control software (HSAnalyzer, version 1.2, EBA
Japan, Tokyo, Japan), supported by a computer, was used to analyze and process the
hyperspectral images. The hypercubes were segmented by applying a threshold criterion.
In this sense, all pixels having a reflectance higher than 0.075 at band 70 (695 nm) were
considered as sausage. Moreover, several spectra from each sample, each sausage was
digitally divided into five regions of equal area. The average spectrum of each segment
was extracted and merged in a table that also contained the reference pH value and the
sample code. The segmentation, the extraction of the spectra as well as the storage of
data were developed by an algorithm coded under MATLAB (MathWorks Inc., Natick,
MA, USA). This table with both spectra and pH reference values was used to develop the
calibration models.

2.5. pH Analysis

Ten grams of sausage slices was homogenized with 90 mL of distilled water for 1 min
and measured using a digital pH meter. The method was based on Zdolec et al. (2008) [31].

2.6. Spectral Pretreatment and Model Development

In order to enhance the model performance, the pretreatments of spectra, such as
multiplicative scatter correction (MSC), standard normal variate (SNV), normalization, the
first and the second derivatives, were conducted before multivariate analysis. Partial least
square regression (PLSR), as one of the important regression algorithms, was employed to
connect the pH parameter and the spectra of the sausages stuffed with different treated
modified casings. Two-thirds of the samples were used for the calibration group, while the
left one-third was used for the prediction group.

The predictive ability was estimated by the determination coefficient in calibration
(Rc

2), prediction (Rp
2), cross-validation (Rcv

2), the root mean square errors of calibration
(RMSEC), prediction (RMSEP), and cross-validation (RMSECV). These parameters were
determined as follows:

R2 = 1 −
∑
(

yi − ypredicted

)2

∑(yi − ymean)
2 (4)

RMSE =

√√√√√ n

∑
i=1

(
yi − ypredicted

)2

n
(5)

where yi is the measured pH of the ith sample, and n is the number of samples. A good
PLSR model is commonly believed to have a high R2 with a low RMSE with a small absolute
difference between RMSEC and RMSECV.
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2.7. Feature Wavelengths Selection

The feather wavelengths (FWs) for pH were selected based on the weighted regression
coefficient from the developed calibration model, to simplify the full model and reduce
noise and redundancy information and so enhance the model accuracy. Wavelengths that
contained large regression coefficients (irrespective of the sign) were selected as the FWs,
and a new simplified model was created using those FWs. If the predictive performance of
the new model is comparable to that with full spectra, it could be of practical use to design
a simple cost-effective multispectral system and applicable to commercialization.

2.8. Visualization of pH Distribution

The pH prediction maps for sausages with different modified casings were produced
according to calibration models with FWs. As HSI possesses a 3D matrix that contains a
large amount of spatial and spectral information, it is required to unfold into a 2D matrix at
the FWs. The purpose of this is to render each row standing for the spectrum of a pixel, and
the columns represented the selected feather wavelengths. The matrix was then multiplied
by the corresponding regression coefficient. In this way, the vector could be refolded back
to generate a 2D color image, and consequently, the color heterogeneity of the sausages
with a linear color scale (i.e., distribution map) could be shown. All these procedures
were computed with MATLAB software (R2017b; MathWorks Inc., Natick, MA, USA). The
graphical scheme of the main steps of building the prediction map is illustrated in Figure 1.
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image segmentation; (c) spectral extraction; (d) feature wavelengths selection; (e) unfolded image to
2D and multiply the regression coefficients of PLSR model using feature wavelengths; (f) prediction
map establishment.

3. Results and Discussion
3.1. Spectral Characteristics and Simultaneous Effects on pH Analyzed by RSM
3.1.1. Spectra Overview

As illustrated in Figure 2, the average reflectance of sausages stuffed in the modified
casing with Treatment 30 was higher than that with Treatment 25 and the control group,
especially for the wavelengths range of 645 nm to 670 nm and 865 nm to 890 nm. The
pH values for Treatments 30, 25, and control were 4.44, 6.32, and 6.24, respectively. It is
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well known that the NIR hyperspectral system recorded the different absorbance patterns
according to the interior structural changes or intermolecular forces changes in the meat
with different pH levels [32]. It was also reported that oxymyoglobin (MbO2) has a large
absorption coefficient at 544 nm and 582 nm, while oxyhemoglobin (HbO2) possesses three
absorption bands at 418 nm, 543 nm, and 574 nm, representing soret, α, and β bands [33].
The absorption bands at 780 and 980 nm were related to moisture absorption, corresponding
to the third and second overtones of O-H stretching, respectively [34].
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3.1.2. Simultaneous Effects on pH Analyzed by RSM

Figure 3 shows that the pH value varied from 4.44 (Treatments 19 and 30) to 6.46
(Treatment 22). Different casing treatments may have affected pH evaluation during the
16 days of storage under 4 ◦C. The R2 value of the regression model developed for pH
was 67.13% with a nonsignificant lack of fit (p > 0.05). Only soy lecithin and orange
extracts (X1 × X3) were observed to have interactively affected the pH of sausage at a 5%
significance level (Table 2). The predicted quadratic polynomial regression equation for
pH as a function of soy lecithin (X1), soy oil (X2), orange extracts (X3), lactic acid (X4), and
treatment time (X5) in the uncoded units are shown as follows:

YpH = 59.0000 + 1.5200 X1 − 9.0700 X2 − 8.4000 X3 − 3.8400 X4 − 0.2520 X5 − 0.0520 X2
1+0.4260 X2

2+7.8200 X2
3

+0.0635 X2
4 + 0.0007 X2

5 + 0.0110 X1X2 − 3.2700 X1X3 − 0.0160 X1X4 − 0.0035 X1X5 + 2.0700 X2X3
+0.2720 X2X4 + 0.0216 X2X5 + 1.0000 X3X4 − 0.1109 X3X5 + 0.0086 X4X5

(6)
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is over 6.0 when a lower soy lecithin concentration was combined with higher orange ex-
tracts. The increased pH may be explained by the nitrogen compounds generated by pro-
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Table 2. Regression coefficients and analysis of variance of the regression models for pH.

Analysis of Variance

Source Df Adj SS F-Value

Model 20 14.45 1.12
Linear 5 3.54 1.10

X1 1 1.64 2.56
X2 1 0.01 0.01
X3 1 0.00 0.01
X4 1 0.00 0
X5 1 1.88 2.93

Square 5 2.55 0.79
X1 × X1 1 0.12 0.19
X2 × X2 1 0.81 1.27
X3 × X3 1 0.64 1.00
X4 × X4 1 0.60 0.93
X5 × X5 1 0.71 1.10

2-Way Interaction 10 8.37 1.30
X1 × X2 1 0.00 0.00
X1 × X3 1 3.98 6.19 *
X1 × X4 1 0.01 0.02
X1 × X5 1 0.06 0.09
X2 × X3 1 0.50 0.78
X2 × X4 1 1.04 1.62
X2 × X5 1 0.66 1.02
X3 × X4 1 0.68 1.06
X3 × X5 1 0.84 1.30
X4 × X5 1 0.60 0.93

Error 11 7.07
Lack of Fit 6 3.30 0.73
Pure Error 5 3.78

Total 31 21.52
Note: * significant at p < 0.05, without any mark means not significant. Adj SS: adjust sum of squares, Df: degree
of freedom.

The value of the corresponding coefficient for orange extracts (X3, −8.4000) indicates
that it exerts an important impact on casing modification and so influenced sausage pH
during the 16-day storage. Further investigation shows that pH decreased when casings
were treated with a higher concentration of soy lecithin with orange extracts at approxi-
mately 0.26% [Figure 4a]. According to the 2D contour plot [Figure 4b], the pH value is
over 6.0 when a lower soy lecithin concentration was combined with higher orange extracts.
The increased pH may be explained by the nitrogen compounds generated by proteoly-
sis [35]. Yao et al. reported that protein enzymes, produced by microorganisms, led to the
decomposition of meat protein, generating ammonia, biogenic amine, and skatole [33]. The
contents of MbO2 and HbO2 were decreased with the decomposition of protein, which
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indirectly affected the change of spectra at 540 and 582 nm (related to MbO2), and 418, 543,
and 574 nm (related to HbO2) in comparison with the control (pH = 6.24) and sample with
Treatment 22 (pH = 6.46) (Figure 2). A lower soy lecithin level was reported to render the
casings to be more porous [1]. Orange extracts were reported to possess certain contents of
hesperidin [9,17,36–38], which has a potent antioxidant effect and is an anti-microorganism.
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3.2. Calibration Models with Full Wavelengths

The PLSR model was employed to predict the pH values of the sausages using different
modified casings from both reflectance and absorbance spectral data over the full spectral
range of 350–1100 nm. Using the reflectance spectra, the Rp

2 value of data pretreated by
normalization shows some improvement to 0.6855 when compared with the raw data of
0.6485, with a small decrease in RMSEP (Table 3). It is reported that normalization can im-
prove the spectral features, making the spectra have an equal area under the curve to allow
for easy comparison of spectral features in the same plot [39]. Proper normalization of hy-
perspectral spectra data enables a better signal-to-noise ratio, compared to the conventional
spectrophotometer method [40] A-PLSR model derived from the spectra preprocessed by
the first derivative presented the highest Rc

2 of 0.7300, the lowest RMSEC of 0.4283%, and
Rp

2 of 0.6789 and RMSEP of 0.4501% (Table 3), with a low absolute difference between
RMSEC and RMSECV, compared with raw and other pretreatments. The function of first
derivatives is to remove background noise and baseline drift, as well as to improve small
spectral features [41]. Regarding a similar study, the Rp

2 values for predicting pH in salted
meat [42], freeze–thawed pork [43], fresh pork [44], and large Japanese sausages [19] were
0.797, 0.845, 0.55, and 0.882, respectively. The comparable low Rp

2 in the current study
may be due to the factor where the pH value was only concentrated either near 4.66 or 6.32
(Figure 3), leading to a narrow pH distribution for analysis.

3.3. Calibration Models with Selected Feature Wavelengths

Hyperspectral data display a high degree of interband correction with high dimensions.
It is thus meaningful to select feature wavelengths to represent the full wavelengths. In this
way, the model can be simplified, and data redundancy can be eliminated. Furthermore,
the algorithms’ efficacies can be enhanced, accelerating the classification of sausages based
on the pH for industrial machine-vision systems. According to the weighted regression
coefficients from the PLSR model (Figure 5), the feature wavelengths were selected based
on the peaks and valleys (i.e., indicating the important information and large contribution
to the productivity of the model) in the wavelengths. To this end, twelve wavelengths (365,
385, 405, 475, 525, 580, 640, 725, 875, 915, 1005, and 1060 nm) were selected as the feature
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wavelengths. Table 4 elaborates on the predictive ability of the simplified model, with an
Rp

2 of 0.6896 and an RMSEP of 0.4426%, using data pretreated by normalization. A new
PLSR with those feature wavelengths was established as follows:

Y’pH = 5.335 + 7.243λ365 − 0.060λ385 + 7.461λ405 − 4.098λ475 + 3.594λ525 + 4.443λ580 − 5.920λ640 − 4.083λ725 −
3.246λ875 + 4.495λ915 + 3.520λ1005 − 9.730λ1060

(7)

where λxnm is the reflectance spectra at the wavelength of x nm, and Y’pH is the predicted
pH value. Generally, the R2 values of prediction in the reduced model were comparable
to that of the model using full wavelengths, and approximately 92% of wavelengths were
reduced from the full wavelengths. There were even some cases where the prediction
accuracy of the model using the feature wavelengths was higher than that using the full
wavelengths (e.g., Rp = 0.6835 for A-1st Derivative-PLSR using feature wavelength vs.
Rp = 0.6789 for A-1st Derivative-PLSR using full wavelength). This may be elucidated by
removing the noise and pixel outliers, resulting in the improvement of robustness and
reliability of the PLSR model [44–47]. It was mentioned that the R2 value between 0.66 and
0.81 is allowed for approximate prediction, an R2 value between 0.82 and 0.90 is regarded
as a good prediction, while an R2 higher than 0.91 is demonstrated to be an excellent
prediction [48]. The selected feature wavelengths were applied to creating prediction maps
in the following step.

Table 3. Statistical parameters of PLSR with raw and preprocessing spectra based on full wavelengths.

Treatments Calibration Group
(n = 110)

Prediction Group
(n = 55) Cross-Validation

Reflectance (R)

Rc
2 RMSEC (%) Rp

2 RMSEP (%) Rcv
2 RMSECV (%)

Raw 0.6849 0.4628 0.6485 0.4709 0.7496 0.4063
1st Derivative 0.5342 0.5626 0.6401 0.4766 0.8756 0.2864
2nd Derivative 0.6291 0.502 0.3843 0.6233 0.7431 0.4115

MSC 0.5569 0.5488 0.6416 0.4756 0.6524 0.4787
SNV 0.5570 0.5487 0.6416 0.4756 0.6528 0.4785

Normalization 0.6770 0.4685 0.6855 0.4455 0.7194 0.4301
Normalization + 1st

Derivative 0.6813 0.4654 0.6503 0.4698 0.7152 0.4333

1st Derivative +
Normalization 0.5692 0.5411 0.5524 0.5314 0.6197 0.5007

Normalization + 2nd
Derivative 0.7282 0.4298 0.4091 0.6106 0.7534 0.4032

2nd Derivative +
Normalization 0.3417 0.6688 0.1309 0.7406 0.3447 0.6573

Absorbance (A)

Raw 0.7025 0.4496 0.6626 0.4614 0.7305 0.4216
1st Derivative 0.7300 0.4283 0.6789 0.4501 0.7798 0.3810
2nd Derivative 0.5257 0.5677 0.3710 0.63 0.6544 0.4733

MSC 0.5479 0.5543 0.5677 0.5223 0.6384 0.4883
SNV 0.5476 0.5545 0.5680 0.5221 0.6384 0.4883

Normalization 0.5021 0.5817 0.6015 0.5015 0.5927 0.5182
Normalization + 1st

Derivative 0.5324 0.5637 0.6560 0.4659 0.5706 0.5321

1st Derivative +
Normalization 0.4812 0.5938 0.4831 0.5711 0.6123 0.5056

Normalization + 2nd
Derivative 0.6149 0.5116 0.2514 0.6873 0.6240 0.4979

2nd Derivative +
Normalization 0.0179 0.8170 0.0217 0.7857 0.0183 0.8045

Note: MSC: multiplicative scatter correction; SNV: standard normal variate; RMSEC: root mean square error of
calibration; RMSEP: root mean square error of prediction; RMSECV: root mean square error of cross-validation.
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Table 4. Statistical parameters of PLSR with raw and preprocessing spectra based on selected feature
wavelengths.

Treatments Calibration Group
(n = 110)

Prediction Group
(n = 55) Cross-Validation

Reflectance

Rc
2 RMSEC (%) Rp

2 RMSEP (%) Rcv
2 RMSECV (%)

Raw 0.6876 0.4608 0.6648 0.4599 0.6844 0.4561
1st Derivative 0.5881 0.5291 0.6257 0.486 0.6373 0.4890
2nd Derivative 0.5560 0.5493 0.6640 0.4604 0.6001 0.5135

MSC 0.5370 0.5609 0.6530 0.4680 0.6319 0.4926
SNV 0.5369 0.5610 0.6532 0.4678 0.6229 0.4986

Normalization 0.6860 0.4619 0.6896 0.4426 0.6954 0.4482
Normalization + 1st

Derivative 0.6695 0.4739 0.6613 0.4623 0.6705 0.4661

1st Derivative +
Normalization 0.6124 0.5132 0.6189 0.4904 0.6021 0.5122

Normalization + 2nd
Derivative 0.6603 0.4805 0.6688 0.4571 0.6730 0.4643

2nd Derivative +
Normalization 0.5427 0.5574 0.6393 0.4771 0.5956 0.5164

Absorbance

Raw 0.6996 0.4518 0.6706 0.4559 0.7050 0.4410
1st Derivative 0.6553 0.4840 0.6835 0.4469 0.7026 0.4428
2nd Derivative 0.6608 0.4801 0.6653 0.4596 0.6654 0.4697

MSC 0.5564 0.549 0.5824 0.5133 0.5709 0.5319
SNV 0.5209 0.5706 0.6267 0.4854 0.5912 0.5191

Normalization 0.5719 0.5394 0.5315 0.5437 0.5956 0.5163
Normalization + 1st

Derivative 0.5331 0.5633 0.5782 0.5159 0.5616 0.5376

1st Derivative +
Normalization 0.5517 0.5519 0.5307 0.5442 0.5413 0.5499

Normalization + 2nd
Derivative 0.5899 0.5279 0.5822 0.5135 0.5973 0.5153

2nd Derivative +
Normalization 0.5892 0.5284 0.5728 0.5192 0.5977 0.515

Note: MSC: multiplicative scatter correction; SNV: standard normal variate; RMSEC: root mean square error of
calibration; RMSEP: root mean square error of prediction; RMSECV: root mean square error of cross-validation.

3.4. Visual Representation of Sausage pH Distribution

As the main advantage of hyperspectral imaging technology, a prediction map (or
distribution map) can illustrate where and how many different reference parameters (pH
in the current study) are located from spot to spot in different detected samples. Figure 6
elaborates how pH changes in response to the different treated modified casings used
for the sausages stored on Day 16. Four samples, the sample with the highest pH value
(treatment 22, pH = 6.46), middle pH (Treatment 20, pH = 6.17), lowest pH (Treatment 30,
pH = 4.44), and control group, were selected for representation. It is difficult to distinguish
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the differences in the RGB images with the naked eyes (Figure 6). Nevertheless, the
prediction maps clearly show how much different pH values were located from pixel to
pixel, which is superior to the conventional pH measurement, which is time-consuming
and difficult to obtain the data like this. It is meaningful to monitor and understand the
spatial change, which could provide useful information on how intrinsic properties such as
the composition and biochemical attributes of samples react to different modified casings.
To this point, it could serve as a good reference before those types of modified casings are
commercially utilized.

Foods 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

As the main advantage of hyperspectral imaging technology, a prediction map (or 
distribution map) can illustrate where and how many different reference parameters (pH 
in the current study) are located from spot to spot in different detected samples. Figure 6 
elaborates how pH changes in response to the different treated modified casings used for 
the sausages stored on Day 16. Four samples, the sample with the highest pH value (treat-
ment 22, pH = 6.46), middle pH (Treatment 20, pH = 6.17), lowest pH (Treatment 30, pH = 
4.44), and control group, were selected for representation. It is difficult to distinguish the 
differences in the RGB images with the naked eyes (Figure 6). Nevertheless, the prediction 
maps clearly show how much different pH values were located from pixel to pixel, which 
is superior to the conventional pH measurement, which is time-consuming and difficult 
to obtain the data like this. It is meaningful to monitor and understand the spatial change, 
which could provide useful information on how intrinsic properties such as the composi-
tion and biochemical attributes of samples react to different modified casings. To this 
point, it could serve as a good reference before those types of modified casings are com-
mercially utilized. 

 
(a)  (b) 

 
 (c) (d) 

Figure 6. RGB images (left) and visualization of pH prediction map (right) for sausages stuffed in 
different treated modified casings stored on Day 16. Note: (a): Treatment 30 sample, pH = 4.44; (b): 
Treatment 20 sample, pH = 6.17; (c): Control sample, pH = 6.24; and (d): Treatment 22 sample, pH = 
6.46;. 

 

4. Conclusions 
The present study investigated the feasibility of employing HSI for rapidly and non-

destructively predicting pH values in sausages stuffed in modified casings added with 
orange extracts from waste orange peels. RSM was used to explain the relationship be-
tween different modified factors and sausage pH. The R2 value of the polynomial regres-
sion model was 67.13% with a nonsignificant lack of fit (p > 0.05). When using full wave-
lengths, the A-PLSR model derived from the spectra preprocessed by the first derivative 
presented the highest Rc2 of 0.7300, while R-PLSR derived from normalization achieved 
the highest Rp2 of 0.6855. Twelve feature wavelengths (365, 385, 405, 475, 525, 580, 640, 725, 
875, 915, 1005, and 1060 nm) were selected to develop a simplified model. This reduced 
model achieved a comparable R2 value in comparison with that using full wavelengths, 
which means it can be applied to a simple, cost-effective, multispectral system establish-
ment or for online industrial applications. For the first time, the prediction map developed 
in this study clearly displayed sausage pH evolution according to different modified cas-
ings. 

Figure 6. RGB images (left) and visualization of pH prediction map (right) for sausages stuffed in
different treated modified casings stored on Day 16. Note: (a): Treatment 30 sample, pH = 4.44;
(b): Treatment 20 sample, pH = 6.17; (c): Control sample, pH = 6.24; and (d): Treatment 22 sample,
pH = 6.46.

4. Conclusions

The present study investigated the feasibility of employing HSI for rapidly and nonde-
structively predicting pH values in sausages stuffed in modified casings added with orange
extracts from waste orange peels. RSM was used to explain the relationship between
different modified factors and sausage pH. The R2 value of the polynomial regression
model was 67.13% with a nonsignificant lack of fit (p > 0.05). When using full wavelengths,
the A-PLSR model derived from the spectra preprocessed by the first derivative presented
the highest Rc

2 of 0.7300, while R-PLSR derived from normalization achieved the highest
Rp

2 of 0.6855. Twelve feature wavelengths (365, 385, 405, 475, 525, 580, 640, 725, 875, 915,
1005, and 1060 nm) were selected to develop a simplified model. This reduced model
achieved a comparable R2 value in comparison with that using full wavelengths, which
means it can be applied to a simple, cost-effective, multispectral system establishment or
for online industrial applications. For the first time, the prediction map developed in this
study clearly displayed sausage pH evolution according to different modified casings.
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