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Abstract: Most proteins given orally have low bioavailability and are easily eliminated by rapid
metabolism in vivo. In order to immobilize the drug at the site of administration and delay its release,
a natural, gentle release system was designed. In this study, a heteropolysaccharide (ZOP) was
isolated from Zingiber officinale using an ultrasonic assisted extraction method. ZOP Ara = 1.97: 1.15:
94.33: 1.48: 1.07. The ZOP/Chitosan (CS) composite hydrogel was synthesized using epichlorohydrin
(ECH) as a cross-linking agent. The structure, morphology, and water-holding capacity of the
composite hydrogel were characterized. The data showed that the addition of ZOP improved the
hardness and water-holding capacity of the material. A swelling ratio test showed that the prepared
hydrogel was sensitive to pH and ionic strength. In addition, the degradation rate of the hydrogel in
a phosphate-buffered saline (PBS) solution with a pH value of 1.2 was higher than that in PBS with
pH value of 7.4. Similarly, the release kinetics of Bovine serum albumin (BSA) showed higher release
in an acidic system by the hydrogel composed of ZOP/CS. The hydrogel prepared by this study
provided a good microenvironment for protein delivery. In summary, this composite polysaccharide
hydrogel is a promising protein-drug-delivery material.

Keywords: Zingiber offtcinale; polysaccharide; chitosan; hydrogels; drug release; degradation

1. Introduction

Hydrogels are three-dimensional networks formed by hydrophilic polymers through
physical or chemical crosslinking [1]. Because the hydrogel network contains a large
number of hydrophilic functional groups, the hydrogel can absorb and retain water in
large quantities without destroying its original three-dimensional structure [2]. In recent
years, polysaccharide-based hydrogels have emerged as promising biomaterials because
of their high water retention and excellent biodegradability and safety [3,4]. The practical
applications of the single polysaccharide gel system are not extensive. In order to meet
the characteristics, structure, or properties of a specific purpose, polysaccharides can be
combined with another synthetic polymer, natural polymer, or inorganic compound to
produce a new structure, and at the same time have the advantages of two components,
thereby greatly expanding the application scope of the resulting composite gel [5].

Zingiber officinale is a zingiberaceae plant [6]. In recent decades, Z. officinale has
attracted much attention due to its multiple biological activities [7]. ZOP is an important
component of Z. officinale, and has antioxidant [8–10], anti-inflammatory, and bacteriostatic
properties [6,11] and anti-fatigue activity [12]. In addition, ZOP has good biocompatibility
and biodegradability. However, the application of ZOP in hydrogel synthesis is rarely
reported. CS is the only cationic polysaccharide in nature [13], which is non-toxic and easy
to degrade. It is often used to prepare materials such as hydrogels [14].

Composite hydrogels have attracted more and more attention due to their excellent
mechanical properties and wide range of application [15,16]. In this study, mixed hydrogels
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containing ZOP and CS were prepared and characterized to improve the swelling perfor-
mance and practicality of hydrogels. The sustained release abilities of BSA were initially
explored to confirm whether the developed hydrogel had the properties of a promising
sustained-release oral drug.

2. Materials and Methods
2.1. Experimental Materials and Reagents

Zingiber officinale was obtained from Anguo Yaoyuan Trading Co., Ltd. (Anguo, China).
The sample was identified as the rhizome of Zingiber officinale Roscoe by associate professor
Lanfang Wu (Department of Pharmacy, Hebei University of Chinese Medicine). A voucher
specimen was deposited at the College of Chemistry and Pharmaceutical Engineering,
Hebei University of Science and Technology, China. Chitosan, Standard monosaccharides, T-
series dextrans, and 1-phenyl-3-methyl-5-pyrazolone (PMP) were purchased from Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). All other chemicals and reagents
used in the experiments were of analytical grade.

2.2. Sample Preparation
2.2.1. Extraction of ZOP

The rhizome of Zingiber officinale was pulverized in order to obtain the powder. The
powder (100 g) was pretreated with 95% ethanol (1:3, w/v) for 2 h on 2 consecutive
occasions to remove pigments, fats, and other alcohol-soluble substances. After 20 min
of ultrasound assistance, the dry residues were extracted twice by distilled water (1:25,
w/v) reflux extraction, for two hours each time. The two aqueous extracts were combined,
concentrated, and precipitated with 95% ethanol for 12 h. The extract was filtered and
freeze-dried to obtain the final sample.

2.2.2. Analysis of the Average Molecular Weight (Mw) and Monosaccharide Composition
of ZOP

The homogeneous distribution and average Mw of ZOP were identified by high-
performance gel permeation chromatography (HPGPC) [17]. The monosaccharide compo-
sition of ZOP was determined according to the reference [18].

2.2.3. Atomic Force Microscope (AFM) Observation

A 5 µg/mL ZOP sample was dropped on a silicon wafer (the silicon wafer immersed
in ethanol was vibrated by ultrasonic vibration for 2.5 h, and the alcohol on the surface was
wiped), applied evenly and left to dry naturally. Scanning and observation of ZOP was
undertaken using the tapping mode.

2.2.4. Preparation of Hydrogels

When preparing the hydrogel, we referred to the method described by Chen et al. [19]
First, 3 g of ZOP and 3 g of CS were dispersed into 47 g of 7 wt% NaOH/12 wt% urea
aqueous solution, respectively. They were fully frozen and then thawed, and stirred evenly
until a homogeneous solution was obtained. Different mass ratios of ZOP/CS (ZOP100
(100:00), ZOP70 (70:30), ZOP50 (50:50), ZOP30 (30:70) and ZOP0 (00:100)) were mixed.
ECH was used as a crosslinking agent and mixed with polysaccharide solution in a ratio of
1/10 (v/w), and stirred at 0 ◦C for 90 min. Then, the polysaccharide mixture was kept at
65 ◦C for 2 h for molding (Figure 1). Finally, it was soaked in deionized water for 3 days to
remove residual urea, NaOH, and ECH.
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Figure 1. Hydrogel preparation process.

2.3. Characterization of ZOP/CS Hydrogel
2.3.1. Rheological Measurements

Rheometer (HAAKE MARS40, Bruker, Karlsruhe, Germany) was used to measure the
rheological properties of five samples. A cylindrical sample with a diameter of 1 cm and a
length of 3 cm was cut for a dynamic oscillation test. At 25 ◦C, the changes in the storage
modulus (G’) and loss modulus (G”) were recorded within the range of 1~100 rad/s. The
power law model was used to analyze the relationship between G’ and angular frequency
(ω) [20]. The formula was as follows:

G’ = k (ω)n (1)

where G’ is the storage modulus, ω is the angular frequency, and “k” and “n” are
constant values.

2.3.2. Gel Hardness and Springiness

The experimental conditions of texture analysis (TA-XTplus, US-Stable Micro Systems)
refer to the method of Hurler et al. [21] The hydrogel sample was trimmed into a cylinder
with a diameter of about 1 cm and a height of about 3 cm. A cylindrical stainless-steel P/5
probe was used for one compression with a force of 5 g. The compression amount was 30%
of the original height of the sample. The speed before, during, and after compression was
2 mm/s. The texture analysis test was repeated 3 times for each sample. TPA parameters
included hardness and springiness.

2.3.3. FT-IR Spectrometric

Gel powder (1 mg) and 100 mg KBr powder were mixed, ground evenly, and scanned
in the frequency range of 4000 to 400 cm−1 using an FT-IR spectrophotometer (NEXUS-760,
Thermo Nicolet Corp., Madison, WI, USA).

2.3.4. XRD Analysis

The XRD method was as follows: Cu target, tube flow 20 mA, tube pressure 40 kV,
λ = 0.154 nm, scanning angle range 10~90◦.
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2.3.5. TGA Analysis

The thermal stabilities of ZOP100, ZOP70, ZOP50, ZOP30, and ZOP0 were determined
using a thermogravimetric analyzer (TA instruments Ltd., Q600, Reston, VA, USA) under
nitrogen shielding gas at a heating rate of 10 ◦C/min at 20 ◦C~800 ◦C.

2.3.6. SEM Analysis

The flat section of the hydrogel was selected, then the five samples were fixed with
a conductive adhesive and, after it had been sprayed gold, the section of hydrogel was
observed under the working voltage of 10 kV.

2.3.7. Water Content of Hydrogels

The determination of moisture content was based on the method described previ-
ously [22]. On this basis, it was modified. The quality of the hydrogel was measured before
and after freeze-drying and expressed as follows:

Water content (%) =
W0 −W1

W0
× 100 (2)

where W0 is the mass of hydrogel before freeze-drying and W1 is the mass of hydrogel
after freeze-drying (g).

2.4. Swelling Behavior

The freeze-dried hydrogels of different proportions were soaked in distilled water
until the swelling equilibrium was reached. The swelling rates of the five hydrogels were
calculated as follows:

Swelling ratio (g/g) =
Ms −M0

M0
× 100% (3)

where Ms (g) is the mass of the hydrogel after water absorption and M0 (g) is the mass of
the hydrogel before water absorption.

According to the same method, the swelling rates of the five hydrogels at different
NaCl and pH concentrations were explored.

2.5. In Vitro Degradation

In vitro degradation of the hydrogels was studied as previously described [4]. In short,
the lyophilized hydrogel samples (100 mg) were immersed in PBS solutions at pH values
of 7.4 and 1.2, and the entire system was placed in a 37 ◦C shaking table and gently shaken
(∼100 rpm). The samples were taken out at a predetermined time point, freeze-dried, and
weighed. The degradation degree in vitro was calculated as follows:

Remaining weight ratio (%) =
Mt

Mi
× 100 (4)

where Mi and Mt are the initial weight of hydrogel and the remaining dry weight of
hydrogel after degradation, respectively.

2.6. In Vitro Release

The lyophilized hydrogel was immersed in 0.5 mg/mL BSA aqueous solution (25 mL)
for 24 h to load the protein. The loading amount (mL) was calculated as follows:

mL = V0c0 −V1c1 (5)

where V0 is the volume of BSA solution (25 mL), c0 is the initial concentration of the
BSA solution (0.5 mg/mL), V1 is the volume of the BSA solution after 24 h, and c1 is the
concentration of the BSA solution after 24 h.
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The lyophilized protein carrier gel was transferred to a PBS solution containing 25
mL of a pH of 1.2 or 7.4. PBS solutions with different pH values were prepared with
mixed phosphate, HCl (0.2 M), and NaOH (0.2 M). Then, 1 mL BSA release medium was
periodically removed and 1 mL of the fresh medium was added to maintain volume. The
cumulative release rate (Er%) of BSA was calculated as follows [22]:

Er % =
V0Cn + Vd ∑n−1

1 Ci

mL
× 100 (6)

where V0 and Vd are the volume of the original BSA solution (25 mL) and the volume of
the removed BSA solution (1 mL), respectively. Cn represents the solution’s concentration
at different time intervals. mL is the loading amount of BSA.

2.7. Determination of Phagocytic Activity

A Cell Counting Kit-8 (CCK-8) was used to test the effect of hydrogels on the cell
viability of RAW264.7 cells [23]. RAW 264.7 cells were inoculated in 96-well plates for 24
h. Hydrogel powder (10, 100, 150, 250, and 500 µg/mL) and positive control lipopolysac-
charides (LPS) (1 µg/mL) were added into the plates. After incubation in an incubator
at 37 ◦C and 5% CO2 for 48 h, the liquid in the 96-well plates was discarded, and 200 µL
CCK-8 solution was added to each well. The absorbance at 450 nm was measured with a
microplate reader.

2.8. Statistical Analysis

All experimental data are shown as mean ± SD. One-way analysis of variance
(ANOVA) plus Duncan’s post hoc test (SPSS 26.0, SPSS Inc., Chicago, IL, USA) were
used to evaluate the statistical significance. For all results among the different groups,
p < 0.05 was considered a significant difference.

3. Results and Analysis
3.1. Extraction of ZOP

Crude polysaccharides (8.61 g) were obtained from the Zingiber offtcinale. The extrac-
tion rate was 8.61%.

3.2. Analysis of the Average Mw and Monosaccharide Composition of ZOP

The molecular weight of two different components of ZOP were 6.04 × 106 Da (7.17%)
and 5.42 × 103 Da (92.83%). The monosaccharide composition and molar ratio of ZOP were
GlcA: GalA: Glc: Gal: Ara = 1.97: 1.15: 94.33: 1.48: 1.07.

3.3. AFM Observation of ZOP

ZOP was spread on the surface of the mica sheet to form a continuous network
structure (Figure 2A), which might be due to the large number of hydroxyl groups in
the polysaccharide, or the strong intermolecular hydrogen bond association and tight
polymerization of the polysaccharide. The maximum diameter of ZOP was 54.04 nm. A
complete net could be clearly seen on the stereogram (Figure 2B), and a surface structure
with shallow pits could be seen.

3.4. Dynamic Rheological Measurements

The G′ and G′ ′ of the five gel samples showed the same increasing trend with the
increase in the angular frequency (Figure 3A). Within an angular frequency range of
1~100 rad/s, the G′ of the five gels was correspondingly greater than the G′ ′, illustrating
that the five hydrogels showed primarily elastic solid behavior. The tan δ (G′ ′/G′) values
of the five gels were greater than 0.1 (Figure 3B), indicating that all of the gels were weak
gels [24]. The G′ and G′ ′ of the gel with ZOP added showed a decreasing trend, indicating
that the addition of ZOP reduces the viscoelasticity of the CS hydrogel [25]. The rheological
parameters of the sample, fitted by a power-law equation, are shown in Table 1. The
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R2 values of the five hydrogels were greater than 0.99, indicating that the results of the
hydrogels conformed to the power-law model. The content of ZOP significantly affected
the value of n, which indicates that ZOP was frequency dependent [26]. In addition, the
k value of the hydrogel was decreased by ZOP, which might be an effect caused by the
effective volume fraction of the dispersed phase [27].
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Table 1. Dynamic rheological parameters, gel hardness, and gel springiness of the samples.

Samples
k (Pa sn) n R2 Gel Hardness (g) Gel Springiness (g)

ZOP0 0.189 ± 0.012 a 0.025 ± 0.004 a 0.991 500.497 ± 4.738 e 0.761 ± 0.005 a

ZOP30 0.170 ± 0.034 b 0.017 ± 0.007 b 0.991 521.803 ± 7.198 d 0.692 ± 0.022 b

ZOP50 0.152 ± 0.008 c 0.013 ± 0.005 c 0.990 543.696 ± 2.112 c 0.653 ± 0.096 c

ZOP70 0.136 ± 0.011 d 0.024 ± 0.001 a 0.995 576.965 ± 9.695 b 0.582 ± 0.039 d

ZOP100 0.112 ± 0.015 e 0.012 ± 0.006 c 0.991 606.409 ± 3.265 a 0.550 ± 0.009 e

Results are shown as mean values ± SD in triplicate. Different letters in the same column show a significant
difference at p < 0.05. “n” and “k” are constant values, R2 is the determination coefficient.
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3.5. Gel Properties

Table 1 shows the gel hardness and springiness of the five mixed samples. Adding dif-
ferent proportions of ZOP could significantly affect the textural properties of CS hydrogels.
The higher the proportion of ZOP, the greater the hardness and the lower the springiness
of the gel. The increase in gel hardness was mainly due to the interaction between ZOP
and the CS molecules, which promotes CS aggregation and rearrangement, resulting in
the gel becoming harder [20]. Springiness refers to the ability of the gel to return to its
original length after being compressed. The pore structure of the gel might be related to its
springiness [28,29]. The addition of ZOP filled the voids of the gel, which might prevent the
mixed gel from returning to its original length, resulting in a decrease in springiness [29].

3.6. FT-IR Spectrometric

In this paper, FT-IR was used to explore the functional groups of composite hydrogels,
and to obtain molecular state information for polymers [30]. The FT-IR spectra of five
hydrogels (ZOP0, ZOP30, ZOP50, ZOP70, ZOP100) are shown in Figure 4A. In the FT-IR
spectra of the pure CS hydrogel, the wide strong peak at 3200 cm−1~3500 cm−1 is the
multiple absorption band of O–H and N–H overlapping stretching vibrations, and the
peak near 1665 cm−1 is the flexural vibration of N–H and the stretching vibration of C–N.
Chitosan contains a large number of −OH and −NH2 groups [19]. In addition, the weak
peak at 1122 cm−1 belongs to carboxylic ester, while the absorption peaks at 855 cm−1 and
765 cm−1 might be related to the sulfate group (SO) [31]. In the ZOP spectrum, the wide
peak at 3348 cm−1 can be attributed to the −OH stretching vibration. The peak at 1048
cm−1 represents the C–O stretching vibration in the glucopyranose ring. After adding
ZOP to CS hydrogel, the O–H band became weak and blue shifted, which was due to the
destruction of hydrogen bonds and the formation of new chemical bonds. These results
show that the cross-linking between ZOP and CS was successful.
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3.7. XRD Analysis

In the XRD pattern, 2θ = 10.9◦ and 2θ = 20.5◦ were designated as the crystallization
regions of chitosan [32–34], while the crystallinity of ZOP was weak. Therefore, in the
XRD spectrum of the mixed hydrogel with added ZOP, the intensity of the two peaks
decreased and the peak at 2θ = 10.9◦ gradually disappeared, as the crystallinity decreased
(Figure 4B). This indicates that the intramolecular and intermolecular hydrogen bonds
weaken or disappear after the two polysaccharides penetrate each other.

3.8. Thermal Properties of the Composed Hydrogels

TGA was used to study the thermal stability of the hydrogels. The thermal stability
of the five samples is shown in Figure 4C. From the TGA curve, it can be seen that the
five samples have three obvious weight-loss stages. The first stage occurs between room
temperature and 250 ◦C, mainly due to the disappearance of free water. With the increase
in temperature, the mass decreases rapidly between 250~400 ◦C, mainly due to the thermal
decomposition of the hydrogels. Based on previous studies, the temperature range of
250~400 ◦C is the range for polysaccharide degradation [35]. In addition, the thermal
decomposition peaks of ZOP100, ZOP70, ZOP50, ZOP30, and ZOP0 were at 313.2 ◦C, 311.2
◦C, 310.8 ◦C, 309.3 ◦C, and 306.6 ◦C, respectively. When the temperature rose to 800 ◦C,
the final mass of ZOP100, ZOP70, ZOP50, ZOP30, and ZOP0 was 14.65%, 21.19%, 21.93%,
29.02%, and 29.66% of the initial mass, respectively. With the increase in ZOP content in
composite hydrogels, the degradation degree of the hydrogels increased, which might be
related to the biodegradability and thermal degradation characteristics of ZOP [36]. This
high temperature degradation shows that the mixture was almost cross-linked and very
stable over a wide temperature range [37].

3.9. Morphology

Five hydrogels formed under different mixing ratios are presented in Figure 5A. ZOP0
was translucent, milky white, and fragile. On the contrary, ZOP100 was translucent, yellow,
and soft. The morphology of the five freeze-dried hydrogels is shown in Figure 5B. SEM
images of the five hydrogels showed rough and irregular surfaces and a large number of
voids, which indicate a highly porous structure. These porous structures were formed
by the disappearance of water molecules during freeze-drying [38]. With the addition of
ZOP, these porous structures were arranged more regularly and connected more closely.
The arrangement and connection of the pore structures might be related to their swelling
capacity. The ZOP100, with tight connections and a regular pore structure, had a higher
swelling rate.

3.10. Water Content of the Hydrogels

The moisture content of the hydrogels was an important criterion to measure their
usability [39]. As shown in Figure 6, after adding ZOP to CS, the water content of the
hydrogels increased significantly, from 16.89 ± 1.34% of ZOP0 to 29.9 ± 1.99% of ZOP100.
According to previous studies, this might be due to the high hydrophilicity, high water-
holding capacity, and high sustainability of natural plant polysaccharides, thereby improv-
ing the water content of pure CS hydrogels [40]. Therefore, the addition of ZOP increased
the water content of the hydrogels and could embed more hydrophilic functional groups
and bioactive substances into the hydrogel network [41,42].

3.11. Swelling Behavior

The swelling properties of hydrogels are closely related to their further applica-
tions [43]. Figure 7 shows the swelling rates of five hydrogels at different time, pH value
and ionic strength. As shown in Figure 7A, in distilled water at 25 ◦C, the swelling rate
of the hydrogel increased with time. Different proportions of hydrogels reached equilib-
rium after 5 h. In this study, the SR of the ZOP100 hydrogel was the highest, at about
1769 ± 34.48% after 20 h; that of the ZOP0 hydrogel was the lowest, while that of h was
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only 887 ± 14.24% after 20 h. It is worth noting that SR and the additional amount of
ZOP showed the same trend. In this study, ZOP penetrated into the CS network and
improved the interaction between hydrogels and water molecules by increasing the content
of hydrophilic groups, such as hydroxyl, so as to enhanced the hydrophilicity of composite
hydrogels [44]. Studies have shown that the porosity of hydrogels is closely related to
the swelling rate of ZOP/CS-based hydrogels. These pores allow the direct penetration
of water, accelerate the diffusion of water fluid in the polymer network, and increase the
swelling rate of the hydrogel [45].
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differences in mean values (p < 0.05).
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Figure 7. Swelling behavior of the different hydrogels: swelling kinetic curves in deionized water at
25 ◦C (A); swelling ratios values in PBS with pH values ranging from 1.2~7.4 at 25 ◦C (B); swelling
ratio values in NaCl solutions with concentrations from 0.01~1 M at 25 ◦C (C).

As shown in Figure 7B, the pH value of the solution could significantly affect the
absorption process. With the increase in pH, the swelling rate of the hydrogels decreased.
This is because, at a low pH [46], there is protonation of chitosan in hydrogels (−NH2 is
converted to −NH3

+), which enhances the interaction between polysaccharide chains, so
the swelling rate of hydrogels increases. In the PBS solution with a pH of 7.4, the amino
deprotonation of CS resulted in the decrease of the SR of the hydrogel [47].
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Different concentrations of NaCl were used to evaluate the ion sensitivity of ZOP/CS
hydrogels. Figure 7C shows that, when the NaCl concentration increases from 0 mol/L
to 0.3 mol/L, the SR of hydrogel shows a downward trend. This is because the ion
concentration in the environment where the hydrogel was located is too high, and a higher
ion concentration would generate electrostatic repulsion with polycations, resulting in a
decrease in the osmotic pressure difference between the inside and outside of the hydrogel,
making it difficult for the solvent to enter the hydrogel network [48]. In addition, adding
ZOP to CS hydrogels could increase SR. Therefore, it can be deduced that the ZOP/CS
hydrogel was sensitive to ionic strength.

3.12. In Vitro Degradation

The weight loss of five groups of hydrogels was used to study their degradation
in vitro. Previous research data show that, in a PBS solution, the hydrogel network
gradually collapses with the destruction of hydrogen bonds [49,50]. In this study, af-
ter 15 days of degradation, ZOP0 retained about 66.75 ± 0.85% in a pH of 1.2 (Figure 8A)
and 58.67 ± 0.74% in a pH of 7.4 (Figure 8B). Compared with pure CS hydrogel, the mass of
ZOP100 under a pH of 1.2 was about 12.45 ± 1.59%, and the mass at a pH of 7.4 was about
19.32 ± 1.40%. In conclusion, the addition of ZOP enhanced the degradation rate of the
composite hydrogels. This might be related to the glycosidic bond between monomers [2].
Similar results [4] showed that CS amino protonation accelerated the degradation rate of
CS-based hydrogels in an acidic PBS solution. Finally, with the disappearance of hydrogen
bonds and the collapse of the hydrogel network, the internal structure was gradually
destroyed [13].
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Figure 8. The in vitro degradation profile of different hydrogels in a pH of 1.2 (A) and the in vitro
degradation profile of different hydrogels in a pH of 7.4 (B).
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3.13. In Vitro Release

The transport function of hydrogels to molecules was affected by many factors, such
as pH, solubility, and pore size [51]. In this study, BSA was selected as the drug-release
model to compare the release abilities of hydrogels with different ZOP contents

As shown in Figure 9, five samples (ZOP100, ZOP0, ZOP50, ZOP30, and ZOP0) had
a faster initial release rate. In fact, the protein on the surface of the hydrogel dissolved
easily [31]. After that, the release curve became slow. The BSA release rate of ZOP100
was faster than that of ZOP70, ZOP50, ZOP30, and ZOP0. The release capacity of the
hydrogel was found to be consistent with its swelling capacity. Studies have shown that
the increase in the swelling rate of the hydrogel leads to larger pores, which is conducive to
the transportation of protein molecules from the hydrogel [52].
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Figure 9. The cumulative release rate (%) of different hydrogels in pH 1.2 PBS (A); the cumulative
release rate (%) of different hydrogels in pH 7.4 PBS (B).

As shown in Figure 9A, in a PBS solution of pH 1.2, ZOP100 released 83.57% BSA
after seven days of incubation, while the value for ZOP0 was 45.80 ± 1.65%. As shown in
Figure 9B, in a pH of 7.4, the release rate of round hydrogel of ZOP100 within seven days
was about 70.35 ± 0.45%, and the release rate of ZOP0 was not more than 22%. Overall,
hydrogel-coated BSA was more likely to be released in acidic environments. This might be
because the amino group of CS is deprotonated at a high pH, and the network of hydrogels
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contracts, making it difficult for proteins to be excreted. The internal structure of the
hydrogel was almost dense, which was not conducive to the release of proteins [53]. Under
acidic conditions, the protonation of the CS amino led to the relaxation of the hydrogel
network, so the protein was easy to diffuse into the aqueous gel [54]. In addition, the results
of in vitro degradation showed that the hydrogel was more easily degraded in an acidic
environment, and the disintegration of the carrier led to the release of BSA. Other studies
on hydrogels have shown similar results [4].

3.14. Cytotoxicity

In order to evaluate the feasibility of the ZOP/CS hydrogel as a protein carrier, the
effect of the hydrogel on the viability of RAW264.7 cells was determined using the CCK-8
method. As shown in Figure 10, compared with the control group, the cell viability of
the five groups of samples was more than 90% after 24 h incubation, indicating that the
hydrogel had no significant cytotoxic effect on RAW264.7 cells [55].
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Figure 10. Effect of different proportions of hydrogel on the cell viability of RAW264.7 cells.

4. Conclusions

In this study, a pH-sensitive complex hydrogel for protein release was prepared. The
results showed that the swelling, structural behavior, and degradation mode of the hydrogel
mainly depended on the amount of ZOP. The results of the swelling study showed that
the hydrogel was sensitive to pH and ionic strength. In addition, in different pH values
(1.2 and 7.4), the in vitro biodegradability of the hydrogels was improved by increasing the
ZOP content. The protein release of the ZOP/CS hydrogel was investigated using BSA as a
model drug. The data showed that the release rate was affected by the ZOP dosage and pH
value. The release rate may be affected by the dosage of ZOP and the pH value. The results
showed that the hydrogel could be used as a potential pH-sensitive oral protein carrier. In
addition, due to its suitable structure, expansion, and texture behavior, the application of
ZOP-based hydrogels in tissue engineering seems to be a promising area for investigation.
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