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Abstract: Undesirable flavor formation in fish is a dynamic biological process, decreasing the overall
flavor quality of fish products and impeding the sale of fresh fish. This review extensively sum-
marizes chemical compounds contributing to undesirable flavors and their sources or formation.
Specifically, hexanal, heptanal, nonanal, 1−octen−3−ol, 1−penten−3−ol, (E,E)−2,4−heptadienal,
(E,E)−2,4−decadienal, trimethylamine, dimethyl sulfide, 2−methyl−butanol, etc., are characteristic
compounds causing off−odors. These volatile compounds are mainly generated via enzymatic
reactions, lipid autoxidation, environmentally derived reactions, and microbial actions. A brief
description of progress in existing deodorization methods for controlling undesirable flavors in
fish, e.g., proper fermenting, defatting, appropriate use of food additives, and packaging, is also
presented. Lastly, we propose a developmental method regarding the multifunctional natural ac-
tive substances made available during fish processing or packaging, which hold great potential in
controlling undesirable flavors in fish due to their safety and efficiency in deodorization.

Keywords: undesirable flavor; lipid oxidation; microorganism; deodorization; natural active substances

1. Introduction

Flavor is one of the most important palatable characteristics of food, significantly
affecting food quality and consumer acceptance. Fish have long been considered an
excellent source of high−quality protein. However, some unpleasant odors in fish caused
by bacterial growth, the environment, processing methods, and storage conditions have still
not been fundamentally resolved, which restricts fish processing in foodstuff. Therefore,
promoting the quality of flavor and utilizing fish resources effectively have become one of
the hottest research topics in fish processing.

Fish in general are classified into two main types, namely, fresh− and saltwater fish.
The undesirable flavors of freshwater fish, such as earthy/muddy, fishy, and grassy, come
from multiple sources [1]. Among these, the earthy odor is primarily caused by the metabo-
lites of the inhabitant microorganism flora, i.e., mainly cyanobacteria (e.g., Anabaena,
Lyngbya, Microcystis, and Skeletonema) [2] and actinomycetes (e.g., Streptomyces) [3].
Saltwater fish often have less intense undesirable odors than freshwater fish [4], and
normally, saltwater fish tend to release “sea breeze−like” odors [5]. The differences in
undesirable flavor profiles between freshwater and saltwater fish are the result of different
volatile odor compositions; specifically, freshwater fish have more aldehydes, contributing
to stronger fishy and grassy aromas, and have a stronger earthy odor, caused by geosmin
(GSM), when compared to saltwater fish [5,6].

Cultured fish for human consumption contain richer lipids within their muscle tissue
than fish living in the wild [7]. Experimental results showed that the relative concentration
of lipid−derived volatile compounds was significantly higher (p < 0.05) in aquacultured
fish samples as compared to wild samples [8], from which it may be concluded that oily
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fish often have more volatile oxides than lean fish. Sensory differences were also measured
in a comparison of wild and cultured fish; assessors described wild gilthead sea bream
as having “a more pleasant taste” and “a firmer texture”, while the cultured group was
thought of as having “poor taste”, indicating the superiority of the wild fish [9,10].

Consumers demand commercial fish products with no unpleasant aroma or taste. An
improved understanding of the compositions and formation of undesirable flavors helps to
develop the flavor quality of fish products. We thus review the unpleasant components and
their various sources, including enzymatic reactions, lipid autoxidation, environmentally
derived reactions, and microbial actions. Meanwhile, most deodorization methods are
summarized and evaluated in this review, and the use of natural deodorization methods
can be highly effective while remaining environmentally friendly.

2. Volatile Compounds Contributing to Undesirable Flavors in Fish

Strong undesirable flavors are the most significant problem encountered in aquacul-
ture, causing the dissatisfaction of consumers and a reduction in the market value of the
product. Shi et al. reported that the primary volatile compounds in fish are alcohols and car-
bonyl compounds (the total relative contents are above 90%) [11]. Among these compounds,
2−−/3−methylbutanal, hexanal, heptanal, octanal, nonanal, (E,E)−2,4−heptadienal,
(E,Z)−2,6−nonadienal, (E,E)−2,4−decadienal, (Z)−4−heptenal, (E)−2−octenal, (E)−2−
nonenal, 1−penten−3−ol, 1−octen−3−ol, acetic acid, butanoic acid, (E,E)−3,5−octadien−
2−one, (Z)−1,5−octadien−3−one, etc., play an important role in the characteristic fla-
vor of fish, and most of them have been identified in many types of fish [5,8,12]. On
the one hand, the same volatile compound can give off several flavors and odors: for
example, 1−octen−3−ol not only has mushroom−like and strong plant−like flavors but
also has a metallic−like flavor; 2,4−decadienal gives off orange, fresh, fatty, or green
aromas [13]. On the other hand, a certain flavor is composed of a complex mixture of
volatiles; for example, the fishy or rancid odor of fish products primarily consists of hex-
anal, (E,E)−2,4−decadienal, (E,E)−2,4−heptadienal, heptanal, etc. [14]. In general, a few
relatively low molecular weight aldehydes mixed together are responsible for the pungent
fishy smell of fish [8,11].

Previous research has shown that in a recirculating aquaculture system (RAS), earthy/
musty odors originating from geosmin (GSM) and 2−methylisoborneol (MIB) are the most
perceivable undesirable flavors in cultured freshwater fish [6,15]. It has also been reported
that MIB contributes to the musty odor, while GSM is responsible for the earthy odor [16,17].
Moreover, GSM and/or MIB co−existing with aldehydes and alcohols such as hexanal and
1−octen−3−ol notably intensify the musty off−flavor in catfish fillet [18]. β−Cyclocitral,
a characteristic undesirable flavor compound in fish providing tobacco/smoky/moldy
smells [19], also contributes to off−flavors to fish in ponds [20]. Existing findings suggest
that fish directly absorb these chemical compounds from ambient water and rapidly store
them within their fatty tissue [21].

Characteristic sulfur and nitrogen derivatives are also regarded as volatile off−odor
compounds, both of which are usually related to the deterioration of seafood. Due to
low threshold values, the compounds can influence the overall aroma even in very low
proportions [22]. Dimethyl sulfide (DMS) is considered the typical spoilage marker of
sulfur−containing compounds and has been detected at low concentrations in some fresh-
water fish species [23]. Similarly, trimethylamine (TMA) is also regarded as a fish microbial
spoilage marker and is used as a potential indicator of fish freshness. TMA comes from the
reduction of trimethylamine−oxide (TMAO) [24], which occurs in saltwater fish and plays
a significant role in keeping pH and osmoregulation stable, and the formation of TMA is
accompanied by ammonia−like and fish−house−like odors [25]. It has been suggested that
TMA in combination with DMS significantly contributes to saltwater fish odors, producing
a fishy and seafood flavor that is much stronger than that of TMA alone [4].

Freshly harvested saltwater fish often have pleasant seaweedy, sweet, and faint
green aromas. However, neutral to acid odors develop during storage, culminating in
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an overall pungent odor of fish and resulting in lower sensory grades (Figure 1) [26].
Triqui et al. [26,27] assumed that the concomitant elevation of concentrations of (Z)−4−
heptenal, (Z)−1,5−octadien−3−one, and methional correlated with the development of
an overall fishy odor in sardine during ice storage. Likewise, a study revealed that after
storage of the raw material, the OAVs (odor activity value: a ratio of concentration to
odor threshold) of (Z,Z)−3,6−nonadienal and (Z)−3−hexenal were significantly enhanced,
which are responsible for the fatty and fishy off−flavors of boiled trout [28]. Moreover, it is
noteworthy that both cultured and wild fish showed complex volatile profiles throughout
the entire storage period; for example, rancid, putrid, sulfurous, and ammonia−like odors
in fish are attributed to volatile odor compounds such as TMA, dimethyl disulfide, dimethyl
trisulfide, piperidine, 1−penten−3−ol, 3−methyl−1−butanol, methanethiol, and acetic
acid [24].
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Figure 1. Freshness assessment of iced−stored sardine with emphasis on odor development according
to EU grading and QIM (the EU grade is the European Union grade; the QIM score is the Quality
Index Method score). The EU freshness grading distinguishes four categories of fish, from E (very
fresh state), A, and B to C (not admitted). The QIM uses many weighted parameters (e.g., appearance,
eyes, cover, and gills) with a scoring system from 0 to 4 demerit points for each parameter; it gives a
total score of zero to very fresh fish and returns an increasingly larger result as fish deteriorates [26].

3. The Formation of Post−Harvest Undesirable Flavors in Fish
3.1. Lipid Oxidation

Many compounds causing undesirable flavors may originate from the process of lipid
oxidation. Lipid oxidation is a major cause of poor quality and is also responsible for
causing the development of fishy odors in fish, as well as undesirable textural changes
through the interaction of protein and lipid oxidation products [29,30]. Phospholipids
containing polyunsaturated fatty acids within the cell membrane are closely related to
lipid oxidation in fish since they have a high degree of unsaturation and large surface area
that are susceptible to oxidation [31]. Previous analyses have shown that the incidence
rate of oxidation depends not only on the amount of lipids in the sample but also on the
oxidative conditions, the enzymatic activity of the lipoxygenases, and the abundance of the
antioxidant compounds present [32]. Enzymic involvement is necessary for the generation
of lipid−derived volatiles in fresh fish; however, research indicates that lipid peroxidation
in nonliving fish tissue is initiated nonenzymatically, primarily by heme−protein autox-
idation [33,34]. In fact, lipid oxidation in the fish muscle is induced by several catalysts,
including hemoglobin, iron, and lipoxygenases; furthermore, lipoxygenases result in severe
fishy odors, while hemoglobin can be affiliated with a strong oxidized oil odor [35,36].

Oxidative enzymatic reactions and the autoxidation of lipids contribute to fresh fish
with green, plant−like, metallic, and fishy aromas to a significant degree [37]. The main
volatiles derived from lipids are reported in Table 1. Notably, biochemical reactions of
polyunsaturated fatty acids (PUFAs) with lipoxygenases and hydroperoxide lyases produce
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unsaturated carbonyls and alcohols, such as 5−, 6−, 8−, 9−, and 11−carbon alcohols and
carbonyls (e.g., eicosapentaenoic acid, shown in Figure 2) [12,13]. Meanwhile, autoxida-
tion of PUFAs produces other types of unsaturated carbonyls, such as 6−, 7−, 8−, and
10−carbon carbonyls. In addition, enzymatic and nonenzymatic oxidation can occur simul-
taneously during cooking [38], and the most polyunsaturated of all of these acyl groups
shows the highest tendency to undergo autoxidation. Previously, the fish muscle was
covered by fish skin and was less susceptible to oxidation; therefore, the muscle released a
minimal fishy flavor compared to the fish’s skin when perceived by smell [39]. Furthermore,
the rate of lipid oxidation of the yellowtail dark muscle was faster than that of the ordinary
muscle. The total lipid hydroperoxide content and thiobarbituric acid−reactive substances
(TBARS) of the dark muscle were significantly higher than those of the ordinary muscle
after 2 days of ice storage [40]. In addition to the characteristics of the fish itself, some
physical factors also affect the degree of oxidation. For example, heme proteins, which are
well−known prooxidants, can be further activated during the pH−shift process [34]. The
intensity of heat treatment plays an important role in the extent of oxidation in cooked meat,
with higher temperatures generally making hidden volatiles identifiable and accelerating
retro−aldol condensation. As a result, more (Z)−4−heptenal and acetaldehyde are formed
from (E,Z)−2,6−nonadienal, and (Z)−2−pentenal and acetaldehyde have the potential to
be formed from (E,Z)−2,4−heptadienal [41].

Table 1. The main volatiles derived from lipids contributing to off−flavors.

No. Off−Flavors Origin Oxidation Causes Refs.

1 1−Penten−3−ol Eicosapentaenoic acid 15−Lipoxygenase [13]

2 (E)−2−Pentenal
Linolenic acid, docosahexaenoic

acid
/n−3 polyunsaturated fatty acids

15−Lipoxygenase [42]

3 Hexanal Linoleic acid
/n−6 Polyunsaturated fatty acids 15−Lipoxygenase/autoxidation [43,44]

4 (E)−3−Hexen−1−ol Eicosapentaenoic acid 15−Lipoxygenase [13]

5 (E)−2−Hexenal Linolenic acid
/n−3 polyunsaturated fatty acids 15−Lipoxygenase [13,42]

6 Heptanal n−6 Polyunsaturated fatty acids Autoxidation [42–44]

7 1−Octen−3−ol Arachidonic acid, linoleic acid
/n−6 polyunsaturated fatty acids 12−Lipoxygenase [42,44]

8 (Z)−1,5−Octadien−3−one Eicosapentaenoic acid
/n−3 polyunsaturated fatty acids 12−Lipoxygenase [13,43]

9 Nonanal n−9 Polyunsaturated fatty acids 12−Lipoxygenase [42,43]
10 (E)−2−Nonenal Linoleic acid, arachidonic acid 12−Lipoxygenase [43]

11 (E,Z)−2,6−Nonadienal Eicosapentaenoic acid
/n−3 polyunsaturated fatty acids 12−Lipoxygenase [13,43]

12 2,4−Heptadienal
(two isomers)

Linolenic acid
/n−3 polyunsaturated fatty acids 12−Lipoxygenase/autoxidation [43]

13 2,4−Decadienal (two isomers) Linoleic acid Autoxidation [45]

14

Short− and branched−chain
fatty acids (e.g., butanoic,
2−/3−methylbutanoic,

hexanoic, and octanoic acids)

Fatty acids Autoxidation [46]
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Figure 2. Proposed mechanism for biochemical reactions of eicosapentaenoic acid.

3.2. Microbial Metabolites

Fish is a high−protein product that is susceptible to the proteolytic activity of microor-
ganisms. Some related studies have reported that the microbial spoilage of harvested fish
accounted for the loss of approximately 10% of fish catches worldwide [47,48]. Furthermore,
spoilage from microorganisms produces metabolites responsible for various unpleasant
undesirable flavors, leading to the eventual sensory rejection of fish products. The organ-
isms causing the highest spoilage potential in specific products or storage conditions are
named specific spoilage organisms (SSOs). Shewanella putrefaciens and Pseudomonas spp. are
generally recognized as the specific spoilage bacteria of fresh fish, regardless of the origin
of the fish [49]. Pseudomonas, Shewanella, Lactobacillus, and Carnobacterium species, identified
by 16S rRNA gene sequencing analysis, were proved to be SSOs of gilt−head sea bream
at various temperatures and atmospheric conditions [50]. Meanwhile, Carnobacterium,
Serratia, Shewanella, and Yersinia were shown to be the dominate species in horse mackerel
fillets at the time of sensory rejection [51]. Additionally, Photobacterium phosphoreum and
Psychrobacter are the most common SSOs reported in fish products [52–54].

In general, different growth substrates can affect the growth rates of microorganisms,
such as different fish species or the fish flesh in different process conditions. For example,
psychrotolerant Gram−negative bacteria (e.g., Pseudomonas spp. and Shewanella spp.) are
reported to grow in chilled fish, whereas fermentative bacteria (e.g., Vibrionaceae) prefer
to multiply in unpreserved fish [55]. In addition, different water temperatures, seasonal
variation, geographical location, surrounding gaseous composition, and processing might
also have complex effects on the initial microbiota [56]. Specific spoilage microflorae
dominating in fresh fish meat during storage under different gas atmospheres are shown
in Table 2, which potentially determine the composition of the primary microflora [57].
Meanwhile, SSO populations were found to be significantly higher in retail−derived catfish
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in comparison to lab−filleted catfish tissue [58], and some chemical indicators of spoilage,
such as the TMA value, in ungutted sea bass increased slowly, while the TMA values of
gutted samples were much higher [59], suggesting that mishandling during processing is a
major reason for rapid fish tissue spoilage.

Table 2. Specific spoilage microflora dominating in fresh fish meat during cold storage under different
gas atmospheres.

Gas Composition Microflora

Air S. putrefaciens, Pseudomonas spp.
>50% CO2 with O2 B. thermosphacta, S. putrefaciens
50% CO2 P. phosphoreum, Lactic acid bacteria
50% CO2 with O2 P. phosphoreum, Lactic acid bacteria, B. thermosphacta
100% CO2 Lactic acid bacteria
Vacuum packaged Pseudomonas spp.

From Reference [57].

Volatile compounds are associated with the metabolic activities of particular microbial
groups. Pseudomonas spp. produce large amounts of volatile alcohols, ketones, esters,
and sulfides (except H2S), whose typical descriptions are fruity, rotten, and sulfhydryl
flavors in iced fish [49]. Shewanella spp. release intense undesirable odors as well, pro-
ducing H2S and biogenic amines, as well as reducing TMAO to TMA, and even show
proteolytic activity at low temperatures [60,61]. Moreover, Aeromonas spp., psychrotol-
erant Enterobacteriaceae, Photobacterium phosphoreum, and Vibrionaceae were all able to
utilize TMAO in order to form TMA, resulting in off−odors [22,55]. Serratia fonticola and
Serratia liquefaciens, Aeromonas, Acinetobacter, and some Pseudomonas spp. are known to
produce histamine [62]. It is because microorganisms can utilize different precursor com-
pounds that volatile metabolites are subsequently generated. As shown in Table 3, ethanol,
organic acids, and esters are produced primarily from glucose. Leucine and isoleucine
metabolism of fish meat led to increased 2−methyl−1−butanol, 3−methyl−1−butanol,
2−methylbutanal, and 3−methylbutanal; sulfur−containing volatiles are mainly generated
by microbial−mediated enzymatic degradation of cysteine, methionine, and derivatives
(e.g., DMS shown in Figure 3).

Table 3. VOCs that common bacteria (e.g., Pseudomonas spp. and Shewanella spp.) produce in fish
during aerobic storage and their precursors and attributes.

Compounds Pseudomonas Shewanella Lactic Acid
Bacteria (LAB) Precursor(s) Flavor Descriptors Refs.

Alcohols
2−Methyl−1−butanol Y Y / Isoleucine Malt, wine, onion [63,64]
3−Methyl−1−butanol Y Y Y Leucine Whiskey, malty, burnt [63,64]

Ethanol Y Y Y Glucose Alcoholic, ethereal, medical [63,65]
Aldehydes

2−Methylbutanal / / Y Isoleucine Cocoa, coffee, fruit [63,66]
3−Methylbutanal / / Y Leucine Sweet, malty, sour [63,66]

Benzene acetaldehyde / / Y Phenylalanine Sweet, honey sweet [67]
Ketones

3−Hydroxy−2−butanone / / Y Glucose Butter, creamy, dairy,
milk, fatty [63,68]

2−Heptanone Y Y / Fatty acid Fruity, spicy [63,69]
Esters

Ethyl acetate NAD / Y Multiple origins Ethereal, fruit, sweet [68]
Ethyl octanoate Y / NAD Multiple origins fruit, fat [63,70]

3−Methylbutyl acetate / / Y Multiple origins Fruit, sweet, banana, ripe [63,69]
Organic acids

Acetic acid / Y Y Glucose Pungent sour [55,63,69]
Sulfur compounds

Hydrogen sulfide / Y Y Cystine, cysteine,
methionine Rotten eggs [23,69]

Methanethiol Y Y / Methionine, cysteine Sulfur, gasoline, garlic [23,49,64]

Dimethyl sulfide Y Y / Methanethiol,
methionine, cysteine Cabbage, sulfur, gasoline [23,49]
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Table 3. Cont.

Compounds Pseudomonas Shewanella Lactic Acid
Bacteria (LAB) Precursor(s) Flavor Descriptors Refs.

Alcohols
Dimethyl disulfide Y Y / Methionine, cysteine Onion, cabbage, putrid [23,63,64]

Dimethyl trisulfide Y Y / Methionine,
methanethiol, cysteine Sulfur, fish, cabbage [23,69]

Nitrogen compounds

Ammonia NAD NAD NAD
Amino acids

(e.g., arginine,
histidine, tyrosine)

Ammoniacal [71]

Trimethylamine / Y / Trimethylamine oxide Fishy, oily, rancid, sweaty [49,68,71]

NAD, no available data; Y, can produce; /, cannot produce. Flavor descriptors according to: Flavornet (http:
//www.flavornet.org/flavornet.html, accessed on 13 June 2022); The Good Scents Company (http://www.
thegoodscentscompany.com/, accessed on 13 June 2022); The kinds of volatile compounds are in a bold.
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3.3. Living Environment

Due to increased consumption demand, aquaculture requires high stocking densi-
ties and feed supplies to satisfy productivity, which, however, lead to unfavorable eu-
trophication. Simultaneously, high fish stocking densities (>10,000/ha) and feeding rates
(>70 kg/ha/d) fuel the rapid growth of algae, particularly cyanobacteria, which are known
to produce undesirable flavors [72,73]. In addition, the relationship between the tem-
perature and photoperiod associated with climate warming may affect phytoplankton
growth [74]; in particular, the cyanobacteria growth rate and their ability to produce toxins
are positively correlated with temperature elevation [75,76]. Rising temperature can result
in cyanobacterial bloom enhancement, which poses a threat to water quality [77]. Fish are
very susceptible to consuming food as well as industrial pollutants and natural off−odor
compounds existing in their living environment [33]. These undesirable flavors from the
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environment render fish unmarketable unless purified by large quantities of clean water,
causing a heavy economic burden on the aquaculture industry.

Moreover, it was shown that the concentrations of MIB, GSM, and β−cyclocitral are
high in pond water, yielding undesirable fish flavors [18]. Furthermore, studies showed
that MIB, GSM, β−cyclocitral, and dimethyl trisulfide are volatile compounds that fre-
quently exist during cyanobacterial bloom episodes and were successfully detected in all
predominant odor compositions from fish tissue, sediment, and algal cell samples [78–81].
Typically, cyanobacteria, certain fungi, and various actinomycetes produce these flavor
metabolites and excrete them into the environment: Streptomyces can produce MIB and
GSM, and nannocystis has been shown to produce MIB [82,83] (the biosynthesis of MIB
and GSM is shown in Figure 4); Microcystis promotes β−cyclocitral synthesis [84]; mi-
croalgae, seaweed, and plankton are rich in a large quantity of dimethyl−β−propiothetin
(DMPT, a precursor of DMS) [4]; and cyanobacteria and fish feed are the primary sources
of odor−active terpenes [20,85,86]. Fish then take up these metabolites across their gill
membranes, leading to the accumulation of these compounds within tissues that are rich in
lipids. Besides the sources mentioned above, drinking water treatment plants and industrial
waste treatment facilities are also key factors in producing undesirable flavors. For example,
naphthalene compounds such as 2,6−dimethylnaphthalene and 2−methylnaphthalene,
the degradation products of factory waste via microorganisms, can accumulate in fish as
environmental pollutants [87]. Accidental spills of petroleum hydrocarbons also cause
pollution in the same way [83].
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4. Odor Control Techniques

Increased fish supplies are required to meet increased human consumption demands,
while undesirable flavor contamination substantially delays harvest, thereby causing eco-
nomic losses for fish farmers [83]. Effectively controlling the odor of fish products is
critically important.

4.1. Environmental Renovation

Both GSM and MIB, derived from the culture environment, are the primary earthy and
musty compounds associated with fish. The current method is to move the fish to a large
body of clean water and stop feeding in order to purge the undesirable flavor compounds
from the fish’s tissue [88]. However, this approach may take days or weeks to obtain the
lowest residual levels of geosmin and MIB in the fish flesh, depending on various factors,
such as the intensity of the undesirable flavor, the water temperature, and the fat content of
the fish flesh [15,89,90]. In addition, fasting will greatly reduce the quality of fish [91]. In
addition to temporary cultivation with clean water, strategies such as hindering the growth
of bacteria and algae that produce odors and the adsorption or removal of undesirable
flavor substances in aquaculture water are usually adopted.

The results obtained in previous studies demonstrate that aerobic, organic−rich con-
ditions are beneficial to the growth of bacteria [88], and certain nutritional factors can
stimulate GSM production by actinomycetes [15]. As a result, the biofloc technology (BFT)
production system was launched to maintain the water’s turbulence through continu-
ous aeration, make bacteria lose their cell buoyancy regulation ability, and metabolize
excreted feed nitrogen, thus decreasing cyanobacteria and actinomycetes and significantly
weakening the intensity of undesirable “earthy” and “musty” flavors [92].

In order to solve the undesirable flavor problem of cyanobacteria, accumulating ex-
perimental evidence has proven that ultrasound technologies have also shown significant
potential in the management of cyanobacteria and possess the advantages of energy conser-
vation, safety, and cleanness [93–95]. One of the damage mechanisms owing to ultrasonic
irradiation is the increased presence of free radicals that destroy cellular constituents and
functions by inducing lipid peroxidation, damaging cellular membranes, and inhibiting
photosynthesis [96]. The relative content of malondialdehyde (MDA), used as a quantita-
tive indicator of lipid peroxidation, was significantly increased after ultrasonic irradiation
in most species of cyanobacteria [97]. In addition to algae removal, ultrasonically induced
cavitation has been demonstrated to directly reduce off−flavor compounds GSM and MIB
from RAS water, and high−frequency ultrasound (850 kHz) was more effective compared
to low−frequency ultrasound (20 kHz) [98].

Due to the hydrophobic structures of GSM and MIB, adsorbents such as activated
carbon and zeolite are often used to adsorb and remove odorous substances in water,
which have noticeable effects [99]. However, natural organic substances in ponds are also
adsorbed, thus greatly reducing the adsorption capacity of activated carbon [100]. Ozone
(O3) is a kind of oxidant used in water treatment because of its high oxidation potential.
Under specific conditions, O3 catalyzes the decomposition of hydroxyl radicals to form
highly oxidizing hydroxyl radicals and then oxidizes GSM and MIB [101]. However, Atasi
et al. reported that conventional ozonation degradation of GSM and MIB has a strong
dependence on the dose of ozone: when the dose reaches 8 mg/L, the removal rate is still
less than 30%, and a high dose of ozone may cause toxic side effects on aquaculture [102,103].
There are other oxidation treatments for GSM and MIB, including ultraviolet (UV) radiation
and advanced oxidation processes using different catalysts, and the combination of different
treatments, such as UV−TiO2 photocatalysis [104] and the combined use of O3 and UV [105],
can greatly improve the degradation rate.

A biological control method involves the introduction of specific microorganisms into
the aquaculture environment to reduce the odor substances in water and fish through
microbial metabolism. Compared with physical and chemical methods, this method is
more environmentally friendly. To date, Bacillus spp. [106], Stenotro−phomonas spp. [107],
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Pseudomonas spp. [108], Enterobacter spp. [109], Micrococcus spp. [110], Flavobacterium spp. [111],
and Brevibacterium spp. [110] have been found to be able to use GSM and MIB for normal
metabolism. Although MIB and GSM can be removed by microbial degradation, the
degradation rate is quite slow [108,110]. Biodegradation combined with photocatalysis
has been proved to have the potential to repair natural water contaminated by odor-
ous substances [112,113]. Fu et al. [114] developed a tightly coupled photocatalytic and
biodegradation system to remove GSM and MIB, which significantly improved the removal
efficiency of MIB and GSM.

4.2. Processing Treatment
4.2.1. Freezing

Decreasing the storage temperature is a common and natural preservation method
used to increase the stability of fish and commercial fish products. Rahman et al. found
that with an increase in storage temperature, the rate of lipid oxidation in dried grouper
increases significantly [115]. It has been shown that −35 ◦C is the optimal temperature
for maintaining high−quality fish for long−term storage [116]. Ultra−low−temperature
storage (<−40 ◦C) can inhibit biochemical reactions, but the use of ultra−low−temperature
storage has a negative impact on the structure of fish due to ice crystal generation and
increases the possibility of fish tissue rupture and costs. Storage at −35 ◦C with oxygen
barrier material packaging is sufficient to stabilize proteins, inhibit the formation of TMAO
in fish tissue, and maintain good texture characteristics of lean fish. In addition, on the basis
of a suitable temperature, increasing the freezing speed and reducing the size of ice can ef-
fectively reduce damage by ice crystals [117]. Furthermore, increasing the freezing rate also
reduces the destructive effect of ice crystals, which effectively diminishes the size of the ice.
The results showed that carp (Cyprinus carpio) samples treated with ultrasound−assisted
immersion freezing (UIF) at 180W ultrasonic power reduced the freezing time compared to
the control groups with no ultrasound treatment. Meanwhile, UIF was shown to retard the
growth of TBARS and total volatile basic nitrogen values (TVB−N) when compared to air
freezing (AF) and immersion freezing (IF) during storage [118].

4.2.2. Salting and Drying

Salting and drying have been applied to suppress the growth of Gram−negative
bacteria and inhibit enzyme−related chemical reactions in meat products by reducing
water activity [119]. In traditional manufacturing, fish fillets, fish pieces, or whole fish are
exposed to a fluidized bed full of salt particles in hot and dried air, controlling the time and
temperature of drying and salting. Drying produces a unique flavor of products, catering to
the demands of consumers. There are also several different drying methods, such as natural
sun, hot air, vacuum solar, electric heat, and microwave drying. Studies have indicated
that sensory indices and the chemical composition of salted fish are not associated with
different drying methods. However, the microwave drying efficiency outperforms that of
other drying methods in terms of microbial bacteria [120,121].

4.2.3. High−Pressure Processing

High−pressure processing (HPP) can change cell morphology and damage major
components, such as bacterial cell membranes and walls, as well as several organelles,
reducing microbial loads within meat and seafood products. Meat products receive uniform
treatment under high pressure and maintain high sensory quality due to its low impact
on flavor [122]. It has been shown that HPP increases the hardness and springiness of
frozen hake. Moreover, cooked hake is also influenced by HPP and obtains the best quality
at 300 MPa during 6 months of frozen storage [123]. Meanwhile, HPP inactivates the
endogenous cathepsin that easily causes the deterioration of chilled fillets; for instance,
bluefish cathepsin C nearly lost its activity after treatment at 300 MPa for 30 min, providing
better fish quality [124].
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4.2.4. Boiling

Boiling can suppress lipid deterioration in fish in several ways, such as denaturing
lipoxygenases, forming water−soluble antioxidants, and destroying heme compounds.
As a result of heat treatment, the quantity of aldehydes in fish has been shown to drop to
nearly undetectable levels due to carbonyl−amino reactions [125]. Meanwhile, Kim et al.
indicated that the fish gelatin of dried anchovies was hydrolyzed after boiling, forming an
invisible edible film that protected against oxidative rancidity [126]. Boiling could slow the
lipid hydrolysis process of dried sardines but adversely led to the loss of PUFAs, ultimately
damaging sensory characteristics during storage [127].

4.2.5. Fermenting

Bacteria as a starter have significant potential in improving the flavor of fish products.
T. halophilus is used in the fermentation of fish sauce, which significantly improves the
amino acid composition of the product and reduces the concentrations of undesirable flavor
compounds, such as dimethyl disulfide and biogenic amines [128]. Similarly, in Thailand,
Staphylococcus xylosus is used to produce fish sauce in order to change the flavor notes. As a
result, the sensory evaluation indicated that the fishy, fecal, rancid, and sweaty notes of
fish sauce inoculated with the bacterium were weaker than those of the fish sauce without
treatment [129]. In addition, irradiation−assisted salting and fermentation can significantly
improve sensory flavor characteristics, especially by reducing the typical fishy smell and
improving color and microbial safety [130].

4.2.6. Defatting

Removing the fat from fish is a direct method used to inhibit unpleasant odors caused
by lipid oxidation. Enzymes, organic solvents, and alkaline treatment can be used to achieve
the effect of degreasing. For example, lipoxygenase extracted from marine macroalga
reduced the undesirable odors of fish oil by site−specific cleavage of hydroperoxides,
producing more desirable alcohols, aldehydes, and ketones, thus releasing fresh fish and
fruit flavors [131]. The gelatins from seabass skin use citric acid and isopropanol alcohol
to remove lipids, inhibiting the abundance of volatile compounds, thereby lowering fishy
odors, the peroxide value, and TBARS [132]. The protein isolate separated by acid or
alkaline solubilization and isoelectric precipitation from Nile tilapia and broad−head
catfish had lower GSM and MIB concentrations as well as a negligible muddy odor [133,134].
In this regard, using a polar antioxidant can effectively prevent oxidation in protein isolates
regardless of pH treatment [34].

4.2.7. Masking

Seasonings can be used as masking agents that are directly added to food during the
cooking process to cover up unpleasant odors. Catfish fillets blended with lemon pepper
and soaked in a food container satisfied the majority of evaluation panelists. Due to the
presence of masking agents, the muddy/earthy odorant MIB was perceived less or even
not at all [135]. Washed minced fish were treated with piper guineense and salt to make
kamaboko. The addition of piper guineense increased the kamaboko score for taste and
overall acceptability, as well as significantly reduced the microbial flora of kamaboko [136].
In India, Japan, China, and Southeast Asia, ginger is very suitable for fish dishes, bringing
sensations of pungency and hotness to mask undesirable flavors. In addition to ginger,
cumin, coriander, basil, mint, and celery are often used in Asian cuisine recipes [137].

4.3. Application of Additives
4.3.1. Synthetic Additives

Legal food additives with specified contents are indispensable in the industrial pro-
duction of fish products. A food additive, which can be synthetic or natural, is normally
not consumed as a food itself but is intentionally added to food to improve aroma, taste,
texture, or shelf−life [138]. As undesirable flavors are primarily caused by oxidation, it is



Foods 2022, 11, 2504 12 of 20

beneficial to add antioxidants to food systems in order to reduce oxidation. Antioxidants,
such as propyl gallate (PG), butylated hydroxytoluene (BHT), butylated hydroxyanisole
(BHA), tert−butylhydroxyquinone (TBHQ), vitamin E (tocopherol), vitamin C (ascorbic
acid), phosphates, and citrate, have been used individually or in combination to suppress
the oxidation process [139]. The addition of antimicrobial agents is also vital in inhibiting
the development of microorganisms, thereby improving the appearance and flavor of fish
products. Lactic, sorbic, and benzoic acids and their salts can be extracted directly or
obtained synthetically and are effective organic compounds widely used as antimicrobial
agents to prolong the sensory quality [140]. Nitrite is an ordinary synthetic antimicrobial
compound that is used to control bacteria and fungi during meat preservation, such as
Flavobacterium, Micrococcus, and Pseudomonas; however, its dosage is strictly controlled to
prevent harm to the human body at high dosages [141]. Meanwhile, in industrial produc-
tion, seasonings, antioxidants, and antibacterial agents (or preservatives) can be added to
the product formulation according to regulations (e.g., in the United States, the additive
must be GRAS−listed (Generally Recognized as Safe) according to the American Food and
Drug Administration (USFDA, 2009). In Canada, it must fall under GMP (Good Manu-
facturing Practice) in accordance with the Canadian Food and Drug Act (HC, 2006). In
China, it must comply with “National Food Safety Standards for Food Additives” (GB
2760−2014)). These active solutions can be used to spray and penetrate the raw fish product
in order to control the odor [140].

4.3.2. Natural Additives

Great attention has been paid to natural additives because synthetic additives have
been implicated as potentially toxic and carcinogenic hazards in past decades. With the
overall improvement of living standards, natural materials with antioxidant activity be-
came more popular for consumers. Immersion or coating is the conventional treatment
for applying natural antioxidants to fish or other seafood. Clove water extract is applied
to oven−dried omena fish (Rastrineobola argentea) by immersion, significantly reducing
the concentrations of TBARS and peroxide values of omena fish [142]. Moreover, caffeic
acid is an active antioxidant that prevents lipid oxidation in the minced white muscle
of horse mackerel during frozen storage [143]. Furthermore, grape polyphenols can in-
hibit lipid oxidation in frozen minced fish muscle, protecting the endogenous antioxidant
system of fatty fish [144,145]. Similarly, tea polyphenols effectively inhibit TMAO break-
down and the oxidation of lipids and therefore maintain the quality of dried−seasoned
squid [146]. Tan and Shahidi demonstrated that phytosterol displayed an excellent antiox-
idant effect as well [147]. In general, active substances function as antioxidants through
several action mechanisms, such as chelating prooxidative metal ions [148], scavenging
free radicals, suppressing oxidative enzymes and reactive oxygen species, or interacting
with bio−membranes [149].

Moreover, besides lipid oxidation, phenolic compounds can play a significant role
in preventing microbial spoilage; for instance, catechin has been shown to have great
antimicrobial activity against bacteria that produce H2S in fish and fish products [150].
Tannic acid was also reported to retard the growth of psychrophilic bacteria and inhibit the
increase in the total viable count in striped catfish slices during refrigerated storage [151].
Citrus essential oil was shown to inhibit the growth of pathogenic and fungi flora in sea
bass fillet [152]. Oregano (0.8%) [153], thyme (1%), and laurel essential oils (1%) [154] were
also shown to improve the quality of fish. Interestingly, many studies have reported that
essential oils contain phenolic compounds, such as eugenol, thymol, or carvacrol [155].
These phenolic compounds can lyse the cell walls of microorganisms, disrupt membrane
proteins, further damage various enzymatic systems, and inactivate genetic material in
order to strengthen their antimicrobial properties [156]. Recent research has also indicated
that phenolic compounds can be chemically reactive with various food constituents, such
as proteins, or directly react with volatile odor compounds to modify the product’s fla-
vor [157,158]. Furthermore, bacteriocins, namely, small bacterial peptides, showed strong



Foods 2022, 11, 2504 13 of 20

antimicrobial activity. Nisin has also been used to control the quality of snakehead fish
fillets during cold storage [159].

Natural products, especially antioxidants and antimicrobial agents of natural origin,
should be widely studied as safe alternatives to synthetic additives. Moreover, different
plants and microbes should be screened qualitatively and quantitatively for the presence of
potent active compounds and their potential uses in fish and fish products.

4.4. Packaging
4.4.1. Vacuum Packaging (VP)

With the decreasing usage of synthetic additives, the packaging, used as the last bar-
rier, becomes more and more important before the distribution and storage of fish products.
Preventing fishery products from coming into contact with oxygen is a precautionary
measure against oxidative deterioration. Vacuum packaging (VP) and modified atmo-
sphere packaging (MAP) of meat and meat products have gained importance in improving
shelf−life and avoiding the development of rancidity [160]. In VP, there are no air gaps
between the product and the packaging. Moreover, VP is used for packaging frozen fish
or preserved fish products in order to prevent the formation of undesirable flavors from
oxidation. However, due to the enhancement of trimethylamine formation under anaerobic
conditions, VP is not recommended to apply to marine fish products [161].

4.4.2. Modified Atmosphere Packaging (MAP)

Carbon dioxide (CO2), nitrogen (N2), and oxygen (O2) are the principal gases in
MAP, with each having different purposes and functions. Typically, CO2 is used to inhibit
bacteria and mold, N2 is used to prevent lipid oxidation and package collapse, and O2 is
used to prevent the growth of anaerobes [162]. In many fishery products, MAP with high
CO2 has been proven to be more effective than VP in inhibiting the growth of spoilage
microorganisms. CO2 can penetrate bacterial cytomembranes and influence cytoplasmic
enzyme activity. Meanwhile, it is critical to control the storage temperature for MAP.
Higher temperatures result in the reduction of dissolved CO2 within the product, leading
to higher microbial and enzymatic activity and consequently damaging the quality of
the product [163]. In addition, recent studies have indicated that super−chilling prior
to MAP is a valuable measure that has a significant impact on bacterial inhibition. MAP
super−chilled fillets were shown to have a longer shelf−life and lower bacterial counts
compared to other chilled fillets [164].

4.4.3. Active Packaging (AP)

Active packaging (AP) techniques are concerned with substances that absorb oxygen,
ethylene, moisture, CO2, and flavors/odors and those that release CO2, antimicrobial
agents, antioxidants, and flavors [165]. In general, packaging materials need proper water
and gas barrier capabilities as well as excellent sealing properties. In practical applications,
polyethylene (PE) and polypropylene (PP) have excellent water barrier properties [166].
Ethylene vinyl alcohol (EVOH) exhibits excellent gas barrier properties [167]. These are
synthetic polymers widely used in food packaging, but they cannot undergo physical,
chemical, or biological degradation and have thus caused numerous severe environmental
and health−related problems [168,169]. Therefore, there is an increasing interest in the
development of environmentally friendly biodegradable polymers (i.e., biopolymers) for
packaging materials. Biopolymers based on polysaccharides, proteins, and lipids from
numerous plant and animal sources can be formed into either edible films or coatings
and have suitable application properties [170,171]. Chitosan is one of the most popular
polysaccharide biopolymers that can form a semipermeable film with intrinsic antimicrobial
activity [172]. Blending active components in packaging material can also improve the
barrier characteristics. For example, chitosan blended with various antimicrobial agents,
such as tea tree essential oils and cinnamon oil, was made into an improved antimicrobial
film to enhance the odor, texture, and color of trout fillets [173,174]. For wrapping dried
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anchovy, chitosan film containing acetic or propionic acid was shown to have a superior
effect on oxidative stability compared to polyester–polyethylene laminate during five
months of storage [175]. A growing trend of packaging is to integrate water absorbers,
oxygen scavengers, and antimicrobial agents into the packaging material rather than apply
them as individual sachets [176,177].

5. Conclusions

In recent years, in the pursuit of health, fish have been favored by consumers because
they are rich in high−quality proteins and PUFAs. However, undesirable flavors limit
consumers’ purchase and consumption. The undesirable flavors of fish are mainly due to
the water quality in the aquaculture environment and deterioration reactions (enzymatic
reactions, lipid autoxidation, and microbial actions). The synergistic effect of carbonyl
compounds, alcohols, GSM, MIB, TMA, and other substances gives fish a worse flavor. In
order to develop high−value fish products, odor removal from fish during production,
processing, transportation, and consumption has been widely studied. Traditional methods,
such as basic aquaculture management, salting, freezing, masking, and heat treatment,
have been widely used in fish production and processing, but many of them require
further improvement. More deodorization technologies for fish have been deeply explored,
such as functional microbial degradation, ultrasonic irradiation, the addition of natural
antioxidant and antimicrobial agents, and fresh−keeping packaging. Among them, due to
the synergistic effect, the combined use of two or more deodorization strategies usually
shows more effective results. At present, existing deodorization technologies and methods
are diverse, but they have certain limitations and limited scopes of application. To sum up,
it is necessary to establish a comprehensive, applicable, and efficient deodorization scheme
that can satisfy consumers’ demand for better sensory quality of fish and fish products.
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