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Abstract: Prebiotics are non-digestible food ingredients that promote the growth of beneficial gut
microorganisms and foster their activities. The performance of prebiotics has often been tested in
mouse models in which the gut ecology differs from that of humans. In this study, we instead
performed an in vitro gastrointestinal digestion and fecal fermentation experiment to evaluate the
efficiency of eight different prebiotics. Feces obtained from 11 different individuals were used to
ferment digested prebiotics. The total DNA from each sample was extracted and sequenced through
Illumina MiSeq for microbial community analysis. The amount of short-chain fatty acids was assessed
through gas chromatography. We found links between community shifts and the increased amount
of short-chain fatty acids after prebiotics treatment. The results from differential abundance analysis
showed increases in beneficial gut microorganisms, such as Bifidobacterium, Faeclibacterium, and
Agathobacter, after prebiotics treatment. We were also able to construct well-performing machine-
learning models that could predict the amount of short-chain fatty acids based on the gut microbial
community structure. Finally, we provide an idea for further implementation of machine-learning
techniques to find customized prebiotics.

Keywords: prebiotics; probiotics; gut microbiome; high throughput sequencing; in vitro; gastroin-
testinal digestion; fecal fermentation; machine learning

1. Introduction

Prebiotics are defined as “a non-digestible food ingredient that beneficially affects the
host by selectively stimulating the growth and/or activity of one or a limited number of
bacteria in the colon, and thus improves host health” [1]. Therefore, prebiotics are resistant
to gastric acid, hydrolysis by mammalian enzymes, and gastrointestinal absorption [2].
Prebiotics stay intact in the upper gastrointestinal tract, which is one of their important
properties.

The favorable gut microbes stimulated by prebiotics are predominantly short-chain
fatty acid (SCFA)-producing bacteria—for example, Bifidobacterium, Faecalibacterium, and
Prevotella—and several other species, such as Ruminococcus bromii, which provide substrates
to (cross-feed) other species by degrading prebiotics. The main end-products of prebiotics
degradation are, therefore, SCFAs, which exert numerous beneficial effects on human
health [3]. They play an important role in gut homeostasis by maintaining colonic pH,
decreasing the abundance of pathogenic bacteria [4], and regulating gut permeability [5]. In
addition, they are small enough to diffuse into the blood stream, thereby affecting distant
organs as well. Together, SCFAs act as important metabolites regulating energy metabolism
and influencing endocrine and immune functions [6].

To date, diverse health-promoting foods, including fruits, vegetables, mushrooms,
seaweeds, cereals, and ginseng, have been tested for their potential as prebiotics themselves
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or as sources of prebiotics molecules. As a result, various molecules have been suggested
as candidate prebiotics or developed as commercially available functional foods. These
include fructans (e.g., inulin, fructo-oligosaccharide), galacto-oligosaccharides, starch (e.g.,
resistant starch), glucose-derived oligosaccharides (e.g., polydextrose), other oligosaccha-
rides (e.g., pectin), and non-carbohydrate oligosaccharides (e.g., flavanols) [3]. As each of
the prebiotics has distinct properties (e.g., molecular structure and weight), their effects on
human health could vary.

In general, the majority of prebiotics have been evaluated by in vivo experiments
using mice models due to difficulties in in vivo studies of humans. However, as mice
and humans have different physiologies, and as the gut microbial structures of mice are
different from those of humans [7], the effects of prebiotics should not be translated for
human use. On the other hand, the in vivo study of humans also has drawbacks due to
difficulties in maintaining experimental conditions. Moreover, the human gut microbiome
is strictly subject-dependent and can change dynamically depending on several factors,
such as age, dietary habits, and medical history [8–12]. Therefore, there is a demand of the
development of a new approach that allows evaluation of prebiotic potential for the human
gut microbiome.

In this study, we digested several prebiotics using acids and gastrointestinal enzymes
and fermented them with human fecal bacteria to simulate human consumption of prebi-
otics in vitro. We investigated the effects of those prebiotics on fecal microbial composition
and bacterial SCFA production. We further implemented machine-learning models to
predict the amount of SCFAs based on the fecal microbial composition in order to inves-
tigate whether this in vitro approach can be used to evaluate prebiotics potential. The
present study provides a fundamental idea for the development of a fast and cost-effective
approach that would make it possible to find more reliable prebiotics for human use.

2. Materials and Methods
2.1. In Vitro Gastrointestinal Digestion and Fecal Fermentation

In vitro gastrointestinal digestion (GID) and fecal fermentation of the eight different
prebiotics were performed with fecal samples collected from 11 healthy adults (subject IDs:
S1–S11), who had not taken any antibiotics for at least 6 months prior to the experiment.
(+)-Arabinogalactan (ARA) was obtained from TCI (Tokyo, Japan) (CAS number 9036-66-2).
Schizophyllan (SCH) was obtained from Quegen Biotech Co. Ltd. (Siheung, South Korea).
Fructo-oligosaccharides (FOS) and inulin (INU) derived from chicory were obtained from
Sigma-Aldrich (St. Louis, MO, USA) (CAS number F8052 and I2255 for each). Ginseng
(Gins) was obtained from KGC (Daejeon, Korea) and laminarin (Lami) was obtained
from Toronto Research Chemicals (Toronto, ON, Canada) (CAS No. 9008-22-4). Galacto-
oligosaccharide (GOS) was obtained from CREMAR (Seoul, Korea) (CAS number 6587-31-1).
D-(+)-Raffinose (RAF) was obtained from MB Cell (Seoul, Korea) (CAS number 512-68-6).

We followed the INFOGEST protocol [13] with several modifications for GID. In oral
phase, 5 g (or 5 mL) of each prebiotic was suspended in 5 mL PBS and then mixed with
3.5 mL of simulated salivary fluid, 0.5 mL of 1500 U/mL α-amylase, 25 µL of 0.3 M CaCl2,
and 975 µL of distilled water, making a total volume of 10 mL. The oral phase solution
was placed on a rotary shaker (150 rpm) for 2 min at 37 ◦C. In the gastric phase, 10 mL
of the oral phase solution was mixed with 7.5 mL of simulated gastric fluid, 1.6 mL of
25,000 U/mL porcine pepsin, and 5 µL of 0.3 M CaCl2. HCl was applied to adjust pH to
approximately 2.5–3 and 695 µL of distilled water was subsequently, added making a total
volume of 20 mL. The gastric phase digestion was performed at 100 rpm for 2 h. In the
intestinal phase, 20 mL of the gastric phase solution was mixed with 11 mL of simulated
intestinal fluid, 5 mL of 800 U/mL pancreatin, 2.5 mL of 160 mM bile salt, and 40 µL of
0.3 M CaCl2. NaOH was applied to adjust pH to 7 and distilled water was added, making
a total volume of 40 mL. The intestinal phase digestion was performed at 100 rpm for
2 h. The final digested fluid was promptly placed inside liquid nitrogen, freeze-dried, and
stored at −20 ◦C until fecal fermentation.
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For fecal fermentation, fecal samples were collected in sterile, capped sampling cups,
which were sealed immediately and transferred into an anaerobic chamber (90% N2, 5%
H2, and 5% CO2) (Bactron II Anaerobic Chamber; Shel Lab, Cornelius, OR, USA). The fecal
samples were suspended (20% w/v) in phosphate-buffered saline (PBS; 8.0 gL−1 NaCl,
0.2 gL−1 KCL, 1.15 gL−1 Na2HPO4, 0.2 gL−1 KH2PO4, 0.2 gL−1 L-cysteine hydrochloride),
which had been placed inside the anaerobic chamber a day before fecal fermentation. The
suspended samples were subsequently sieved through filters with pore sizes of 250 µm and
150 µm to remove fecal debris. For each subject, the fermentation of the blank control (no
prebiotic) and each prebiotic was performed in triplicate. The experiments were performed
in two batches on the same day: first five prebiotics (ARA, FOS, GOS, INU, RAF) and then
the rest (SCH, Gins, and Lami). Feces of one subject (S4) ran out during the first batch,
and the fecal fermentation with the stools of two subjects (S1 and S10) was performed on
a different date. Therefore, there were no SCH, Gins, and Lami samples for S4 and there
were two blanks for S1 and S10.

Fecal fermentation was performed as previously reported [14] with minor modifi-
cations. First, 800 µL of basal culturing medium and 100 µL of GID product (10%) were
added to each well of a deep 96-well plate and 100 µL of fecal sample suspended in PBS
(20%) was inoculated. The plate was covered with a silicon gel mat and the contents were
incubated in digital shakers (MS3, IKA, Staufen, Germany) for 6 h at 37 ◦C at 500 rpm in an
anaerobic chamber. Aliquots of the blank controls and samples were stored at −80 ◦C until
DNA extraction and quantification of SCFAs.

Sample collection and the experimental procedures were approved by the Institutional
Review Board (IRB) of Jeju National University (JJNU-IRB-2018-040-002).

2.2. Quantification of SCFAs

To extract SCFAs from the fecal microbiota, we followed the method described by
Singh et al. (2021) [15] with slight modifications. The frozen fermented products were
thawed on ice and 200 µL of each sample was added to 1 mL of absolute methanol. The
mixture was vortexed for 2 min for homogenization and the pH of the mixture was adjusted
to 2–3 using HCl. The mixture was incubated for 10 min at room temperature with repeated
homogenization every 3 min and centrifuged at 15,000 rpm at 4 ◦C for 3–5 min until
supernatant was observed to be transparent. The supernatant was collected in a 1 mL
syringe and filtered with a membrane with pore size of 0.45 µm. The sample was stored in
a liquid nitrogen tank until further processes.

For quantitative analysis of SCFAs (acetate, propionate, and butyrate), we adapted
the method described by Scortichini et al. [16]. A gas chromatographic system (GC2010,
Shimadzu, Japan) equipped with an auto injector (AOC-20i) and flame ionization detector
(FID) was used with a nitroterephthalic acid-modified polyethylene glycol (PEG) column
(20 m × 0.25 mm I.D., 0.25 µm film thickness; DB-FFAP, Agilent, Santa Clara, CA, USA).
The inlet temperature was maintained at 230 ◦C and the injection was performed in splitless
mode (1:10 ratio). The initial oven temperature was set to 80 ◦C for 3 min and incrementally
increased to 200 ◦C with a rate of 15 ◦C/min. The temperature was held at 200 ◦C for
3 min and increased to 230 ◦C with a rate of 5 ◦C/min. The final hold was made at 230 ◦C
for 10 min. Hydrogen was used as a carrier gas with a flow rate of 40 mL/min. The
FID temperature was maintained at 280 ◦C. The SCFAs in each sample were identified by
comparing retention time with reference standards. A stock solution of SCFAs was used as
a standard to construct calibration curves for each compound.

2.3. Bioinformatics

Sequence reads were processed in Mothur v. 1.47.0 following the MiSeqSOP (https://
mothur.org/wiki/miseq_sop/, accessed on 1 July 2022). Briefly, for quality control, se-
quence reads with ambiguous base pairs were removed and the cutoff length for homopoly-
mers was set to 8 bp. Only the sequence reads within the length range of 350 bp to 550 bp
were selected. Sequence reads were aligned against the Silva v. 138 database [17]. Chimeric
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sequences were removed through the VSEARCH algorithm [18]. Sequences were classified
against RDP database v. 18 [19] and sequences classified as Chloroplast, Mitochondria,
unknown, and Eukaryota were removed. Sequences with 97% similarity were clustered
into a single operational taxonomic unity (OTU) using the Opticlust algorithm [20]. To
predict functional profiles of microbial communities based on the 16S rRNA gene sequences,
we used PICRUST2 v. 2.4.2 [21]. Sequence data normalized with 5047 reads per sample
were used for PICRUST2 analysis.

2.4. Statistical Analysis

Differential abundance analysis was performed with the ALDEx2 package [22] in R to
figure out the differentially abundant genera and metabolic pathways when compared to
control samples (no prebiotics). Prior to alpha and beta diversity calculations, sequences
were subsampled into 5047 reads per sample. The differences in Shannon diversity between
each treatment were tested through an analysis of variance (ANOVA) test and pairwise
comparison was performed with Tukey’s honestly significant difference (HSD) test. When
the assumptions for the ANOVA test could not be met, a Kruskal–Wallis test was performed
instead with Dunn’s test as a post hoc test. Principal coordinate analysis (PCoA) was
performed with the R vegan package [23] to visualize the Bray–Curtis distance between
each sample calculated with square root-transformed reads. Permutational multivariate
analysis of variance (PERMANOVA) was performed with the adonis2 function in the R
vegan package for each subject to test if there was a significant difference in different uses
of prebiotics. A Mantel test based on Spearman’s rank correlation was performed with R to
test whether initial microbial community structure was correlated with increased amounts
of SCFAs. The within-group Bray–Curtis dissimilarity of the initial microbial community
was averaged prior to the Mantel test. The increased amounts of SCFAs were averaged for
replicates and the Euclidean distance was calculated as the input for the Mantel test.

2.5. Machine Learning

We adapted the method described in Zhou et al. [24] for machine learning. To pre-
dict the amount of SCFAs based on the microbial community data and on the predicted
functional profiles, we applied seven different machine-learning algorithms: (1) random
forest (RF) [25], (2) extreme gradient boosting (XGBoost) [26], (3) support vector machine
(SVM) [27], (4) lasso [28], (5) ridge [29], (6) elastic net (ENet) [30] and (7) k-nearest neighbor
(KNN) [31]. Machine learning was performed using the scikit-learn module [32] and the
xgboost module in Python v. 3.9.7. The treatments/conditions were not considered as
dependent variables in the models. Prior to building the models, genera/pathways with
fewer than 10 reads were removed and the relative abundance of each genus/pathway in
each sample was calculated. The relative abundances of genera/pathways were averaged
for the three replicates in each treatment. In total, 98 cases were used for training and
testing the models. The hyper-parameter of each model was tuned using the GridSearchCV
class in the model_selection module of the Python scikit-learn package. Based on the
best combination of hyper-parameters (Table S1), we performed 100 rounds of fivefold
cross-validation for each model algorithm, using different random splits for each round.
The predicted amounts of SCFAs from each of the rounds were averaged to obtain the final
predicted value. The importance of each genus/pathway in the random forest model was
computed with the feature_importances function at each round and averaged to obtain the
final value.

3. Results and Discussion
3.1. SCFA Production after Prebiotics Treatments

The amount of SCFAs produced in the gut is often used as an indicator of the health
status of the gut, as they work as an important metabolite in the human body. The total
amount of SCFAs generally increased when prebiotics were provided, except for SCH in
all of the studied subjects (Figure S1). The increase was less prominent in the samples
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treated with ARA and Lami. Overall, the prebiotics tested in this study worked well,
except for ARA, SCH, and Lami, which have branches and therefore more complexed
molecular structures. For example, arabinogalactan consists of a galactan backbone with
galactose and arabinose side chains, and both SCH and Lami are β-1,3 beta-glucans with
β-1,6 branching, with the degree of branching being higher in the case of SCH [33]. In
addition, the molecular weight of SCH is about 1.78 × 106 Da) [34], which was higher
than other prebiotics tested. On the other hand, these low productions of SCFAs could
have been due to intrinsic limitations of the in vitro analysis, where all of the enzymatic
reactions were performed in a shaker to mimic peristalsis. Further study is needed to
investigate if extending time for GID and/or fecal fermentation could allow digestion of
these high-molecular-weight and long-chained prebiotics in this in vitro environment.

3.2. SCFA Production and Fecal Microbiota of Each Subject

The initial microbial community was distinct in each of the subjects at the OTU level
(Figure S2A). Taxonomic composition analysis showed Firmicutes and Bacteroidetes were
the two most abundant phyla in most of the subjects (Figure S2B) and Prevotella was the
most prevalent bacteria at the genus level, followed by Phocaeicola and Bifidobacterium
(Figure S2C). Subjects S1 and S6 had very small proportions of Prevotella. The microbiota of
all of the studied subjects was divided into two groups: one was dominated by Prevotella,
followed by Faecalibacterium and Holdemanella, and the other was dominated by Phocaeicola,
followed by Bifidobacterium and Blautia, based on the centered log ratio value. Arumugam
et al. (2011) [35] categorized gut microbes of humans into three different enterotypes
which were identifiable by variations in the levels of Bacteroides (Phocaeicola), Prevotella, and
Ruminococcus. These ”enterotype” differences expectedly showed variations in bacterial
metabolic functions. We, however, did not observe a significant correlation between the
increased amount of SCFAs after treatment of each prebiotic and these initial microbial
community structures (Mantel static r = 0.138, p = 0.279). Our results showed that the
increase in SCFA amounts was highly dependent on the type of prebiotics used rather than
the initial microbiota of the subjects. The effective prebiotics (i.e., FOS, Gins, GOS, INU, and
RAF) seemed to work well regardless of different enterotypes, at least in the present study.
Fu et al. [36], however, reported that personal gut microbiota difference affects the effects
of prebiotics. Therefore, a comprehensive study on more subjects with diverse enterotypes
should be designed to test this further.

3.3. Microbiota Shifts after Prebiotics Treatment

The results in Figure 1A show that prebiotics treatment slightly shifted the microbial
community. These shifts, however, were found to be significant when each subject’s fecal
microbiota was separately plotted (Figure S3). PERMANOVA results showed significant
shifts in microbiota caused by prebiotics treatment. In many cases, samples treated with
Gins, GOS, and RAF clustered together, while samples treated with INU and FOS clustered
together. The blank samples clustered with the samples treated with SCH, ARA, and Lami,
suggesting the effects of these prebiotics on the microbiota were limited. To back this up, we
observed significant associations between the extent of community shift and the increased
amounts of short-chain fatty acids (Figure 1B). Our results showed that samples treated
with prebiotics similar in their molecular structure clustered together. For example, samples
treated with INU and FOS clustered together, as both INU and FOS are linear fructosyl
polymers/oligomers linked by β-(2,1) bonds, attached to a terminal glucosyl residue by an
α-(1,2) bond. Furthermore, samples treated with GOS, RAF, and Gins clustered together.
GOS has the same composition as RAF, a trisaccharide composed of galactose, glucose,
and fructose, but GOS has additional galactose molecules [37]. Ginseng is a multiplex of
several different components, including carbohydrates (50–60%); N-containing substances
(12–15%), such as proteins, peptides, and alkaloids; saponin (3–6%); and others [38]. There
could be substances similar to GOS and RAF included in ginseng, resulting in similar
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microbial communities after treatment. In addition, the results in Figure 1C showed that
Shannon diversity decreased after prebiotics treatment, implying a force of selection.
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Figure 1. (A) Two-dimensional plot of the principle coordinate analysis (PCoA) based on Bray–Curtis
distances of bacterial communities between samples. (B) A scatter plot with linear regression lines
showing the relationship between community shifts and the increase in the SCFA amount. Bray–
Curtis distances between treatment samples and blanks in each subject were calculated and plotted
together with the increased amount of SCFAs. (C) A heatmap showing the ratio of Shannon diversity
between treatment samples and corresponding blank samples. Asterisk (*) denotes significant
difference in Shannon diversity between treatment samples and corresponding blank samples.
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3.4. Effects of Prebiotics Treatments on the Abundance of Genera and Predicted Metabolic Activities

Differential abundance analysis results showed increases in Bifidobacterium, Agath-
obacter, Roseburia, Parabacteroides, Fusicatenibacter, Prevotella, Bacteroides, Faecalibac-
terium, Collinsella, and Catenibacterium after fermentation of prebiotics in most of the
cases when compared to blanks (Figure 3A). These genera are mostly known producers of
SCFAs, including Bifidobacterium, Roseburia, Bacteroides, and Faecalibacterium [39,40].
Streptococcus, Ruminococcus, and Romboutsia, on the other hand, were decreased after
prebiotics treatments in many cases. Most of the Streptococcus spp. in the digestive tract
are known to be commensal bacteria [41,42], except for lactic acid-producing Streptococcus
thermophilus, which is abundant in milk products and used for yogurt production [43].
Ruminococcus play important roles in the digestion of cellulose and resistant starches, both
in humans and ruminants [44,45]. As the prebiotics used in this study did not include
cellulose or resistant starches, there might not have been enough energy for Ruminococcus
to proliferate. Species belonging to the genus Romboutsia were first isolated in 2014 from
a healthy rat [46] and have also been isolated from the human gut samples of a 63 year
old man who suffered from severe anemia with melaena [47]. Although their metabolic
capabilities are largely unknown, they have been suggested to be potentially harmful, as
they were more abundant in patients with neurodevelopmental disorders compared to
healthy subjects [48]. Phocaeicola showed an inconsistent pattern where its abundance
increased in many cases when treated with ARA, Gins, and GOS. There were more cases
that had decreased abundances of Phocaeicola when treated with FOS and Lami.Foods 2022, 11, x FOR PEER REVIEW 8 of 15  
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Figure 3. Heatmaps showing the percentages of subjects who had significantly increased (red) or
decreased (blue) abundance of (A) genera and (B) metabolic pathways after prebiotics treatment
when compared to blanks. Only the 40 genera (or pathways) that had the highest numbers of cases
(subjects) showing significance in the differential abundance analysis are shown. To avoid noise, we
used stricter criteria for pathways: only the cases that had centred log-ratio values between each
treatment and the corresponding blank sample higher than 2 were included.

The results in Figure 3B show that prebiotics treatments increased some of the beneficial
metabolic pathways, such as SCFA production and vitamin biosynthesis (Figure 3B). For ex-
ample, ”pyruvate fermentation to butanoate”, menaquinol biosynthesis, and ubiquinol biosyn-
thesis were enriched after prebiotics treatments. Menaquinone is vitamin K2, which plays an
important role in hepatic coagulation [4], and ubiquinol is a reduced form of coenzyme Q10,
which acts as electron carrier in cellular respiration and thus works as an antioxidant [49,50].

These results suggest that our in vitro GID followed by fecal fermentation successfully
captured beneficial shifts both in microbiota and predicted metabolic activity profiles,
although some prebiotics did not show beneficial effects. In this study, tested prebiotics
were subjected to gastrointestinal digestion, although prebiotics are known to be resistant
to mammalian digestive enzymes and gastric acids. The implementation of the complete
digestive processes allowed us to mimic the human digestive system and confirm that the
tested materials were still effective after the gastrointestinal digestions. Moreover, this
system could be applied to evaluate the effects of non-prebiotic foods on gut microbiota [15].

3.5. Predicting Effects of Prebiotics with Machine-Learning Techniques

To further utilize the data collected in this study, we constructed machine-learning
regression models that could predict the amount of SCFAs based on the microbial commu-
nity composition of the studied samples. Overall, we were able to obtain well-performing
models in which the correlation coefficients between the predicted amounts of short-chain
fatty acid and the observed amounts of SCFAs were as high as 0.7 to 0.8 (Figure S4A). The
machine-learning models that predicted the amounts of SCFAs based on the metabolic path-
ways had correlation coefficients between the predicted and observed values as high as 0.6
to 0.7 (Figure S4B), which is high but generally lower compared to the models constructed
based on genus composition. It should be noted that the models based on pathways may
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suffer “double-speculations”, as the metabolic pathways had already been predicted once
by PICRUST2 based on the community composition.

Feature importance in the random forest models calculated based on the mean squared
errors indicated Romboutsia as the most important feature for predicting the amount of
acetate, followed by Dorea, Clostridiales Incertae Sedis XIII unclassified, and Bifidobacterium
(Figure 3A). The most important feature when predicting the amount of propionate was
Roseburia, followed by Megamonas, Parolsenella and Clostridiales Incertae Sedis XIII unclas-
sified. In the case of butyrate, Faecalibacterium was the most important feature, followed by
Prevotella, Roseburia and Clostridiales Incertae Sedis XIII unclassified. Feature importance in
the random forest models indicated catechol degradation II (meta-cleavage pathway) as the
most important feature for predicting the amount of acetate, 1-4-dihydroxy-6-naphthoate
biosynthesis II for predicting the amount of propionate, and L-histidine degradation I for
predicting the amount of butyrate (Figure 3B).
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models calculated based on the mean squared errors.

The machine-learning models showed promising performance, suggesting the possible
usage of microbiome data for the prediction of SCFA amounts. In this study, we were
not able to construct a separate model for each of the prebiotics using only the initial
gut microbiome as features because we had only 11 subjects. With increased numbers of
subjects, it would be possible to construct a model to predict the best performing prebiotics
for different individuals. Through such a model, we might be able to pick up personalized
prebiotics that work best with individual gut microbiota.

In this study, we used the genus-level compositional data as the input for machine
learning because OTU tables are sparse and include too many zeros, which could potentially
bring bias/noise when constructing machine-learning models [24]. Future studies may
apply long-read metagenomic or amplicon sequencing technology, such as SMRT and
MinION, to develop more robust ML models with higher taxonomic resolution.

4. Conclusions

In this study, we were able to assess the performance of eight different prebiotics
through an in vitro gastrointestinal digestion and fecal fermentation experiment. Prebiotics
treatment elevated the amount of SCFAs and shifted the gut microbial communities, increas-
ing the abundance of favorable bacterial groups with the ability to produce SCFAs. There
was also an increase in beneficial metabolic activities after prebiotics treatment. The results
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from this study can be applied to probiotics studies and provide guidelines for in vivo
experiments. The machine-learning approach could also be expanded to find personalized
prebiotics treatments.
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based on the relative abundance of each phylum. (C) A heatmap based on the relative abundance
of the 15 most abundant genera; Figure S3: PCoA plot showing the Bray–Curtis distance between
the samples, calculated based on the OTU composition in each subject. PERMANOVA results are
shown above each plot; Figure S4: Correlation coefficient between the true amounts of short-chain
fatty acids and the amounts of short-chain fatty acids predicted by machine-learning models based
on (A) genus composition and (B) metabolic pathways; Table S1: Best performed hyper-parameters
of each machine learning model.
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