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Abstract: Persimmon is a climacteric perishable fruit with a short storage life. In recent years, using
natural compounds that are safe for human health and environment have obtained more attention
in postharvest investigations. The current research was conducted to study efficacy of postharvest
L-arginine treatment at 0, 0.3, and 0.6 mM in improving chilling tolerance and maintaining the
nutritional quality of persimmon fruit during low-temperature storage. According to the results, the
highest weight loss (4.3%), malondialdehyde (MDA (5.8 nmol g−1 FW)), and hydrogen peroxide
(H2O2 (22.33 nmol g−1 FW)) was detected in control fruit. Fruit firmness was gradually decreased
during storage, but it was slower in L-arginine-treated fruit. The highest tissue firmness (3.8 kg cm−2)
was noted in fruit treated with 0.6 mM L-arginine. The chilling was gradually increased during
storage. Fruits treated with L-arginine showed a lower chilling injury than the control fruit. Total
soluble tannin compound and antioxidant enzymes activities in persimmons declined during cold
storage. L-arginine treatment significantly maintained antioxidant enzymes activity, antioxidant
capacity, and total soluble tannin compounds, while L-arginine had no significant impact on titratable
acidity and total soluble solids. It seems that a reduction in oxidative damage and an increase
in quality of persimmon during low-temperature storage manifested several defense mechanisms
induced by exogenous application of L-arginine. These findings indicated that the application of
L-arginine to maintain the quality and increase postharvest life of persimmon is very useful and can
be applied during cold storage.

Keywords: persimmon; natural compounds; L-arginine; total carotenoid; soluble tannin

1. Introduction

Persimmon (Diospyrus kaki L.) is an imperative fruit from the Ebenaceae family. The
fruit is preferred because of its delicious taste, attractive color, nutritive value, and bioactive
compounds such as phenolic compounds and flavonoids, which act as antioxidants. One
of the main reasons for postharvest loss of persimmon fruits is because of susceptibility
to chilling injury (CI) when stored at cold storage. Below 4 ◦C, persimmon fruits show
symptoms such as loss firmness, peel browning, discoloration, and decay [1]. A common
method to maintain quality and prevent chilling injury of postharvest persimmon is using
different treatments such as carboxymethyl-chitosan [2], heat shock [3], hydrogen sulfide [4],
methyl jasmonate [5], 1-methylcyclopropene [6], and pulsed-light treatments [7] during cold
storage. Due to the unsafe effects of the chemicals on the environment and human health,
the use of these materials has been recently limited, and it is crucial to use the harmless
compounds such as arginine in the postharvest technology of horticultural crops [8,9].
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Postharvest researches have revealed that the application of arginine can extend the
storage life of horticultural crops by delaying the ripening or senescence process. L-arginine
is an α-amino acid that is applied in the biosynthesis of proteins. L-arginine is a precursor
in the biosynthesis of polyamines and signaling molecules such as nitric oxide [10]. Nitric
oxide is the main signaling molecule involved in the physiological processes of the plant [11].
It has also been indicated that arginine protects plant cells against oxidative stress by
biosynthesis nitric oxide and reducing ROS accumulation [12]. Arginine could increase
tolerance against chilling and reduce occurrence of chilling injury in different fruits and
vegetables [8,13]. L-arginine plays a consequential role in the activity of different enzymes
in fruits. This amino acid is attached to membrane phospholipids and nucleic acid and
improves the activity of enzymes such as catalase. The exogenous application of arginine
in pistachio [9], tomato [14], strawberry [10], and pomegranate fruit [8] also reduced
postharvest decay and inhibited postharvest senescence. In fresh-cut apple and lettuce,
L-arginine treatment improved stress resistance, inhibited browning, and did not affect the
taste of fruit during the postharvest period [15]. In another study, the use of L-arginine
at 0.05 mmol L−1 concentration reduced the decay, MDA, and weight loss and increased
antioxidant capacity in green asparagus during cold storage [16]. Li et al. [13] reported that
application of L-arginine 10 mM increased phenol and flavonoid accumulation; maintained
firmness; and delayed increase of electrolyte leakage, browning, and PPO activities in
mushrooms compared to the control. It has been illustrated that L-arginine 200 µmol/L
treatments significantly decreased fruit decay as well as MDA accumulation and effectively
increased peroxidase, β-1,3-glucanase, phenylalamine ammonialyase, chitinase activities
and lignin, phenols, and flavonoid content in winter jujube fruits during storage [17].
Furthermore, arginine treatment significantly decreased electrolyte leakage and weight loss
and increased flavor, firmness, ascorbic acid, and tolerance in chilling injury in cucumber
stored in 5 ◦C [12]. According to the previous research, L-arginine has a great effect on
alleviating chilling injury and preserving nutritional quality of fruits at low-temperature
storage. However, the effect of L-arginine on persimmons is a novel field that has not been
researched yet, so this study aimed to explore the potential effect of L-arginine application
on improving fruit quality, mitigating chilling injury, and increasing the storage life of
persimmon fruit under cold stress.

2. Materials and Methods
2.1. Plant Material and Treatment of L-arginine

In order to explore the effect of L-arginine in increasing storage life and postharvest
quality of persimmon fruit, an experiment was carried out in the post-harvest lab and
refrigerator at the University of Zanjan. Persimmon (Diospyrus kaki Thunb.) fruits (210 fruit)
were picked from a commercial orchard in Karaj, Iran, and transferred to the postharvest
laboratory. This study was performed as a factorial experiment based on a complete
randomized design with three replicates per treatment. The first factor was L-arginine at
three levels (0 (control), 0.3, and 0.6 mM), and the second factor was storage time at three
levels of 15, 30, and 45 days. On the harvest day, 21 fruits were selected and analyzed for
initial physicochemical attributes. Other samples (189 fruits) were randomly divided into
21 fruits for each treatment in three replications (7 fruits per replication) in each sampling
date. Persimmon fruits were treated with 0 (control), 0.3, and 0.6 mM L-arginine for 10 min
and then stored at 4 ± 1 ◦C and relative humidity 85–90% for 45 days. At 15 day intervals,
one group was selected randomly and kept for shelf life of two days at 25 ◦C and various
biochemical analyses were performed.

2.2. Assessment of Browning Index

The percentages of the browning index were calculated by Wang et al. [18]. Tissue
gelling and skin and tissue browning are the main signs of chilling injury in persimmon. In
this study, the browning index was assessed by peel browning (PB) on each fruit by divided
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into 5 classes: 0 (no PB, excellent quality), 1 (<25% PB), 2 (25–50% PB), 3 (50–75% PB), and
4 (>75% PB).

The browning index = ∑ (PB level) × (Number of fruits at each PB level)/(4 × total
number of fruit in the treatment)

2.3. Assessment of Malondialdehyde (MDA) and H2O2

MDA accumulation was analyzed according to the Heath and Packer [19] method.
One g of fruit frozen tissue was ground in 15 mL 0.1% (w/v) trichloroacetic acid (TCA).
Thereafter, centrifugation was performed at 10,000× g for 20 min. Next, supernatant 2 mL
was reacted with 2 mL 0.1% TCA comprising 0.5% (w/v) thiobarbituric acid (TBA). The
mixtures were then heated to 96 ◦C for 30 min, quickly cooled, and centrifugation was
done at 10,000× g for 5 min. The supernatant was noted at 450, 532, and 600 nm, and MDA
accumulation was computed using the given equation:

MDA = (6.45 × (A532 − A600) − 0.56 × A450) × V/W

where A600: absorbance at 600 nm; A532: absorbance at 532 nm; A450: absorbance at
450 nm; V: volume of extraction; and W: fresh weight of sample.

The amount of H2O2 was assessed according to the Alexieva et al. [20] method,
in which 0.5 g of frozen persimmon fruit samples were macerated in 5 mL ice-cold 3%
trichloroacetic acid, and then, it was centrifuged at 12,000× g for 20 min at 4 ◦C, and the
supernatants were used for H2O2 measurements. Then, 0.25 mL supernatants were mixed
with 0.25 mL 100 mM phosphate buffer (pH 7.0) and 1 mL 1 M potassium iodide. The
optical density of the H2O2 solution was recorded at 390 nm and reported as nmol g−1 FW.

2.4. Assessment of Firmness and Weight Loss

A handle OSK 1618 penetrometer equipped with an 8 mm tip was utilized for firmness
measurement and reported kg cm−2. The weight loss value of fruit was determined by the
digital scale model CANDGL300 and reported (%) [21].

2.5. Assessment of Titratable Acidity and Total Soluble Solids

A manual refractometer was used to measure the total soluble solids, and the sodium
hydroxide titration method was used to measure the titratable acidity [22].

2.6. Assessment of Total Soluble Tannin

The amount of total soluble tannins is determined by using Folin–Denis assay. To
do so, 1 g tissue was macerated in 80% methanol by means of a mortar. The amount was
expressed as g kg−1 tannic acid and calculated from the prepared standard curve [23].

2.7. Assessment of Total Carotenoid

The total carotenoids content was assayed using Wang et al. [24] method. Fruit tissues
(1 g) were macerated in 5 mL acetone–hexane 40/60 mixture. The layer of the upper phase
was shifted into chilled test tubes, and the residual aqueous layer was re-extracted with
aforementioned solution of acetone–hexane. The absorbance of all extracts was recorded at
450 nm, and its concentration was expressed as mg Kg−1 FW.

2.8. Assessment of Antioxidative Enzymes Activity

For analyzing catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase
(APX) enzymes activity, 5 g of frozen persimmon fruit tissues were ground in 50 mM
phosphate buffer (pH 7.8) having 0.2 mM EDTA and 2% PVPP. Then, it was centrifuged
at 12,000× g for 15 min at 4 ◦C, and supernatant was utilized for CAT, SOD, and APX
activities measurements. CAT activity was assessed with Zhang et al. [25] procedure. The
absorbance of the solution was measured at 240 nm and reported as U g−1 FW. SOD activity
was assessed according to Zhang et al. [25]. The absorbance of the solution was recorded at
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560 nm and reported as U g−1 FW. APX activity was assessed according to Zhang et al. [25].
The absorbances of the solutions were recorded at 290 nm and reported as U g−1 FW.

2.9. Assessment of Total Antioxidant Capacity

The 2,2′-diphenyl-1-picrylhydrazyl (DPPH) reagent method was utilized for total
antioxidant capacity assessment. In brief, 1 g of frozen persimmons fruit tissues was
ground in 8 mL of 0.1% HCl along with 80% methanol. Then, its centrifugation was
performed at 10,000× g for 15 min, and 50 µL of the supernatants was reacted in 1.95 mL of
DPPH (0.1 mM) made in the methanolic solution. Then, all mixtures were placed under
darkness for 30 min under the conditions of ambient temperature. The absorbance of
solutions was recorded at 517 nm and reported as % [26]. As a control, optical density of
the blank solutions of DPPH was observed at 517 nm.

2.10. Statistical Analysis

Results were analyzed statistically with SPSS statistics version 22.0 (SPSS Inc., Chicago,
IL, USA) software, and differences among means were measured by Duncan’s multiple
range test for significance at p < 0.05.

3. Results and Discussion
3.1. Browning Index

Based on the results, the browning rate was increased in the persimmons under
storage. The treatment of L-arginine at the rates of 0.3 and 0.6 mM effectively prevented the
browning index of the fruits versus the control. The lowest rate of browning was observed
in the treatment of 0.6 mM L-arginine at 30 and 45 days after storage (DAS) (Figure 1).
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Figure 1. The effect of different levels of postharvest treatment of L-arginine on browning index of
persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data are average of
n = 3, and bar represents standard error of the means. Different letters above the bars show significant
difference at p < 0.05 by Duncan’s multiple range test.

Firmness loss and fruit internal and external browning are the chief symptoms of
persimmon chilling damage. The persimmon fruit tissue is converted from a flexible crys-
talline liquid into a jelly structure by phase transition due to chilling damage [27,28]. Fruit
browning during chilling happens by PPO and POD enzymes, which involves oxidation
of phenolic substrates, and gelation during chilling happens by the decomposition of
pectin polymers, and the tissue becomes much stickier than normally matured fruits [29].
L-arginine improves plant resistance to postharvest oxidative stress by synthesizing nitric
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oxide. Nitric oxide plays a role in plant resistance by increasing antioxidant enzymes
activities and controlling free radicals, by which it reduces the browning of the fruit [30].

3.2. MDA and H2O2

The results showed that MDA accumulation was increased in control fruit, but MDA
did not increase in treated fruits at 45 d cold storage. No significant differences were
observed between L-arginine treatments at 0.3 and 0.6 mM during storage time. These
treatments effectively inhibited MDA accumulation in the persimmons at 30 and 45 DAS.
The lowest MDA accumulation was 3.23 nmol g−1 FW, observed in the treatment of 0.6 mM
L-arginine after 45 days of persimmons storage (Figure 2A).

Foods 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

 

 
Figure 2. The effect of different levels of postharvest treatment of L-arginine on the MDA (A) and 
H2O2 (B) of persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data 
are average of n = 3, and bar represents standard error of the means. Different letters above the bars 
show significant difference at p < 0.05 by Duncan’s multiple range test. 

3.3. Fruit Tissue Firmness 
The firmness of fruit tissue was 8.2 kg cm−2 at the harvest time, but it decreased in all 

samples during storage. The L-arginine treatment effectively slowed down the process of 
the persimmon fruit-softening process during the storage. The treatment of the fruits 
with 0.3 and 0.6 mM L-arginine effectively contributed to the preservation of the fruit 
tissue versus the control at 15, 30, and 45 DAS (Figure 3). On 45th day, highest firmness 
was 3.8 kg cm−2, recorded by the treatment of 0.6 mM L-arginine, while the lowest was 1.1 
kg cm−2 related to the control (Figure 3). Softening and the loss of firmness reduce the 
quality of persimmons during the postharvest period. The loss of firmness is directly re-
lated to cell-wall-decomposing enzymes activities [35]. The activity of pectin methyles-
terase (PME) and polygalacturonase (PG) enzymes play important roles in reducing fruit 
tissue during storage [36]. Arginine reduced the expression level of PME and PG, thereby 
contributing to the preservation of strawberry fruit tissue firmness [37]. Xyloglucan en-
dotransglucosylase/hydrolase (XTH) is an enzyme that prevents the softening of per-

bcd

b

a

d
d

bcd
d

cd
bc

0

1

2

3

4

5

6

7

15 30 45

M
D

A
 (n

m
ol

 g
-1

FW
)

Storage time (day)

Control Ar 0.3 mM Ar 0.6 mM A

b

a

b

d
bc

dd

b
cd

0
5

10
15
20
25
30
35
40

15 30 45

H
2O

2
(n

m
ol

 g
-1

FW
)

Storage time (day)

Control Ar 0.3 mM Ar 0.6 mM

Figure 2. The effect of different levels of postharvest treatment of L-arginine on the MDA (A) and
H2O2 (B) of persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data
are average of n = 3, and bar represents standard error of the means. Different letters above the bars
show significant difference at p < 0.05 by Duncan’s multiple range test.

The content of H2O2 first increased and then reduced during storage time. The increase
in H2O2 was effectively prevented when L-arginine was applied at the rate of 0.3 or 0.6 mM.
The lowest rate of H2O2 synthesis (16.44 nmol g−1 FW) was related to the 0.3 mM L-arginine
treatment and the highest (22.33 nmol g−1 FW) to the control (Figure 2B).

The postharvest accumulation of H2O2 in fruits increases by chilling stress. H2O2
is synthesized by the β-peroxidation of fatty acids in glyoxysomes and/or during pho-
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torespiration in peroxisomes [30]. Free radicals such as H2O2 have two functions in plants.
They are synthesized at low rates as signal-transporting molecules in the defensive system
against stresses [31] and even improve the antioxidant system capacity by increasing the
activity of antioxidant enzymes, but they are harmful to plants at high rates so that the
antioxidant system scavenges the extra radicals [32]. MDA is the byproduct of the oxidation
of unsaturated fatty acids in cell membranes and acts as an indicator of fat peroxidation [33].
The further synthesis of H2O2 and superoxide results in membrane degradation and the
peroxidation of membrane lipids [34]. The L-arginine treatment contributed to membrane
conservation by alleviating oxidative stress, thereby inhibiting the increase in MDA and
H2O2 accumulation in white button mushrooms and strawberries at the postharvest pe-
riod [10,13]. L-arginine treatment significantly prevented the postharvest chilling and
browning of potatoes and lettuce [34]. Babalar et al. [8] reported that L-arginine applica-
tion reduced chilling damage of pomegranate fruits during low-temperature storage by
reducing MDA accumulation and electrolyte leakage.

3.3. Fruit Tissue Firmness

The firmness of fruit tissue was 8.2 kg cm−2 at the harvest time, but it decreased in
all samples during storage. The L-arginine treatment effectively slowed down the process
of the persimmon fruit-softening process during the storage. The treatment of the fruits
with 0.3 and 0.6 mM L-arginine effectively contributed to the preservation of the fruit
tissue versus the control at 15, 30, and 45 DAS (Figure 3). On 45th day, highest firmness
was 3.8 kg cm−2, recorded by the treatment of 0.6 mM L-arginine, while the lowest was
1.1 kg cm−2 related to the control (Figure 3). Softening and the loss of firmness reduce the
quality of persimmons during the postharvest period. The loss of firmness is directly related
to cell-wall-decomposing enzymes activities [35]. The activity of pectin methylesterase
(PME) and polygalacturonase (PG) enzymes play important roles in reducing fruit tis-
sue during storage [36]. Arginine reduced the expression level of PME and PG, thereby
contributing to the preservation of strawberry fruit tissue firmness [37]. Xyloglucan endo-
transglucosylase/hydrolase (XTH) is an enzyme that prevents the softening of persimmon
fruits during storage [38]. The L-arginine treatment increases the expression of the gene
responsible for XTH by producing nitric oxide and retards fruit softening [39]. The mush-
rooms treated with 10 mM L-arginine were firmer than the control during cold storage [13].
Therefore, the persimmon fruits treated with arginine kept their firmness much better than
the control fruits.
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Figure 3. The effect of different levels of postharvest treatment of L-arginine on the firmness of
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difference at p < 0.05 by Duncan’s multiple range test.
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3.4. Weight Loss (%)

Weight loss was enhanced in all L-arginine based treatments of persimmons under
storage time, but it was greater in fruit of controls than in the treated fruits. The results
showed that arginine effectively inhibited the weight loss of persimmon fruits. The samples
treated with 0.6 and 0.3 mM L-arginine exhibited significantly lower weight loss (by
3.4 and 3.2%, respectively) than the control at 45 DAS (Figure 4). During the storage time,
the weight reduction is because of cell respiration, transpiration, and the metabolic activities
of the fruit. L-arginine is a precursor in the biosynthesis of signaling molecules such as
nitric oxide [10]. Nitric oxide plays significant role in delaying senescence and improving
cellular permeability by eliminating ROS, thereby reducing cell membrane permeability
and preventing rapid dehydration of the persimmon fruit and rapid weight loss during
storage period [12,13]. Ali et al. [40] showed in “Sandhuri” guava fruit that arginine
application decreased the weight loss by the maintenance of membrane integrity during
low-temperature storage. The results confirmed the results of the Hasan et al. [12] study on
cucumbers treated with L-arginine.
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Figure 4. The effect of different levels of postharvest treatment of L-arginine on the weight loss of
persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data are average of
n = 3, and bar represents standard error of the means. Different letters above the bars show significant
difference at p < 0.05 by Duncan’s multiple range test.

3.5. Total Soluble Solids (TSS) and Titratable Acid (TA)

TSS was 16.2% at the harvest time, but it was increased in all samples over the storage
time. The treatments had no impact on the prevention of TSS increase. The highest TSS
was 20.6%, recorded at 45 DAS, and the lowest was 18.1%, recorded at 15 DAS.

A significant decline was also observed in the TA of the persimmon fruits during
storage. TA was 0.59% at the harvest time, but it decreased during storage. The rate of this
decline was higher for the control. The lowest TA was noted in control fruits on the 45th
day. The treatments did not influence TA, which declined significantly.

TSS and TA are important characteristics that strongly influence the taste, aroma, and
flavor of persimmon fruits. TSS is mainly composed of sugars, which increase as fruits
mature [41]. TA during storage is used in cell in respiration process and decreases [19].
There are different reports regarding the effect of L-arginine on preventing TSS and TA
variations. A research study reported that L-arginine had no impact on the prevention of
TSS increase and TA decrease in cucumbers [12]. On the other hand, it has been reported that
L-arginine prevented excessive variations in TSS and TA in strawberries and mushrooms
by reducing oxidative reactions and retarding senescence [10,13].
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3.6. Total Soluble Tannins

The total soluble tannins concentration was 5.585 g kg−1 FW at the harvest time. The
comparison of the means showed that the total soluble tannins were decreased in both the
controls and L-arginine applied fruits under storage of cold temperature. No significant
differences were observed between 0.3 and 0.6 L-arginine treatment. The highest amount
of the soluble tannins was detected in the treatment of 0.3 and 0.6 mM L-arginine at 15, 30,
and 45 DAS. The lowest was 3.593 g kg−1 FW, detected in the controls, and the highest
was 5.330 g kg−1 FW and 5.23 g kg−1 FW in the treatment of 0.3 and 0.6 mM L-arginine,
respectively, on 45th day of storage (Figure 5).
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Figure 5. The effect of different levels of postharvest treatment of L-arginine on the total soluble
tannins of persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data
are average of n = 3, and bar represents standard error of the means. Different letters above the bars
show significant difference at p < 0.05 by Duncan’s multiple range test.

Tannins are classified as phenolic compounds, which are found in many fruits such
as persimmon. Moreover, soluble tannins in astringent persimmon fruit are a component
of phenol compounds. Soluble tannins in cells are responsible for the astringent taste of
persimmon fruits [42]. The fruit of persimmon (cv. “Karaj”) is an astringent type [43]. The
amount of soluble tannins is a major characteristic of persimmon quality. At the time of
softening and ripening of persimmons, polysaccharide contents and soluble pectins of cell
wall are released and joined with tannin contents of soluble nature and altered into an
insoluble type, so the astringent taste decreases or is eliminated [44,45]. It has been reported
that the L-arginine treatment reduces free radicals and helps cell wall and membrane
protection by increasing antioxidant synthesis, thereby preventing the postharvest loss of
phenolic compounds [10]. Furthermore, the L-arginine treatment increases stress resistance
by synthesizing internal NO and degrading free radicals, which is accompanied by an
increase in phenolic compounds [13]. Therefore, L-arginine increases the soluble tannin by
increasing the total phenol component.

3.7. Total Carotenoids

The total carotenoid content, which was 4.5 mg Kg−1 FW at the harvest time, in-
creased during the storage time. The treatments effectively prevented the increase in total
carotenoid during storage. The L-arginine treatments at a rate of 0.3 and 0.6 mM were
effective in preventing the increase in total carotenoids at 15, 30, and 45 DAS. The lowest
total carotenoids were 7.8 and 8.1 mg Kg−1 FW, recorded at the 0.6 and 0.3 mM L-arginine
treatment (Figure 6).
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Figure 6. The effect of different levels of postharvest treatment of L-arginine on the total carotenoid of
persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data are average of
n = 3, and bar represents standard error of the means. Different letters above the bars show significant
difference at p < 0.05 by Duncan’s multiple range test.

Carotenoids are yellow, orange, and red compounds that have important biological
activity in fruits and vegetables and prevent chronic diseases [46]. It has been reported
that carotenoids act as secondary pigments in chloroplasts, but their antioxidant role is
a more important function [47]. Since persimmon fruits are rich in carotenoid pigments,
their fruit color changes from yellow to dark orange during storage. β-cryptoxanthin is an
important carotenoid in persimmons that increase during the ripening stage of persimmon
fruit [48]. The increase in carotenoid concentration during storage occurs as a consequence
of the postharvest ripening process as well as the reduction in TA and firmness. Therefore,
the effect of L-arginine treatment on delaying the changes of these parameters could be
attributed to a delay of the postharvest ripening process throughout an increment of the
activity of the antioxidative enzymes, which are involved in reducing reactive oxygen
radicals based damages [12,40].

3.8. Catalase (CAT), Superoxide Dismutase (SOD), and Ascorbate Peroxidase (APX)

The results showed that the CAT activity first increased and then declined during
the storage time. The application of 0.3 and 0.6 mM L-arginine effectively prevented the
over-reduction of CAT during storage. No significant variation was noted in the activity
of CAT between 0.3 and 0.6 mM L-arginine treatments at 15, 30, and 45 DAS (Figure 7A).
According to Figure 7, the SOD activity first increased and then reduced during storage. The
L-arginine treatment at the rates of 0.3 and 0.6 mM did not exhibit a significant difference in
the SOD activity at 15, 30, and 45 DAS. The L-arginine treatment was effective in hindering
the decline of the SOD activity (Figure 7B).

The effect of L-arginine application at 0.3 and 0.6 mM did not differ significantly
at 15 and 30 DAS. The highest APX activity (930 and 899 U g−1 FW) was observed in
the treatments of 0.6 and 0.3 mM L-arginine at the end of storage time. The treatments
significantly contributed to preserving the APX activity versus the control during the
storage period (Figure 7C).

The antioxidant capacity of fruits and vegetables is correlated to the CAT, SOD, and
APX activities as well as non-enzymatic compounds such as phenolic compounds, ascorbic
acid, and carotenoids [49]. Stressful conditions and senescence result in the synthesis of
free radicals, which are scavenged with antioxidants in fruits. Antioxidant compounds are
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oxidized by donating electrons to free radicals, thereby decreasing the damage of reactive
oxygen species (ROS) [50].
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Figure 7. The effect of different levels of postharvest treatment of L-arginine on the CAT (A), SOD
(B), and APX (C) of persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values
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CAT is an important enzyme that inhibits ROS formation. Plants have different
mechanisms to cope with ROS. The enzyme CAT is one of the most important mechanisms.
CAT is present in the peroxisomes and glyoxysomes of all aerobic cells and protects the
cells from the toxic effects of H2O2 by decomposing it into water and oxygen [51].

The activity of antioxidant enzymes increases during stress, especially the chilling
stress [52]. The APX and SOD enzymes have an antioxidative nature with a good po-
tential for removing various ROS. By scavenging free radicals, these enzymes inhibit cell
membrane degradation, electrolyte leakage, and peroxidation of membrane lipids [48,53].
SOD is a major O2− scavenger whose enzymatic activity results in the production of H2O2
and O2. Hydrogen peroxide is toxic to cells at high amounts, and thus, some enzymes
including APX and CAT regulate H2O2 content in cells. APX is a specific peroxidase that
decomposes H2O2 through the ascorbate–glutathione cycle. Many studies have indicated
that L-arginine treatment stimulates the synthesis of antioxidant enzymes, e.g., CAT, SOD,
and APX, during the postharvest period by increasing NO synthesis in fruits [10]. Babalar
et al. [8] stated that the L-arginine treatment improved the postharvest activity of CAT,
SOD, and APX. The L-arginine treatment effectively stimulated the increase in activities of
antioxidative enzyme including SOD in white button mushrooms [13] and tomatoes [54].

3.9. Total Antioxidant Capacity

This was decreased during storage in control fruits. The treatments effectively pre-
served the total antioxidant capacity. Application of 0.3 and 0.6 mM L-arginine did not
show a significant difference at 15 and 30 DAS. The highest antioxidant activity was related
to the 0.6 and 0.3 mM L-arginine treatment (71%and 67%), and the lowest antioxidant
activity was related to the control (42%) at 45th day (Figure 8).
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Figure 8. The effect of different levels of postharvest treatment of L-arginine on the total antioxidant
capacity of persimmon cv. “Karaj” fruits during cold storage (DMRT, p ≤ 0.05). The values of data
are average of n = 3, and bar represents standard error of the means. Different letters above the bars
show significant difference at p < 0.05 by Duncan’s multiple range test.

Antioxidants are found in the most fruits that scavenge and neutralize free radicals
in the body [55]. Persimmons are rich in antioxidant compounds such as ascorbic acid,
carotenoids, and different phenols, including soluble tannins and antioxidant enzymes [56].
Antioxidant compounds play a key role in the postharvest quality of fruits and the scaveng-
ing of free radicals during storage [55]. L-arginine treatment significantly contributed to
preserving the antioxidant capacity of pomegranates by preserving cell membrane integrity
and increasing total phenols and ascorbic acid content [8]. In strawberry fruit, L-arginine
was effective in preserving the antioxidant activity during storage at 20 ◦C [10].
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4. Conclusions

The application of safe treatments with no side effects for human health, such as
L-arginine, helps increase storability and protect the quality of persimmons during cold
storage. The treatment of L-arginine at a rate of 0.6 mM was more effective in prolonging
persimmon fruits storage life and contributed to decreasing chilling symptoms, preserving
firmness, and increasing antioxidant enzyme activities, including CAT, SOD, and APX
at 45 DAS. This treatment had no significant effect on TA and TSS. The results showed
that most qualitative parameters of the control fruits declined at 45 DAS, whereas the
treated fruits could be marketed even after 45 days of storage. Based on the results, it
is recommended to commercially apply L-arginine at 0.6 mM to extend the storage life
of persimmons.
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