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Abstract: Fermentation is one of the most economical and safe methods to improve the nutritional
value, sensory quality and functional characteristics of raw materials, and it is also an important
method for cereal processing. This paper reviews the effects of microbial fermentation on cereals,
focusing on their nutritional value and health benefits, including the effects of fermentation on
the protein, starch, phenolic compounds contents, and other nutrient components of cereals. The
bioactive compounds produced by fermented cereals have positive effects on health regulation.
Finally, the future market development of fermented cereal products is summarized and prospected.
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1. Introduction

The Food and Agriculture Organization (FAO) estimates that by 2050, the global
population will reach 9 billion [1]. In recent years, several major drivers have put the
world off-track to ending world hunger and malnutrition in all its forms by 2030 [2]. The
challenges have grown with the COVID-19 pandemic and related containment measures.
Moreover, global warming poses an impending threat for global food security [3]. Thus, the
problems of food supply can be effectively addressed by minimizing food loss and recycling
waste, evaluating by-products, improving nutritional value and extending storage time.
Fermentation, as an economic, universal and mature technology, can release the nutritional
ingredient of underutilized cereals and improve their nutritional content to develop new
sustainable foods with higher nutritional value [4].

Cereal is a traditional staple food of human beings and the main source of carbohy-
drates in food [5]. Cereals provide large amounts of energy, protein and micronutrients in
animal and human diets. They are considered to be one of the most important sources of
dietary protein, carbohydrates, vitamins, minerals and fiber for people around the world.
Cereals contribute around 50% of the mean daily energy intake in most populations, and
70% in some developing countries [6]. However, most cereals are more or less deficient in
some essential nutrients, such as the essential amino acids threonine, lysine and tryptophan.
On the other hand, cereals contain certain anti-nutrients, such as phytic acid, tannin and
non-starch polysaccharides. Anti-nutritional factors have low digestibility due to their easy
binding with proteins [7]. Furthermore, plant-based proteins usually contain fibers that
hinder the access of proteases, which therefore decreases protein digestibility [8].

Food fermentation dates back hundreds of years and is considered a food preservation
technique, as well as a tool for obtaining new flavors, fragrances and textures [9]. Fermenta-
tion can be defined as the biological process by which microorganisms transform substrates
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into new products, such as enzymes, and primary and secondary metabolites [10]. In
the microorganisms used for cereal fermentation, we often use molds or fungi, bacteria
and yeast [11]. Changes in fermentation conditions contribute to enzyme activation, and
changes in pH can improve the performance of certain enzymes, such as amylase, protease,
hemicellulase and phytase. Enzyme-induced changes and microbial metabolites work
together to give fermented cereal foods good process and nutritional effects [12]. As a unit
operation in food processing, fermentation offers a large number of advantages, including:
improving food safety, flavor and acceptability, increasing variety in the diet, improving
nutritional value, and reducing anti-nutritional compounds [13,14]. Many papers have
reviewed the changes in the nutrient composition of cereals caused by fermentation, but
they did not distinguish between different cereals. Therefore, this paper reviews the effects
of different fermentation strains and fermentation techniques on different cereals, includ-
ing the changes in their nutrient content and the health benefits of fermented products.
Moreover, the future market development of fermented cereal products is summarized and
prospected.

2. Modern Fermentation Technology

According to the state of the fermentation system, the microbial fermentation process
can be divided into liquid fermentation (LF) and solid-state fermentation (SSF) (Figure 1).
Liquid fermentation is based on the cultivation of microorganisms in a liquid medium
containing nutrients. Solid-state fermentation involves the growth and product formation
of microorganisms on solid substances in the absence (or near absence) of free water [15].
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2.1. Solid-State Fermentation Technology

Solid-state fermentation, as a biological process, can not only achieve large-scale pro-
duction and maximize the value of cereals in a simple way, but also reduce investment
and production costs, and does not produce a large amount of wastewater. It is an im-
portant means of energy conservation, emission reduction and low-carbon production at
present [16,17]. In recent years, with the deepening of related research, solid-state fermen-
tation has been widely recognized and applied. In solid-state fermentation of wheat bran
with Bacillus TMF-2, phytic acid was partially degraded, with a maximum degradation
rate of 34% as the fermentation went on. Furthermore, the content of soluble phenols is
almost three times that of raw wheat bran. The total proportion of polyphenols, antioxidant
capacity and the free radical scavenging rate were significantly increased; in particular, the
reduction capacity of Fe3+ increased 10-fold [18].

2.2. Liquid Fermentation Technology

Liquid fermentation mainly makes materials into a liquid state at first, and then
inoculating strains after sterilization, providing enough oxygen and a suitable external
environment, so that the strain can multiply in large quantities. The advantages of liquid
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fermentation are a wide range of raw materials, fast bacterial growth and short production
cycle. Moreover, liquid fermentation can effectively reduce the rate of bacterial contamina-
tion, and can be industrialized and is not limited by the season [19]. It has been reported
that a maximum 23.99 mM of ferulic acid was released from rice bran by Pediococcus
acidilactici in the liquid fermentation process [20].

3. Fermentation Strain

The common fermenting bacteria are species of Lactobacillus, Bacillus, Pediococcus,
Micrococcus and Streptococcus [21] (Table 1). In cereal fermentations, species of Lactobacillus
and Bacillus play a significant role in fermentation, as they hydrolyze complex polyphenols
to simpler ones and form biologically active compounds [22].

Table 1. List of Fermentation Strains of fermentation cereals.

Category Microorganism Material Results References

Bacteria

Lactobacillus plantarum
(P-S1016) Barley The free phenolic content ↑

The phenolic composition ↑ [23]

Lactobacillus fermentum (MR13),
Lactobacillus rhamnosus (C249,

C1272),
Lactobacillus plantarum (LB102,
LB124, LB126, LB245, 29DAN,

83DAN, 6BHI, 98A)
Lactobacillus brevis (3BHI)

Wheat The phenolic compounds content ↑ [24]

Lactobacillus acidophilus (LA-5),
Lactobacillus johnsonii (LA1),
Lactobacillus reuteri (SD2112)

Oat
Barley The content of free phenolic acids ↑ [25]

Lactobacillus amylovorus (NRRL
B-4540) Sorghum The anti-nutritional factors content ↓

The digestibility of protein ↑ [26]

Bacillus amylolytic Wheat bran The content of NDF and ADF ↓ [27]

Bacillus subtilis (KCTC 13241) Wheat bran The antioxidants and nutritional aspects ↑ [28]

Bacillus sphaericus
Bacillus licheniformis Wheat bran The content of feruloylated glycosides ↑ [29]

Bacillus natto Millet bran The structural and functional properties of
its dietary fiber ↑ [30]

Bacillus cereus Wheat bran The content of non-starch polysaccharide ↓ [31]

Bifidobacterium
pseudocatenulatum (ATCC

27919)
Rye Wheat The anti-nutritional factors content ↓ [32]

Bifidobacterium animalis Oat The amounts of free amino nitrogen ↑ [33]

Enterococcus faecalis (M2) Wheat bran The antioxidant capacity and free radical
scavenging rate ↑ [34]

Pediococcus acidilactici (M16) Rice bran The content of ferulic acid ↑ [20]

Streptococcus thermophiles Wheat bran The anti-nutritional factors content ↓ [35]

Yeast

Saccharomyces cerevisiae Rice bran The protein content and bioactivity ↑ [36]

Lipomyces kononenkoae Sorghum The protein content and digestibility ↑ [26]

Candida humilis (E-96250) Wheat bran The content of total phenols ↑ [37]

Candida santamariae (Y11) Rice The hardness, chewiness and mouthfeel of
noodles ↑ [38]

Fungi

Aspergillus niger Wheat bran The antioxidant and anti-inflammatory
capacity ↑ [39]
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Table 1. Cont.

Category Microorganism Material Results References

Aspergillus oryzae Wheat The phenolics and free radicals scavenging
activity ↑ [40]

Aspergillus awamorinakazawa Wheat The antioxidant properties ↑ [41]

Rhizopus oligosporus Rice bran The phenolic acid content and antioxidant
activity ↑ [42]

Rhizopus oryzae Rice bran The content of total phenolic ↑ [43]

Rhizopus azygoporus (MTCC
10195) Millet The content of total phenolic ↑ [44]

Monascus Purpureus Rice bran The phenolic acid content and antioxidant
activity ↑ [42]

Monascus pilosus (KCCM60084) Rice bran The content of total flavonoid ↑ [45]

Eurotium cristatum wheat bran The soluble dietary fiber content ↑ [46]

Trichoderma pseudokoningii Wheat bran The sugar content ↓ [47]

Thamnidium elegans (CCF 1456) Maize The content of total phenolic ↑
The radical scavenging capacity ↑ [48]

↑: Improved or increased; ↓: Decreased.

Yeast fermentation is commonly used in the preparation of alcoholic beverages, but
now yeast is also being evaluated for its potential to enhance cereals. Since yeast can grow
in a substrate with a low water content, solid-state fermentation can be carried out using
raw materials such as wheat bran and rice bran [49]. The common fermenting yeasts are
species of Saccharomyces, which results in alcoholic fermentation. A study found that
fermentation with yeast improves the cereal flavor and increases the antioxidant capacity
of cereals [50].

The common fermenting fungi are Aspergillus, Paecilomyces, Cladosporium, Fusarium,
Penicillium and Trichothecium. In addition, food-grade filamentous fungi (Aspergillus sp.
and Rhizopus sp.) are used to increase the amount of free polyphenols, so as to enhance
the bioactivity of various foods [51]. These fungi also produce highly digestible proteins
without any toxic substance being generated [52].

Single-strain treatment of cereal often has the defect of low fermentation efficiency,
which limits its application in fermentation. Co-fermentation of two or more microorgan-
isms is used to achieve the synergistic effect of metabolism of mixed culture strains [53]. In
recent years, microbial mixed fermentation has shown a series of advantages, which can
share the metabolic burden through the division of labor between strains and has the ability
to effectively transform complex substrates. For example, in the co-culture of filamentous
fungi Aspergillus niger and Aspergillus oryzae in wheat bran, the two strains were evenly
distributed, and the mixed culture secreted more enzymes that degrade the cell wall [54].
Monascus and Bacillus subtilis were co-cultured, the total phenol content of fermented oat
was 23 times that of unfermented oat [55]. Sourdough inoculated with Bifidobacteria was
able to increase the phytate hydrolysis and raise organic acid levels that modify the starch
digestibility, which could contribute to lowering the glycemic index [32].

4. The Changes in Nutrient Composition

Research in recent years has shown that fermented cereals have great potential to
improve and expand their health benefits. Fermentation can increase the biological activity
of cereals, and it helps to improve the ratio of nutritional composition to anti-nutritional
components, which encourages the production of new functional foods [56] (Figure 2). In
this section, we focus on the effects of fermentation on the main functional components of
cereal (Table 2).
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Table 2. Cereal fermentation studies and the main outcomes obtained.

Target Object
Microorganism

Involved in
Fermentation

Fermentation
Type

Fermentation
Conditions

Modification(s) in
Nutritional Constituents References

Wheat

Spontaneous
fermentation Liquid 96 h at 30 ◦C

Starch granule surface
was eroded; Pasting

properties of wheat starch
were changed.

[57]

Lactobacillus plantarum
Saccharomyces cerevisiae Solid 2 h at 20 ◦C

The continuity of the
gluten network was

enhanced.
[58]

Bacillus subtilis (KCTC
13241) Liquid 72 h at 25 ◦C

The content of free
phenolic compounds

increased;
The free radical

scavenging improved.

[28]

Spontaneous
fermentation Liquid 72 h at 20 ◦C

The content of tannin
decreased from

0.58 mg/100 g to
0.47 mg/100 g, and the

phytic acid content
decreased

from 464.1 mg/100 g to
371.28 mg/100 g.

[59]

Wheat bran

Lactobacillus brevis
(E-95612)

Candida humilis (E-96250)
Liquid 24 h at 30 ◦C The content of free amino

acids increased. [37]

Lactobacillus bulgaricus
Streptococcus thermophiles
Commercial baker’s yeast

Solid 24 h at 37 ◦C The content of phytic acid
levels reduced by 27.34%. [35]

Rice

Lactobacillus fermentum
(M9)

Candida santamariae (Y11)
Liquid 32 h at 30 ◦C

The ordered structures of
rice and starch granules

were disrupted.
[38]

Yeast
Lactobacillus Liquid 3 h at 37 ◦C

The contents of total
starch and amylose

increased.
[60]
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Table 2. Cont.

Target Object
Microorganism

Involved in
Fermentation

Fermentation
Type

Fermentation
Conditions

Modification(s) in
Nutritional Constituents References

Commercial baker’s yeast Liquid 6 h at 32 ◦C

The extractable total
phenols content increased

by 13%;
The content of phytic acid
decreased by nearly 41%.

[61]

Rice bran

Rhizopus oryzae Solid 120 h at 30 ◦C

The content of ash,
dietary fiber, protein, and

amino acid increased.
The content of water

content, lipid, and phytic
acid decreased.

[62]

Rhizopus oryzae Solid 72 h at 30 ◦C

Trypsin inhibitor activity
decreased by 24.8% and

phytic acid activity
decreased by 3.12%.

[63]

Maize

Lactobacillus casei
Lactobacillus fermentum
Lactobacillus plantarum

Solid 120 h at 37 ◦C

Fermentation hydrolyzed
part of the corn and flour
had smaller, irregularly

shaped particles.

[64]

Thamnidium elegans (CCF
1456) Solid 144 h at 25 ◦C

The content of total
phenolic increased;

The activity of
β-glucosidase was

enhanced;
The radical scavenging

capacity improved.

[48]

Lactic Acid Bacteria Solid 120 h at 25 ◦C

The majority of starchy
compounds decreased;
A slight increase of the
crude proteins content;

A significant increase in
minerals;

The tannin content
reduced.

[65]

Barley

Spontaneous
fermentation Liquid 72 h at 35 ◦C Grains with more pores,

broken and cracked. [66]

Lactobacillus plantarum
(dy-1) Liquid 24 h at 31 ◦C

The proportion of
essential amino acids

increased.
[67]

Lactobacillus plantarum
(dy-1) Liquid 24 h at 31 ◦C

The structure of β-glucan
could be changed;

The molecular weight of
β-glucan was reduced.

[68]

Lactobacillus plantarum
(P-S1016) Liquid 36 h at 37 ◦C

The free phenolic content
+ increased from 4.87 mg

GAE/g to 5.61 mg
GAE/g.

[23]

Lactobacillus johnsonii
(LA1),

Lactobacillus reuteri
(SD2112),

Lactobacillus acidophilus
(LA-5)

Liquid 18 h at 37 ◦C

The content of free
phenolic acids increased
from 2.55 to 69.91 µg/g

DM.

[25]
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Table 2. Cont.

Target Object
Microorganism

Involved in
Fermentation

Fermentation
Type

Fermentation
Conditions

Modification(s) in
Nutritional Constituents References

Sorghum

Spontaneous
fermentation Liquid 192 h at 30 ◦C

The content of sorghum
amylose was increased;

The gelatinization
temperature of sorghum

starch decreased.

[69]

Lactic Acid Bacteria Liquid 8 h at 37 ◦C

Both the essential and
non-essential amino acids

increased;
The antinutritional
factors decreased

[70]

Saccharomyces cerevisiae
Lactobacillus amylovorus

(NRRL B-4540)
Amylolytic yeasts

Liquid 24 h at 35 ◦C

Both the phytic acid
content and the ratio of
phytic acid to protein

decreased;
The digestibility of

sorghum protein was
improved.

[26]

Millet

Lactobacillus plantarum
(LP60171) Liquid 96 h at 37 ◦C

The distribution of
amylopectin chain length
tended to be short chain;
Fermentation improved
the properties of starch.

[71]

Rhizopus azygoporus
(MTCC 10195) Solid 24 h at 25 ◦C

The total phenolic
content was enhanced

from 6.6 to 21.8 mg.
[44]

Spontaneous
fermentation Liquid 72 h at 28 ◦C

The content of essential
and non-essential amino

acids increased;
The fermented biscuits

had higher moisture
levels, crude protein,

crude fiber and energy
value with a lower fat

and ash content.

[72]

Oat

Lactobacillus acidophilus
(LA-5),

Lactobacillus johnsonii
(LA1),

Lactobacillus reuteri
(SD2112)

Liquid 18 h at 37 ◦C

The content of free
phenolic acids increased
from 4.13 to 109.42 µg/g

DM.

[25]

Lactobacillus plantarum
(B1-6),

Rhizopus oryzae
Solid 72 h at 30 ◦C

The soluble protein
contents changed from

7.05 mg/g to 14.43 mg/g
for the co-inoculated

fermented oats.

[73]

4.1. Changes in Nutrient Composition of Fermented Wheat

Wheat (Triticum aestivum L.) is one of the most important grains consumed by humans
and a major source of energy [74,75]. Wheat and gluten-containing products have been
linked to a range of intestinal diseases, reducing their consumption worldwide and leading
to considerable demand for gluten-free products [76]. Fermentation can improve the
nutritional value of cereals and the sensory quality of products, and fermented products
are suitable for a wider range of people to eat [77].

The surface of wheat starch granules was slightly eroded during natural fermentation.
Pasting properties of wheat starch were changed by natural fermentation. The results show
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that fermentation is an effective method to modify wheat starch, and it has the potential to
improve the quality of starch-based food [57]. Ge et al. studied the effect of co-fermentation
of Lactobacillus plantarum and Saccharomyces cerevisiae on the structure and flavor of wheat
noodles. They found that co-fermentation enhanced the continuity of the gluten network
and promoted the formation of pores. Co-fermentation significantly increased the α-helix
ratio of gluten protein and enhanced the order of the protein molecular structure. Wheat
noodles were endowed with more desirable volatile components [58]. Moreover, Antognoni
et al. used different lactic acid bacteria strains to ferment wheat. Fermentation promoted
the release of phenolic substances, especially ferulic, p-coumaric, cinnamic, caffeic, sinapic,
p-hydroxybenzoic and gallic acids in the process of fermenting wheat [24]. A similar result
was found by Muhammad et al.: when wheat was fermented for 72 h, the content of free
phenolic compounds increased significantly [28]. Tannin is rich in wheat, corn, barley and
millet, which can inhibit the activity of digestive enzymes, reduce protein decomposition
and affect food intake. Some scholars believe that lactic acid bacteria fermentation can
hydrolyze tannins and phytic acid in cereals [78]. The degradation rate of phytic acid and
tannins of wheat anti-nutritional factors reached its maximum after 72 h spontaneous fer-
mentation, in which the content of tannins decreased from 0.58 mg/100 g to 0.47 mg/100 g,
and the phytic acid content decreased from 464.1 mg/100 g to 371.28 mg/100 g [59].

Wheat bran is a cheap lignocellulosic biomass and the main by-product of wheat flour
production [79]. Wheat grain consists of bran, germ and endosperm. The bran is located in
the outermost layer of the wheat grain, accounting for about 13% to 19% of the total weight
of wheat grain [80]. Wheat bran contains a large amount of total dietary fiber (451 g/kg), as
well as other related compounds, including protein (160 g/kg), fat (47 g/kg), carbohydrates
(177 g/kg) and minerals (61.5 g/kg) [81]. It appears to be an abundant and cheap material
for the production of functional food and feed ingredients. However, wheat bran contains
more phytic acid and other anti-nutritional factors. Besides, the content of insoluble dietary
fiber is higher [82].

Arte et al. analyzed the modification effect of bioprocessing on wheat gluten; they
found fermentation degraded the protein into amino acids and peptides, while increasing
the content of free amino acids. In addition, there is a clear tendency of increasing phytase
activity and decreasing anti-nutritional factors [37]. Zhao et al. used commercial baker’s
yeast and lactic acid bacteria to ferment wheat bran. The co-fermentation of the two
microorganisms reduced phytic acid levels by 27.34%, degraded cell wall components and
produced more flavor compounds. Moreover, the total dietary fiber and soluble dietary
fiber increased after solid-state fermentation [35]. The non-starch polysaccharides in cereals
are difficult for the digestive system of single-stomach organisms to digest and absorb.
Furthermore, they tend to cause the accumulation of digesta in the digestive tract, and lead
to intestinal microbial disorder [65]. Studies have shown that Bifidobacteria can use xytritose
and xytetracose [83]. In addition, fermentation of wheat bran with Bacillus can effectively
reduce the content of non-starch polysaccharides [31]. Therefore, fermentation can improve
the bioavailability of nutrients and the content of bioactive substances.

4.2. Changes in Nutrient Composition of Fermented Rice

Rice (Oryza sativa L.) production is concentrated in Asia (around 90% of total world
production), with China and India being the largest national producers and consumers of
rice. It is also considered a promising ingredient in gluten-free products that are nutritious,
easy to digest, and hypoallergenic, attracting widespread attention from the food industry
and researchers [84]. However, rice flour lacks viscoelastic gluten protein, has lower
viscosity, and the processed product has an unsatisfactory appearance, taste, aroma and
texture [85]. Rice is considered to be a high glycemic index (GI) food [86]. Long-term
consumption of high GI foods can lead to chronic diseases such as obesity, cardiovascular
disease and type II diabetes [87,88]. Microbial fermentation is one of the necessary processes
for the fermentation of rice cake and rice flour, which can better control the function of
rice-based foods [84].



Foods 2022, 11, 2243 9 of 21

Research was also conducted by Li et al. to evaluate the effect of Lactobacillus fermentum
M9 and Candida santamariae Y11 co-fermentation on rice. The fermentation disrupted
the ordered structures of rice (starch crystallites) and broke starch granules, which was
preferable for the swelling and molecule leaching of rice noodle matrixes with enhanced
molecule interactions [38]. The contents of total starch and amylose in rice flour were
significantly increased by fermentation of rice flour for 5–10 days. Fermentation degrades
the amorphous region of starch grains by enzymes and organic acids, which reduces
the polydispersity index and molecular weight of the molecular structure of starch, thus
reducing the cooking loss of extruded instant rice [89]. The same results were obtained
by fermentation of rice starch with Yeast and Lactobacillus strains [60]. A study reported
that the structure of rice starch did not change significantly, but the content of protein
decreased after 72 h of natural fermentation. The characteristics of gelatinization enthalpy
and texture were changed. After fermentation, the contents of hydrophobic amino acids in
rice flour increased. They found that the substantial effect of fermentation on the functional
properties of starch was related to protein properties [90]. Fermentation caused a significant
increase in the extractable total of phenols in fermented brown rice flour of 13%. In
addition to this, the contents of zinc, phosphorus, magnesium, iron and calcium increased
significantly, while phytic acid decreased by 41% after fermentation. The reduction in
pH during fermentation may activate phytase that degrades phytic acid complexes and
releases minerals. The results indicate that fermentation increases mineral bioavailability
and decreases anti-nutrients [61].

Rice bran is a by-product produced during rice milling, accounting for about 10–13%
of brown rice [91]. Rice bran is rich in nutrients and bioactive ingredients, including dietary
fiber, vitamins, ferulic acid and γ-aminobutyric acid, tocopherol and vitamin E [92]. Rice
bran is an important nutrient source of oil, protein and non-starch polysaccharide, and has
more nutrients than white rice [93]. However, rice bran has been mainly used as animal
feed, which is a huge waste of food resources [94]. Food-processing technology such as
fermentation can improve the sensory quality of rice bran [95]. Proteins increased more than
two times when compared to the unfermented bran at 0 h; the content of protein increased
from 11% to 29% after 4 days of fermentation [96]. With respect to the effect of fermentation
on phenolic compounds, Chen et al. reported an increase of free phenols and bound
phenols in rice bran caused by Rhizopus oryzae [97]. Ranjan et al. inoculated Rhizopus oryzae
in de-oiled rice bran; the trypsin inhibitor activity significantly decreased by 24.8% and
phytic acid activity decreased by 3.12% after 3 days of solid-state fermentation [63].

4.3. Changes in Nutrient Composition of Fermented Corn

Maize or corn (Zea mays L.) is the main cereal crop grown and produced on all five
continents [98]. Corn is considered the third most important cereal crop in the world after
wheat and rice, and is one of the population’s staple foods [81]. In respect to nutritional
quality, corn can not only provide sufficient energy for the human body, but it is also
rich in protein, minerals, vitamin lecithin, calcium, magnesium, selenium and other trace
elements. Corn can enhance the human metabolism and adjust the function of the nervous
system. Moreover, corn plays a positive role in the prevention of fatty liver, stomach disease,
enteritis, skin aging and even cancer [99]. Corn lacks gluten. It is difficult to form gluten,
resulting in easy water loss and cracking of dough, poor viscoelasticity and extension. In
addition, pure cornmeal food has a poor taste, so a lot of corn is used to make alcohol or
feed, and only about 5% of corn is grown directly for food [100]. Therefore, corn flour was
modified by means of microbial fermentation to improve bioavailability.

The work of Yaqoob et al. showed the effect of lactic acid bacteria (LAB) on corn
flour. During the fermentation, Lactic acid bacteria hydrolyzed part of the corn flour,
resulting in smaller, irregularly shaped particles with more holes in them. Furthermore,
the textural, thermal and pasting profile was also improved due to the degradation of
macromolecules, making it more suitable for processing various flour products than before
fermentation [64]. Lactobacillus plantarum T6B10 and Weissella confusa BAN8 were used as
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selected starters to ferment corn milling by-products. After fermentation, the content of
free amino acids and polypeptides improved. Adding fermented corn by-products to bread
significantly improves protein digestibility (up to 60%) [101]. Salar et al. found that, with
the increase of total phenolic content in raw materials, the activity of β-glucosidase was
enhanced in the process of corn fermentation, which could hydrolyze phenolic glycosides
and release free phenols [48]. The reason may be that enzymes produced in the process of
microbial fermentation promote the modification of cereal and the distortion of chemical
bonds, thus accelerating the further degradation of bound phenols [51]. Decimo et al.
fermented corn bran with Lactobacillus plantarum, which increased the content of soluble
dietary fiber in corn, while reducing the content of phytic acid, which is conducive to the
body’s absorption of calcium, magnesium and other important elements [102]. Sokrab
et al. also found a similar phenomenon: the change in the content of trace elements in
corn meal fermented by lactic acid bacteria was related to the change of mineral content
during fermentation [103]. Tchikoua used lactic acid bacteria to ferment corn meal. They
found that tannins, phytic acid and non-starch polysaccharides were reduced, improving
its nutritional properties [83].

4.4. Changes in Nutrient Composition of Fermented Barley

As the fourth largest cereal in the world, barley (Hordeum vulgare L.) grains are rich
in dietary fiber, protein, minerals and a variety of other bioactive phytochemicals [104].
Eating whole barley helps control weight and reduces the risk of chronic diseases such as
heart disease, type II diabetes and colon cancer [105,106]. However, the sensory quality of
barley was poor due to its high dietary fiber content and low gluten protein content [107].
The majority of barley production has been used for animal feed and brewing material;
only about 10% of barley is consumed directly by humans in China, leaving a lot of
waste [108,109]. Fermentation, as a biological processing method, is one of the effective
and mild treatment methods for improving the properties of the raw materials of food.

Using natural fermentation of barley starch decreased the amount of amylopectin
long chains, while increasing short chains. They found that after 72 h of fermentation,
grains with more pores, that were broken and cracked, were found under the microscope,
and their molecular weight decreased from 2.26 to 1.04 ×108 g/mol [66]. Xiao et al.
found that the proportion of essential amino acids such as glutamate, glycine, alanine and
methionine in fermented barley powder increased [67]. This may be related to the mutual
transformation of amino acids during Lactobacillus plantarum fermentation. Lactic acid
bacteria produce proteases during fermentation, which hydrolyze proteins, increase the
content of free amino acids [110]. Bamdad et al. found the same result when they studied
the fermentation of barley protein by lactic acid bacteria [111]. Zhang et al. found that the
content of free phenolic acid, especially the content of ferulic acid, increased significantly
after barley fermentation [112]. The reason is that lactic acid bacteria can secrete ferulic
acid ester enzymes; these esterase hydrolyze carboxylate bonds with xyllase, and release
polyacid compounds such as ferulic acid from polysaccharide [22]. Xiao et al. found
that the structure of β-glucan could be changed by fermentation, the molecular weight
of β-glucan was reduced, and the proportion of β-(1→3) and β-(1→4) residues increased.
These structural changes enhanced the water adsorption or molecular binding ability in
barley [68]. Fermentation is an important means of modification and release in cereal
dietary fiber. Due to the production of organic acids, a variety of endogenous enzymes
or bacterial enzymes in cereal may be activated, biopolymers are degraded, the texture
softens, and fiber is dissolved or released [113].

4.5. Changes in Nutrient Composition of Fermented Sorghum

Sorghum (Sorghum bicolor L.) is the fifth largest cereal in the world, after wheat, rice,
corn and barley, and plays an extremely important role in agricultural production [114].
Sorghum is a staple food for people and livestock around the world, especially in arid areas
of Africa and Asia [115]. Although sorghum has contributed to global food production, the
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value of sorghum has not been fully utilized due to its poor palatability and rough taste,
which is not easily accepted by consumers [116]. Sorghum grains are rich in antioxidants
such as polyphenols, which may protect against certain cancers, prevent diseases related to
oxidative stress, antibacterial and anti-inflammatory effects, and it also improves glucose
metabolism [117].

Starch is the main carbohydrate in sorghum; the mass fraction is about 60~70%, and
the highest can reach about 80%, so the physical and chemical properties of starch directly
affect the food quality of sorghum [118]. Ge et al. researched natural fermentation of
sorghum. They found that fermentation can increase the content of sorghum amylose.
After fermentation, the gelatinization temperature of sorghum starch decreased and its
physical and chemical properties changed. The aging characteristics of starch were im-
proved, and it was more suitable for the production of products made from starch aging
characteristics [69]. The average crude protein content of sorghum was 9.36%, ranging from
8.26% to 10.46% [115]. The strong bonds between sorghum protein and starch limits the
hydrolysis and effectiveness of nutrients [119]. In addition, the existence of anti-nutritional
factors can interfere with the digestion of protein in grains. Therefore, sorghum protein has
the disadvantage of low digestibility and poor quality [120]. Mohapatra et al. used lactic
acid bacteria (LAB) to ferment sorghum grains. It was observed that both the essential and
non-essential amino acids increased during the LAB fermentation, while the anti-nutritional
factors such as trypsin inhibitor also decreased with fermentation. Moreover, they also
found the content of crude fibers increased from 2.76% to 3.41% during fermentation. Fer-
mented sorghum can improve the bioavailability of nutrients, especially amino acids [70].
Studies have also shown that Lipomyces kononenkoae and Saccharomyces cerevisiae fermented
sorghum, both of which reduced the phytic acid content and the ratio of phytic acid to
protein, thus improving the digestibility of sorghum protein [26]. Similar results have been
reported by ELKhier [121].

4.6. Changes in Nutrient Composition of Fermented Millet

Millet (Setaria italic var. germanica (Mill.) Schred) has a short growing period and
strong resistance to pressure, and its grains are easy to store. China leads the world in millet
production, accounting for four-fifths of total production. Millet is a gluten-free, nutritious
whole grain food. Compared with our current staple foods of rice and wheat, millet
contains a variety of vitamins, minerals and a high level of protein [122]. The proportion of
nutrients is reasonable, and the body can make good use of these nutrients. In addition
to being nutrient-rich, it also has a lower glycemic index than staple foods made from
rice and wheat flour [123]. Furthermore, some polyphenols in millet have antioxidant
properties and have been associated with reduced risk of chronic diseases and oxidative
stress responses [124]. However, millet is an underutilized food resource in many countries,
so it has great potential as a food and beverage source for humans [125]. Fermentation
produces a variety of metabolites, including antioxidants, vitamins and polyols, which may
confer specific health benefits [126].

The amylose content of glutinous proso millet starch fermented by Lactobacillus plantarum
increased and then decreased, and the distribution of amylopectin chain length tended to
be short-chain. Fermentation can improve the properties of starch, especially water absorp-
tion, expansion and gelatinization, which is helpful for starch modification [71]. It was
found that the total phenolic content (TPC) was enhanced after fermentation. Fermentation
by Rhizopus azygoporus significantly increased the TPC in pearl millet from 6.6 to 21.8 mg,
which was due to the release of phenolics through the activity of carbohydrate lyase and
β-glucosidase [44]. Fermentation was further observed to increase the majority of essential
and non-essential amino acids. Therefore, fermentation of pearl millet increased the nutri-
tional value of flour, which is a potential material for gluten-free products [72]. Bacillus. natto
fermentation enhanced the soluble dietary fiber content from 2.3% to 13.2%, and the soluble
dietary fiber/insoluble dietary fiber ratio from 3.1% to 19.9%. During fermentation, the cel-
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lulose and hemicellulose degraded, thereby forming more porous and loose structures and
polysaccharides in millet bran [30].

4.7. Changes in Nutrient Composition of Fermented Oat

Oat (Avena sativa L.) is an annual herb, one of the eight major cereal crops [127].
Oat is unique among all cereal crops because of its high concentration of dietary fiber,
β-glucan, unsaturated fatty acids and phenolic compounds [128]. In addition, due to
the highest protein content (12.4–24.5%) and balanced amino acid composition, oats are
considered as a potential low-cost protein source and food material to replace meat and
dairy products [129,130]. The polyphenols found in oats include phenolic acids (such as
caffeic acid, p-coumaric acid and ferulic acid), flavonoids and a unique group of amides
called oat anthramide, which have a strong antioxidant capacity in vitro and in vivo [42].
Therefore, oats have a high nutritional value for human food, animal feed and health
care [131].

Research shows that after solid-state fermentation with Lactobacillus plantarum and
Rhizopus oryzae, the soluble protein contents changed from 7.05 mg/g to 14.43 and 10.21 mg/g
for the co-inoculated fermented oats (CFO) and the R. oryzae-fermented oats (RFO), respec-
tively. In addition, both CFO and RFO presented higher ACE inhibitory activities than
unfermented oats [73]. It was found that oat protein was hydrolyzed into polypeptides
and small molecular proteins after solid-state fermentation with Lactobacillus plantarum and
Bifidobacterium animalis; the nutritional value and antioxidant activity of oat protein were also
significantly enhanced [33]. The reason may be that the pH value of the substrate decreases
after fermentation, the endogenous protease is activated, and the macromolecular protein is
degraded [110]. On the other hand, due to hydrolysis in fermentation, the interaction with
protein may be weakened and the solubility of protein increases [132]. Calinoiuc et al. found
that the content of avenanthramide and ferulic acid in oat bran increased by 48.5% and 21.2%,
respectively, after solid-state yeast fermentation [133]. This increase in free phenolic acids has
previously been shown in other studies; the bioavailability of oat powder fermented by lactic
acid bacteria was improved [25]. It was found that this may be related to the degradation
of the ceral’s dense cell wall matrix by enzymes. Enzymes are derived from fermentation
microorganisms that promote the release of phenolic compounds [134].

5. Health Benefits of Fermented Cereals
5.1. Antioxidant Activity

Microorganisms can modify antioxidant constituents during the fermentation process.
In general, biological activity is assessed by different chemical tests including DPPH, ORAC,
FRAP and ABTS for antioxidant and free radical scavenging in vitro. Indeed, various stud-
ies have shown that phenolic compounds are positively associated with antioxidant activity,
and microbial fermentation can enhance the dissolution and extraction efficiency of to-
tal polyphenols [7,135,136]. For example, the contents of ascorbic, galli, and p-coumaric
acids in pearl millet increased remarkably with fermentation, thus enhancing the antiox-
idant activity of pearl millet extracts [137]. Research showed that the total polyphenol
content increased from 0.20 g/100 g in unfermented wheat bran to 0.81 g/100 g in fer-
mented wheat bran. Meanwhile, the DPPH and ABTS free radical scavenging rate of
wheat bran significantly increased after Eurotium cristatum fermentation [46]. Due to fer-
mentation, free phenolic content in black barley increased to 5.61 ± 0.02 mg GAE/mL.
Moreover, free phenolic extracts from fermented barley played a greater role in targeting
against H2O2-induced oxidative injuries in human hepatocarcinoma cells, which inhibited
ROS production and improved cell viability, cell membrane integrity and SOD activity [23].
Moreover, Chu et al. found that the content of total phenolic acid from millet bran increased.
Fermentation enhanced the free radical scavenging ability of DPPH, and antioxidant activity
increased after fermentation [30]. During the fermentation process, the content of antioxi-
dant polysaccharides, antioxidant peptides and phenolic compounds increased through
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microbial hydrolysis or biotransformation. Overall, results indicate that fermentation in
many cases contributed to enhancing antioxidants’ content and antioxidant capacity.

5.2. Antiobesity and Anti-Glycolipid Disorder

Obesity and its related metabolic syndrome have become a global challenge, placing a
common burden on mankind. The development of obesity is caused by disturbance of lipid
metabolism and glucose homeostasis, and these diseases are often accompanied by oxida-
tive stress and insulin resistance [138,139]. Zhang et al. found that Lactobacillus plantarum
fermentation of barley extract (LFBE) can regulate lipid metabolism and improve insulin
resistance in obese rats through animal experiments. LFBE can significantly reduce body
weight, decrease the contents of total triglyceride (TG) and total cholesterol (TC) in serum
and the liver, and improve the glucose tolerance of obese rats [112,140]. In fact, the
use of pre-fermentation technology (sourdough) could reduce starch digestibility to reg-
ulate glucose metabolism [12]. Gu et al. found that Lactobacillus plantarum fermenta-
tion of barley extract protein significantly increased glucose consumption. Moreover,
Lactobacillus plantarum fermentation of barley extract protein significantly increased the
expression of UCP1, PGC-1 and other genes directly related to lipid lowering and thermo-
genesis in 3T3-L1 cells [141,142]. These findings indicate that natural antioxidants, such as
polyphenols, protein from fermented cereals, may be potentially used as functional food
ingredients to prevent obesity and hyperlipidemia.

5.3. Anti-Inflammation Activity

Inflammation is the immune system’s response to harmful stimuli. Inflammation can
be triggered by a variety of factors, including pathogens, damaged cells and toxic com-
pounds [143,144]. Thus, inflammation is a defense mechanism that is critical to health. Stud-
ies have shown that polyphenols found in fermented products are beneficial to microbial
metabolism and growth, and can inhibit the production of inflammatory cytokines [145,146].
YIN et al. isolated an Aspergillus niger strain from solid-state fermentation, and found that it
significantly increased the release of bound ferulic acid in wheat bran. In addition, TNF-α,
IL-6 and NO hydro levels indicated that fermentation of wheat bran could inhibit the
inflammatory response induced by lipopolysaccharides [39]. Morena et al. used yeast
and lactic acid bacteria to co-ferment wheat flour, and the fermented wheat flour showed
higher antioxidant activity. In the transfected HT-29 cells, the fermentation broth effectively
protected TNF-α-induced changes by significantly reducing the expression of IL-8 and
COX-2 inflammatory mediators, which has a potential role in the treatment of intestinal
inflammatory diseases [147]. The extract of barley fermented by Aspergillus can reduce
chronic alcoholic liver injury and inhibit the proliferation of inflammation by inhibiting
oxidative stress [148,149]. Moreover, fermented black rice bran extracts (FFs) were admin-
istered to rats with alcohol-induced chronic liver injury over 12 weeks. Treatment with
FFs was also found to normalize the alcohol-induced upregulation of gene expression on
critical inflammatory markers [150].

5.4. Anti-Cancer Activity

Various components in the grain, such as binding phenols, free phenols, free polyphe-
nols, β-glucan, have cytotoxic effects on a variety of cancer cells [151]. Functional substances
with antioxidant and immunomodulatory in cereals are associated with an anti-cancer
effect [152]. Xiao Xiang et al. found that the Lactobacillus plantarum fermentation of barley
extract (LFBE) can significantly inhibit human colon cancer HT-29 cell proliferation, which
has the effect of inducing apoptosis of the cancer cells [153]. Japanese scholars found
that residues from Saccharomyces cerevisiae fermentation of barley Shochu had therapeutic
effects on mice models of liver cancer cells. Furthermore, the study demonstrated that
fermentation products have stimulation effects on anti-tumor immunity. Suphot et al.
investigated the chemo-preventive effect of fermented brown rice and rice bran (FBRA) on
inflammation-related colorectal carcinogenesis in ApcMin/+ mice. These results suggest
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that FBRA significantly suppressed the multiplicity of colon tumors in comparison with
the control diet group [154]. Additionally, Kunishige et al. found that fermented brown
rice and rice bran with Aspergillus oryzae is an effective chemo-preventive agent against
inflammation-related carcinogenesis that acts by inhibiting inflammatory cell infiltration
into inflammatory lesions [155].

5.5. Immunomodulation Activity

Immunity is critical to maintaining homeostasis, which keeps animals healthy and
growing. The destruction of the immune system is the cause of various diseases. For exam-
ple, cancer progresses by lowering immunity [156]. In other words, cancer growth seems to
be effectively suppressed by boosting immune activity. Wang et al. used Bacillus subtilis
and Saccharomyces cerevisiae to ferment wheat bran polysaccharides. The fermented wheat
bran polysaccharides affect the immune responses of lambs, inducing the production of
IgG and IgM. The results show that fermented wheat bran polysaccharides could stimulate
the secretion of anti-inflammatory cytokines [157]. Wang et al. found that long-term supple-
mentation of 10% fermented wheat bran can improve the immune performance and laying
performance of laying hens by affecting serum biochemistry, reproductive hormones and
inflammatory responses [158]. Other researchers have also found the same conclusion; they
used Bacillus, Lactobacillus and Saccharomyces cerevisiae to ferment corn, soybean and wheat
bran as chicken feed. After long-term feeding, fermented diets improved the intestinal
morphology and barrier function of laying hens [159]. The mechanism is complex and may
be related to more nutrients produced by fermented cereals. In addition, fermented cereals
have better anti-inflammatory effects and can improve gastrointestinal immunity. These all
help to improve the body’s immune function.

6. Conclusions

This review explores the potential of microbial fermentation in cereal science, showing
its positive impact on food nutrition and health. The added nutritional value of fermen-
tation improves the properties of the product, making it a better food ingredient than the
original cereal. To sum up, fermentation is considered to be an effective tool to enhance
the nutritional and functional value of cereal products, meeting the needs of modern
consumers for health-promoting products and bringing new opportunities to the food
industry (Figure 3). Most of the processing technologies of fermented cereals food are still
in the laboratory stage and a long way from large-scale industrialization and industrial
production. Accordingly, further optimization of the processing technology and formula
to meet the needs of industrialized production has also become an important direction of
research on fermented cereals food processing. Future efforts should focus on industrial
production, research on fermentation technology, and achieve large-scale production. In
addition, current studies on the health benefits of cereal fermentation products are limited
to mice and other animals, and there is still a lack of adequate clinical validation. Therefore,
further clinical trials need to be designed to reveal the fundamental mechanism of action
of cereal fermentation products on human health. Cereal-based fermented products are
often limited by the sensory characteristics of the products, making it a challenge to strike
a balance between health and good flavor to satisfy the tastes of consumers around the
world. The future viability and success of these fermented cereal products depends on
their consumer acceptance. Therefore, further research on the innovations of fermented
foods is encouraged, including the fermented foods currently on the market. This review
has provided helpful information on the effect of the fermentation process on the bioactive
substances and health benefits of different cereals.
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