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Abstract: Natto is a famous traditional fermented food, but the influence of the fermentation process
on the content and composition of soybean isoflavones and nutritional value is still unclear. In the
present study, the variation in soybean isoflavones during fermentation by Bacillus subtilis natto
was revealed by UPLC-ESI-MS/MS (Ultra high performance liquid chromatography-electron spray
ionization-mass spectrometry) analysis. After 24 h of fermentation, the total isoflavone content
in natto increased by 1.62 times compared with fresh soybean, and the content of aglycones was
3.07 times that of raw beans. More importantly, among 14 isoflavone isomers identified in natto, the
isomers of daidzin, genistin, and succinyl genistin were detected for the first time, which might be due
to the result of isomerase and succinylase and other corresponding enzymes’ action in Bacillus subtilis.
In addition, natto isoflavones performed great antioxidant activity than its monomer components
(glycosides daidzin and genistin, aglycones genistein and daidzein), except for genistein. Moreover,
natto isoflavone and its aglycones (especially genistein) performed great inhibitory activity against
AGEs (Advanced Glycation End Products) in three in vitro models. The mechanism test showed
that genistein could form adducts (UPLC-Q-TOF-ESI-MS/MS analysis) with methylglyoxal. These
findings demonstrated that soybean fermented with Bacillus subtilis natto had a significant influence
on the isoflavone profiles and its bioactivity.

Keywords: natto; isoflavone; isomer; antioxidant; anti-glycation

1. Introduction

Natto is a traditional food fermented from soybean by Bacillus subtilis [1,2], and it
has been widely and stably consumed in Asia for centuries. Since the discovery that soy
consumption is associated with a reduced risk of breast cancer in women due to bioactive
ingredients such as isoflavones (genistein, daidzein, and glycitein), fermented natto is
thought to be more nutritious and have more health benefits than raw soybeans, although
its acceptability in western countries is limited due to its distinct aroma and flavor.

Over the last four decades, more than 10,000 global scientific papers and reviews have
appeared on isoflavones, and these publications have identified the structure and several
benefits of isoflavones in the diet [3]. As one of the most important effective ingredients
in soybean, isoflavones are bioactive compounds of non-steroidal and phenolic nature
with the mother nucleus of 3-benzopyranone, with mildly estrogenic properties and often
referred to as phytoestrogen [4–8]. There is a total of 12 kinds of soybean isoflavones
naturally existing in soybean, which can be divided into three categories, namely daidzin
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groups, genistin groups, and glycitin groups. Each type exists in four forms: free aglycones,
glucoside type, acetyl glucoside type, and malonyl glucoside type (Figure 1), and it must
be noted here that malonyl glucosides almost are hydrolyzed and converted into highly
active aglycones in the fermentation process. Spontaneously, the strategies to enhance
the content of total isoflavones in soybean-based food have received greater attention in
both laboratory and industry settings, and the treatment of soybean by microorganisms
(fermentation) has been proved to be one of the safe and effective tools to achieve this
goal [9].
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According to recent studies, the fermentation procedure could change the isoflavone
profiles and greatly boost the biosynthesis and bioavailability of soybean isoflavones, espe-
cially the content of aglycones with higher bioactivity and digestibility [10,11]. The greatest
increases were found when using Pseudomonas fluorescens (1.28-fold) and Stenotrophomonas
maltophilia (1.32-fold), whereas Aspergillus sojae allowed the greatest increase in aglycon
isoflavones (8.74-fold), with increases of 12.15-, 11.23-, and 1.17-fold for daidzein, genistein,
and glycitein, respectively. More interestingly, we also found that the isoflavone glycosides
(daidzin and genistin) in natto fermented were not only modified but also isomerized,
forming a pair of glycoside isomers at C4′ and C7 positions of B ring and A ring, which
were previously only found in human metabolism, but have not been reported in natto.
These isomers showed significant biological activity and might provide a better utilization
value of soybean-based food. As a result, this bio-transform exerts beneficial effects on
menopausal symptoms, metabolic-related diseases, and cancers [12]. For example, in a
previous report published by Toda [13], soybeans fermented with Bacillus subtilis (natto)
not only biosynthesized several new isomers of isoflavone (6”-O-acyl isoflavone glycosides
and 6”-O-succinylated isoflavone glycosides), the fermented food also possessed great
preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet. However,
compared with the widely studied nattokinase and menaquinone-7, soybean isoflavones
in natto have received less attention. To the best of our knowledge, the structure and
modification of isoflavones in natto and its anti-organic free radical and glycosylation
inhibition features are relatively few reports.

Advanced Glycation End Products (AGEs) are stable end products of a non-enzymatic
reaction involving a reducing sugar carbonyl and a free amino group of an amino acid or
protein, lipids, nucleic acid, and other macromolecular components [14], and as toxic com-
pounds, the accumulation of AGEs in body fluids contributes to toxic pathogenesis, such
as Alzheimer’s disease, atherosclerosis, cardiovascular diseases, cancer, Lipid metabolism
disorder, cataract, retinopathy, inflammation, and oxidative stress [15,16]. In recent years,
the development of natural AGEs inhibitors has become a hot spot. As natural antioxidant
agents, flavonoids, such as quercetin, genistein, and gallic acid, are efficient glycoxidation
inhibitors that have been extensively investigated [17,18]. As previously reported, soybean
isoflavones represented by genistein mainly inhibit the production of AGEs by capturing
dicarbonyl compounds [19]. The inhibitory activity of soybean isoflavones on glycation is
affected by chemical structure and is proportional to its antioxidant activity [20]. Therefore,
the effects of isomerization on the isoflavone profile during soybean-based food fermenta-
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tion and changes in anti-organic free radical and glycosylation inhibition activity alteration
worth to be investigating.

In order to solve the above issues, the purpose of the present paper was to finely ana-
lyze the composition of soybean isoflavone in natto by Bacillus subtilis and identify its chem-
ical structure through UPLC-ESI-MS/MS(Ultra high performance liquid chromatography-
electron spray ionization-mass spectrometr) analysis, especially analyzing the formation of
isoflavone isomer and its succinylated derivatives for the first time in detail. In addition to
describing the nutritional composition of natto, antioxidant, and anti-glycation activities of
purified soybean isoflavones in vitro were emphatically studied. Results obtained through
the present paper will provide an experimental basis and new ideas for the utilization and
health significance of natto.

2. Materials and Methods
2.1. Chemicals and Materials

Daidzein, glycitein, genistein, daidzin, glycitin, and genistin were purchased from
Yuanye Biotechnology Co., Ltd. (Shanghai, China) with a purity ≥98%. Methanol (HPLC
grade) was purchased from Thermo Fisher Scientific (Shanghai, China). All other chemicals
and reagents were analytical grade, and reverse-osmosis Milli-Q water was used.

The fresh soybeans were purchased from the local supermarket. Bacillus subtilis natto
ATCC 65301 used for fermentation was purchased from American Type Culture Collection
(ATCC) and maintained in 20% glycerol at −80 ◦C. Its cultural conditions and activation
methods are applied according to the report of Li [21].

2.2. The Fermentation of Soybean and Isoflavone Preparation

Before fermentation, 200 g of fresh soybean was soaked in 600 mL water for 6 h, and
the damaged and non-foaming beans were removed. Then, the selected soybeans were
sterilized at 115 ◦C for 30 min. After natural cooling, the activated B. subtilis strain solution
(10 mL, 1.24× 1012) was sprayed on the 100 g soybean surface in the sterilized fermentation
box, and the soybean was rotated with a spoon to ensure complete and even inoculation.
The fermentation process was maintained at 37 ◦C for 24 h and then placed in a 4 ◦C
environment for 12 h (post-ripening stage) [22].

Then, freeze-dried natto was grounded into powder for degreasing by Soxhlet extrac-
tion. Place the freeze-dried natto powder in a filter paper bag and extract it for 12 h with
petroleum ether at a boiling range of 30 to 60 ◦C; then, the fat-free natto freeze-dried powder
was obtained. Through single-factor orthogonal experiments, the optimal extraction pro-
cess parameters of natto isoflavone were determined as follows: 1.0 g defatted natto powder
was mixed with 35 mL methanol solution (80%, v/v) and stirred at 50 ◦C for 150 min, and
the extraction process was repeated three times, and then the supernatant was collected and
combined. After removing methanol, crude soybean isoflavones were obtained through
freeze-dried treatment. In addition to a small number of soybean isoflavones required in
natto, huge content of water, protein, water-soluble polysaccharide, ash, and so on needed
to be removed by AB-8 macroporous resin. As a polystyrene weak polar adsorption resin,
AB-8 may bind strongly hydrophobic soybean isoflavones. After dissolving the crude
soybean isoflavone extract in water, the sample was loaded into the column at a ratio of
1:5, adsorbed by AB-8 macroporous resin, and washed with distilled water at a ratio of
5 times the column volume to remove soluble proteins and polysaccharides, and then the
Coomassie brilliant blue method and the molish reaction, respectively, determined whether
the proteins and polysaccharides were completely removed. Finally, elute the soybean
isoflavones with 95% ethanol after eluting the resin column with 20% ethanol and twice the
column capacity. After purification, the darkest and clearest liquid column was gathered as
the finished good.

Therefore, the traditional chemical method and AB-8 macroporous resin were uti-
lized according to Xi [23] to achieve the goal of purification, and the purity of soybean
isoflavones (µg of β-glucoside equivalent/mL) was determined with the reference of
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genistin and daidzin according to the protocol provided by Yanaka [24]. The content of
soybean isoflavones was then determined by the normalization method.

Daidzin and genistin accounted for 97% of the total content of soybean isoflavones,
and the ratio of genistin to daidzin was 3:1. An ultraviolet-visible (UV-vis) spectrophotome-
ter (UV-1800, Shimadzu, Kyoto, Japan) was utilized to detect the absorbance at 260 nm.
Two calibration curves for the daidzin and genistin standard (at concentrations of 0.002,
0.004, 0.006, 0.008, 0.010 mg/mL) was prepared. The linear regression equation were
ydaidzin = 0.0928x1 + 0.0399 (R2 = 0.9993) and ygenistin = 0.118x2 − 0.005 (R2 = 0.9990).

Isoflavone concentration (µg of β-glucoside equivalent/mL) = 1/4 ydaidzin + 3/4 ygenistin.

The total isoflavone content in natto was calculated as the sum of the contents of
individual isoflavone molecular species.

2.3. Characterization of Soybean Isoflavone from Natto
2.3.1. FT-IR (Fourier Transform Infrared Spectoscopy) Analysis

The freeze-dried soybean isoflavone powder was mixed with KBr in a 1:50 ratio (w/w)
and ground. Then, 100 mg of ground powder was pressed into tablets for FT-IR analysis
using an iS50R FT-IR spectrometer (Thermo Scientific, Waltham, MA, USA). The sample
scanning data were collected across a full waveband (4000–400 cm−1) at a resolution of
4 cm−1.

2.3.2. HPLC and UV Analysis

Waters e2695 HPLC (Waters Alliance, NE, USA)system coupled with a photodiode
array (PDA) detector (Waters 2998 DAD) (Waters Alliance, NE, USA) set at a wavelength
of 260 nm, and a ZORABX SB-C18 (Agilent Technologies Inc., CA, USA) reversed-phase
column (250 × 4.6 mm, 5 µm) was used for soybean isoflavone qualitative analysis at room
temperature. The mobile phase consisted of acetonitrile containing 0.025% acetic acid (A)
and 0.025% acetic acid–water (B), using the following linear gradients: 0–70 min: 5–25% A,
and then held at 25% for 3 min; 73–80 min: 25–5% A, and then held at 5% for 3 min. Mobile
phase B changes according to the change in mobile phase A and keeps A + B = 100%. The
flow rate was 1.0 mL/min, and the injection volume was 10 µL.

In order to acquire the UV absorption scanning spectra and the greatest absorption
peak, daidzein, daidzin, glycitin, genistin, and genistein were dissolved in methanol, and
glycitein was dissolved in dimethyl sulfoxide (DMSO). The UV absorption spectra of
six types of common soybean isoflavones were conducted by purchased standard, and
the remainder of the UV absorption spectra were extracted from the HPLC spectra. UV
scanning was performed after the sample solution was dissolved in methanol, and the
scanning curves were recorded in the spectrum of 200–400 nm with an ultraviolet-visible
(UV-vis) spectrophotometer (UV-1800, Shimadzu, Kyoto Japan).

2.4. UPLC-ESI-MS/MS Analysis of Soybean Isoflavone from Natto

Thermo scientific ultimate 3000 UPLC and Q exactive electrostatic field orbital hy-
drazine mass spectrometry offered the isoflavone MS data. As described previously, UPLC
was used to separate the sample. MS condition: atmospheric pressure chemical ionization
(ESI) ion source in both positive and negative modes, spray voltage of 3200 V, capillary
temperature of 300 ◦C, sheath gas of 40.00 Arb, Aux gas of 8.00 Arb, Max spray current of
100.00 µA, and Probe heater temperature of 280 ◦C. Full MS/dd–MS2 mode was used to
capture the fragment pattern.

2.5. Antioxidant Capacity of Isoflavones from Natto

The antioxidant capabilities of isoflavones extract from natto were determined and
compared with four kinds of common isoflavone standards, including daidzin, daidzein,
genistin, and genistein.
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2.5.1. DPPH Radical Scavenging Capacity

According to a previous report by Chen [25], soybean isoflavone samples with varying
concentrations (1.0–5.0 mg/mL) were treated with a DPPH free radical dissolved in ethanol
(0.05 mol/L) at a 1:2 volume ratio. The absorbance value at 570 nm was measured after
30 min of the light avoidance reaction. As a blank group and control group, anhydrous
ethanol was used instead of sample solution and DPPH free radical. Daidzin, daidzein,
genistin and genistein were used as positive controls. The DPPH free radical scavenging
rate was calculated using the equation below:

Scavenging rate (%) = (1 − (Ai − Aj)/A0) × 100

where Ai, Aj, and A0 represent the absorbance of the soybean isoflavone sample, control
group, and blank group, respectively.

2.5.2. ABTS Radical Scavenging Capacity

ABTS radical scavenging activity was assessed following the method of Re [26]. ABTS
and potassium persulfate solutions of 7 mmol/L and 2.45 mmol/L, respectively, were pre-
pared using distilled water. The two solutions were mixed in the same volume and reacted
in the dark for 12 h. The reaction solution was prepared after diluting 50 times with anhy-
drous ethanol. Soybean isoflavone solution with various concentrations (1.0–5.0 mg/mL)
was mixed with 2.4 mL ABTS working solution for 10 min in the darkness, and then
measured the absorbance at 734 nm. The control group utilized distilled water instead of
ABTS working solution, and the blank group used methanol instead of soybean isoflavones.
Daidzin, daidzein, genistin, and genistein was used as positive control.

Scavenging rate (%) = (1 − (Ai − Aj)/A0) × 100

where Ai, Aj, and A0 represent the absorbance of the soybean isoflavone sample, control
group, and blank group, respectively.

2.5.3. O2
− Radical Scavenging Capacity

The determination of superoxide anion radical is carried out according to the instruc-
tions of the kit named Inhibition and produce superoxide anion assay kit (A052-1-1) from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The experimental results are
expressed by the change value of superoxide anion radical inhibited by 1 mg vitamin C
equivalent as an activity unit.

2.5.4. Ferric Reducing Antioxidant Power (FRAP) Capacity

The FRAP of soybean isoflavone was determined using the method of Benzie and
Strain with small modifications [27]. An amount of 25 mL 0.3 mol/L acetate buffer (pH 3.6)
was mixed with 2.5 mL TPTZ solution (2.4.6-Tris(2-pyridyl)-s-triazine) (0.01 mol/L) and
ferric chloride solution to produce the FRAP reagent (0.02 mol/L). The FRAP reagent was
isometrically mixed with soybean isoflavones methanol solution (0.2–1.0 mg/mL), and the
absorbance value at 593 nm was recorded after 10 min of light, avoiding a reaction. Instead
of FRAP working solution, the control group utilized distilled water, and the blank group
used sample solvent (methanol) instead of soybean isoflavones.

2.6. In Vitro Inhibition of Advanced Glycation End Products by Soybean Isoflavones from Natto

In order to determine the inhibition rate of soybean isoflavones on AGEs, three
systems were established: The physiological environment was simulated by the α-lactose–
lysine system (α-lactose-Lys system) and by using fructose–bovine serum albumin system
(fructose-BSA system) to imitate a food environment. In addition, the bovine serum
albumin–methylglyoxal system (BSA-MGO system) was also established to explore the
inhibition rate of soybean isoflavones on AGEs.
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2.6.1. Fructose-BSA System

In order to simulate the inhibitory effect of soybean isoflavones on AGEs in the
physiological system, the fructose-BSA system was selected. A fructose-BSA model was
used to monitor the process of BSA protein glycation based on the study by Shen [20] with
slight modification. Briefly, 1.5 mol/L fructose PBS solution (0.5 M, pH = 7.4) was mixed
with sample solutions (0.2–1.0 mg/mL) and then placed in a water bath at 37 ◦C for 2 h.
Afterward, 30 mg/mL BSA-PBS solution was added and received another 24 h incubation
at 37 ◦C. The fluorescence intensity was measured at a wavelength of 370 nm for excitation
and 450 nm for emission. Daidzin, daidzein, genistin, and genistein were utilized as a
positive control. The AGEs inhibition rate was calculated by the following formula:

inhibition rate (%) = (1 − F1/F0) × 100

where F0 and F1 represent the fluorescence intensity of the blank group and isoflavone
sample group, respectively.

2.6.1.1. α-lactose-Lys System

α-lactose-Lys system was selected to simulate the inhibitory effect of soybean isoflavones
(0.2–1.0 mg/mL) on AGEs in the food system. An amount of 0.1 mol/L α-lactose solution and
0.1 mol/L lysine solution with PBS (0.5 mol/L, PH 7.4) were prepared, respectively. Lactose
was mixed with sample solutions and then placed in a water bath at 37 ◦C for 2 h, followed
by adding Lys’s solution and placing in a water bath at 37 ◦C for 24 h. The fluorescence
intensity was measured at a wavelength of 370 nm for excitation and 450 nm for emission.
Daidzein was utilized as a positive control. The AGEs inhibition rate was calculated by the
following formula:

inhibition rate (%) = (1 − F1/F0) × 100

where F0 and F1 represent the fluorescence intensity of the blank group and isoflavone
sample group, respectively.

2.6.2. BSA-MGO System

In order to assess the middle stage of protein glycation, the BSA-MGO model was
used [28]. An amount of 60 mM MGO solution and 30 mg/mL BSA solution were pre-
pared with PBS (0.5 mol/L, PH 7.4), respectively. MGO was mixed with sample solutions
(0.2–1.0 mg/mL) and then placed in a water bath at 37 ◦C for 2 h. Afterward, 30 mg/mL
BSA-PBS solution was added and received another 24 h incubation at 37 ◦C. The fluores-
cence intensity was measured at a wavelength of 370 nm for excitation and 450 nm for
emission. Daidzin, daidzein, genistin, and genistein were utilized as a positive control. The
AGEs inhibition rate was calculated by the following formula:

inhibition rate (%) = (1 − F1/F0) × 100

where F0 and F1 represent the fluorescence intensity of the blank group and isoflavone
sample group, respectively.

2.7. Mechanism of Genistein Inhibiting AGEs in BSA-MGO System

Through the above experiments, isoflavones exerted the highest inhibition effect in
the BSA-MGO system, as well as genistein showed the best preventive capacity among
all isoflavone quercetins. Therefore, the MGO-BSA system was selected to explore the
inhibitory effect and mechanism on AGEs by genistein.

2.7.1. Kinetic Study of the Trapping of MGO by Genistein

MGO (60 mM) was incubated with 200 µg/mL genistein in a phosphate buffer solution
(0.05 mol/L PH 7.4) at 37 ◦C for 0, 10, 30, 60, 120, 240, 480, 720 and 1440 min. HPLC was
used to determine the amounts of MGO [17]. Briefly, the waters e2695 HPLC system
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coupled with a photodiode array (PDA) detector (Waters 2998 DAD) set at a wavelength of
260 nm, and a ZORABX SB-C18 reversed-phase column (250 × 4.6 mm, 5 µm) was used
with a flow rate of 0.5 mL/min. The mobile phase consisted of 10% methanol aqueous
solution containing 0.2% acetic acid (A) and methanol containing 0.2% acetic acid (B), using
the following linear gradients: 0–1.5 min: 5–20% B, and 1.5–2.5 min: 20–35% B, finally
2.5–4.5 min: 35–100% B, then held at 100% for 1 min.

2.7.2. Kinetic Study of the Inhibitory Effects on the Formation of AGEs by Genistein

Since genistein was determined as the most effective natto isoflavone in trapping
MGO, we further selected genistein to evaluate its kinetics of AGEs inhibition. BSA
(30 mg/mL) was incubated with MGO (60 mM) in the presence or absence of genistein
(200 µg/mL) in a phosphate buffer solution (0.05 mol/L PH 7.4). The reaction mixture was
collected at different time points (240, 480, 720, 960, 1200, and 1440 min). Fluorescence at
an excitation/emission wavelength of 370/450 nm, which is characteristic of AGEs, was
used to measure AGEs levels.

2.7.3. UPLC-Q-TO-ESI-MS/MS Analysis of Genistein-MGO Adducts

UPLC/MS analysis was carried out with a Waters Vion IMS Q-TOF Spectra Sys-
tem incorporated with an electrospray ionization (ESI) interface. A ZORABX SB-C18
reversed-phase column (250 × 4.6 mm, 5 µm) was used for separation at a flow rate of
0.37 mL/min [29]. The column was eluted with 90% solvent A (acetonitrile with 0.1%
formic acid) and linear increases in solvent B (water with 0.1% formic acid) to 30% from 0 to
4.08 min, maintaining 30% from 4.08 to 5.44 min, and then with 90% A from 5.44 to 6.26 min,
maintaining 90% from 6.26 to 6.53 min. The LC eluent was introduced into the ESI interface.
The ESI ion source was tuned to negative ion polarity mode, with the voltage on the ESI
interface kept at 2 kV. The sheath gas was utilized at a flow rate of 45 arb units, while the
auxiliary gas was used at a flow rate of 5 arb units. By using collision-induced dissociation
(CID) with a relative collision energy setting of 35%, tandem mass spectrometry (MS/MS)
was used to gather structural information on genistein and the primary MGO adducts.

2.8. Statistical Analysis

The data are expressed as mean and standard deviation. Analysis of variance (One-
Way ANOVA) and Duncan’s multiple range tests was used to determine the difference
between the results (p < 0.05).

3. Results
3.1. Nutrient Components Analysis of Natto and Isoflavones Preparation

As shown in Table 1, the content of protein, carbohydrate, and fat was enhanced
after fermentation. More importantly, the content of total isoflavones in crude extract
significantly (p < 0.05) increased by 61.53% in natto compared with the fresh soybean, and
aglycone content also increased significantly. Changes in isoflavone content before and
after fermentation were determined by HPLC mentioned in the following Section 3.2.1. As
is shown in Figure 2, among all isoflavones detected in natto, β-glucoside accounted for
72.72%, acetyl isoflavones accounted for 7.40%, and aglycones and succinyl isoflavones pro-
duced by fermentation accounted for 4.39% and 15.49%, respectively. Compared with that
before fermentation, the content of soybean isoflavone aglycones and succinyl glucosides
was significantly increased, whereas the content of glucosides significantly decreased. Dur-
ing the process, 6”-O-malonyl-glycitin disappears, meanwhile new 6”-O-succinyldaidzin
and 6”-O-succinylgenistin were formed.
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Table 1. Analysis of natto nutrition component changes (dry basis/%) and antioxidant capacity.

Protein (%) Fat (%) Carbohydrate
(%) Ash (%)

Total
Isoflavones

(mg/kg)
ABTS 1 Superoxide

Anion 2

Before
fermentation 40.80 ± 0.13 b 15.75 ± 0.21 b 7.43 ± 0.32 b 4.46 ± 0.39 a 1487.23 ± 34.22 b 17.15 ± 0.24% b n.d. 3

After
fermentation 43.25 ± 0.25 a 20.85 ± 0.07 a 27.33 ± 1.65 a 4.40 ± 0.4 a 2402.65 ± 55.87 a 44.27 ± 1.27% a 25 4

1 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay; 2 super oxygen-anion free
radical scavenging ability; 3 not detected; 4 Data are expressed as mean ± standard deviations (n = 3). Different
letters in same row represents significant differences (p < 0.05).
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Moreover, through single-factor and orthogonal tests (Figure S1 and Tables S1–S3),
the total content of soybean isoflavones was determined to be 2.88 ± 0.44 mg/mL, and
the final purity of soybean isoflavones from natto increased from 1.42% to 76.76% after the
purification process.

3.2. Spectral Characterization of Soybean Isoflavone in Natto

The spectral characteristics of soybean isoflavones in natto fermentation by Bacillus
were characterized by UV, HPLC, IR, and UPLC-ESI-MS/MS. A total of 14 compounds
were identified, including three kinds of soybean isoflavone products, named aglycone,
glycoside, and acylation. Among them, succinyl isoflavone glycosides were unique acyl
compounds produced during natto fermentation.

3.2.1. HPLC and UV Analysis

UV characteristic absorption peaks and HPLC analysis results of aglycone and gly-
coside standard of soybean isoflavones and natto extract were shown in Figure S2 (See
Section 3.2.3 for product analysis of peak 4, peak 7, peak 8, peak 9, and peak 11 except
for the six known standards). Because soy isoflavones have a strong conjugated system
of hydroxyl and aromatic rings in their structure, therefore soy isoflavones showed char-
acteristic UV absorption peaks at 260 nm and 320 nm (Figure 3). The UV spectrums of
natto isoflavones extract were consistent with the characteristic absorption spectrum of
isoflavone standards (see Figure 4). UV spectrophotometry is often used to measure the
level of soy isoflavones in samples.
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Figure 4. HPLC diagram of mixed soybean isoflavone standards (A) and HPLC chromatograms of
the sample purified and standards of soy isoflavones by AB-8 macroporous resin (B), as recorded
at 254 nm. The numbers of the peaks are as follows: 1. Daidzin; 2. Glycitin; 3. Genistin; 4. 6”-O-
succinyldaidzin; 5. 6”-O-acetyldaidzin; 6. 6”-O-acetylglycitin; 7. Daidzein; 8. 6”-O-succinylgenistin;
9. Glycitein; 10. 6”-O-acetylgenitin; 11. Genistein.
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3.2.2. FT-IR Analysis

FT-IR analysis of soybean isoflavones extracted from natto is shown in Figure 5. The
strong absorption peaks at 3454 cm−1 and 3238 cm−1 were attributed to the stretching
vibration of hydroxyl groups with different degrees of association. The C-H stretching
vibration occurred at 2919 cm−1, and the C-H stretching vibration for aromatic compounds
was at 3079 cm−1. The skeletal vibration absorption peak of the benzene ring appeared at
1621 cm−1, 1579 cm−1, 1519 cm−1, and 1450 cm−1, respectively. The strong absorption peak
at 1659 cm−1 indicated stretching vibration of C=O in the 3-benzopyranone of soybean
isoflavone head. Bands at 1271 cm−1 attributed to the in-plane bending vibration absorption
peak of =C-O-C on γ-pyranone. The absorption peak at around 1183 cm−1 was related to
the in-plane bending vibration of C-O, and the in-plane bending vibration of C-H happens
at 1087 cm−1. As shown by the absorption peaks of the tested sample, the molecule had the
characteristic functional groups of soybean isoflavone. The above attribution is consistent
with the values calculated by the reported density generic function theory [30].
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3.2.3. UPLC-ESI-MS/MS Analysis

Table 2 shows the results of UPLC-ESI-MS2 identification of soybean isoflavones in
natto. Fourteen isoflavone isomers were observed in positive ion mode, including three
kinds of soybean isoflavone compounds, namely, aglycones, glycosides, and acylates.
Additionally, the sequence of each aglycone, glucosides, acetyl glucosides, and succinyl
glucosides detected on the C18 column was consistent with the conclusions of previous
studies [31]. Among them, the isomers of daidzin, genistin, and succinyl genistin were
detected for the first time in Bacillus subtilis fermentation natto. These results indicated that
isomerization and succinylation of soybean isoflavones have occurred during the natto
fermentation process. Detailed analysis results are as follows:
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Table 2. UPLC-ESI-MS/MS analysis of isoflavone sample extracted from natto.

Peaks TR a (min) Compounds Formulas Formula
Weight

Precursor Ions
[M + H]+

Exact Mass [M
+ H]+ Mass Error b λmax (nm) Fragment Ions (m/z)

1 11.13 daidzein-4′-
glucoside C21H20O9 416 417.11783 417.11037 1.78 250.0, 305.0 417.11673/255.06509

2 12.72 daidzein-7-
glucoside C21H20O9 416 417.11795 417.11037 1.79 250.0, 304.0 417.11658/255.06525

3 13.54 glycitin C22H22O10 446 447.12851 447.12130 1.61 259.2, 319.8 447.12766/285.07574

4 15.36 genistein-4′-
glucoside C21H20O10 432 433.11310 433.10565 1.72 262.0, 327.5 433.11438/271.06021

5 18.42 genistein-7-
glucoside C21H20O10 432 433.11298 433.10565 1.69 262.0, 326.0 433.11438/271.06021

6 23.10 6”-O-
succinyldaidzin C25H24O12 516 517.13416 517.12678 1.43 249.7 517.13409/255.06514

7 25.33 6”-O-
acetyldaidzin C23H22O10 458 459.12869 459.12130 1.61 249.7 459.12933/255.06514

8 27.53 6”-O-
acetylglycitin C24H24O11 488 489.13922 489.13186 1.50 260.3, 317.4 489.13754/285.07571

9 31.51 6”-O-succinyl-
4′-genistin C25H24O13 532 533.12921 533.12169 1.41 262.0, 326.0 533.12982/271.06030

10 33.86 daidzein C15H10O4 254 255.06509 255.05791 2.82 249.7, 301.9 255.06511/-

11 36.35 6”-O-succinyl-7-
genistin C25H24O13 532 533.12933 533.12169 1.43 262.0, 325.0 533.12946/271.06021

12 37.55 glycitein C16H12O5 284 285.07587 285.06847 2.59 255.2, 318.4 285.07581/-

13 42.88 6”-O-
acetylgenistin C23H22O11 474 475.12372 475.11621 1.58 260.3, 328.1 475.12369/271.06012

14 59.93 genistein C15H10O5 270 271.06006 271.05282 2.67 260.3 271.060188/-

a Retention time; b Difference between observed mass and exact mass error (<5 ppm).
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MS/MS fragmentation of peaks corresponding to compounds 1, 2 resulted in the
production of a common fragment at m/z 255 (417–162), which is the parent ion losing a
glucose molecule. Their molecular weights are 417.11783 and 417.11795, respectively, and
the errors of the theoretical values are 1.78 and 1.79 ppm. These compounds displayed
different retention times on the HPLC column; thus, they indicated the isomers of daidzin.
There are two conjugation sites on daidzein at C-4′ and the C-7 site (Figure S3). It was
established that the C-7-glucoside of isoflavones is retained longer on reverse-phased sor-
bents as compared to their C-4′-isomers. Based on ultraviolet (UV) chromatograms and
peak intensities observed in the MS/MS chromatogram (Figure S4), peak 2 was identified
as daidzein-7-glucoside, and peak 1 was identified as the daidzein-4′-glucoside [32]. The
molecular ions m/z 447.12851, 433.11310, and the corresponding fragments (285.07574 and
271.06021) correspond to peaks 3 and 4, respectively, and the error with the theoretical
value and UV spectral characteristics, indicating that compounds 3 and 4 are glycitein and
genistein-4′-glucoside, respectively. Peak 5 is an isomer of genistin [32]. The molecular ions,
m/z 517.13416 to peak 6 is a characteristic compound 6”-O-succinyldaidzin produced by
Bacillus subtilis fermented natto, which has the characteristic fragment of daidzein 255.06514,
fragmentation ions (255.06514, 285.07571 and 271.06012), and m/z (459.12869, 489.13922,
and 475.12372) of peaks corresponding to compounds 7, 8, and 13 attributable to acetylation
conjugates (6”-O-acetyldaidzin, 6”-O-acetylglycitin and 6”-O-acetylgenistin), and peaks
9, 11 were tentatively identified as two succinylation conjugates (6”-O-succinylgenistin)
isomers, respectively. Additionally, m/z (255.06509, 285.07587, and 271.06006) of peaks cor-
responding to compounds 10, 12, and 14 attributable to aglycones (daidzein, glycitein, and
genistein). The sequence of each aglycone, glucosides, acetyl glucosides, and succinyl glu-
cosides detected on the C18 column was consistent with the conclusions of previous studies.
These results indicate that the isomerizations and succinylation of soybean isoflavones
mainly occur in daidzein and genistein compounds; thus, isomerase and succinylase can
exist in Bacillus subtilis, which need to be further identified. The isomer structural formula
is shown in Figure S3.

Heat treatment during fermentation can reduce the ratio of malonyl-isoflavones in
soybean but enhance the ratio of aglycone and glycoside. Meanwhile, heat and microor-
ganism treatment degrade and break the binding between isoflavones and macromolecular
substances in soybean, releasing the free isoflavones. Interestingly, succinyl soybean
isoflavones, which are unique in natto, were found in the sample after fermentation, and
this alteration of the isoflavone profile in natto might bring a better activity.

3.3. Antioxidant Capacity of Soybean Isoflavones from Natto

In soybean isoflavones, The B ring is located at the 3-position, which are structural
isomers of flavonoids, so this has antioxidant activity. Differences in molecular structures
and electron distributions affect the antioxidant capabilities of phenolic compounds with
electron- and hydrogen-donating abilities [33].

On the basis of previous experiments, we found that the aglycone activity of soybean
isoflavones was significantly higher than the corresponding glycosides, and the activities
of genistein and daidzein in the four aglycones were higher. Therefore, in this study,
five experimental samples of glycosides, aglycones, and isoflavone extracts from natto
were selected, and their antioxidant activities were evaluated by four different antioxidant
methods. The results are shown in Figure 6.

In the DPPH system, the inhibition effect of aglycone on DPPH was better, and the
effect of genistein was the best. However, their effective inhibitory concentrations were
all above 1.0 mg/mL. This is probably attributable to the glucose moieties linked to the
isoflavone backbone having a higher steric barrier than the isoflavone aglycones [34], which
prevents them from binding to organic anion radical DPPH.

However, in the organic cation free radical system, natto isoflavone extract and soy-
bean isoflavone monomer showed an excellent inhibitory effect. Among them, the extract
has the best effect. This is due to the charge effect of the acylation products generated after
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fermentation. In general, the order of ABTS inhibition ability of experimental samples
is as follows: isoflavone sample exacted from natto > genistein > daidzein > genistin >
daidzin. It can be seen that after aglycone glycosylation, the anti-free radical ability of
aglycone decreases due to the reduction in the number of hydroxyl groups on the A ring
and the increase in polarity and steric hindrance. In addition, the higher the number
of hydroxyl groups on the benzene ring, the stronger its antioxidant capacity is, so the
activity of dye lignin with three hydroxyl groups is higher than that of daidzein with two
hydroxyl groups.
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(A) DPPH radical scavenging rate; (B) ABTS radical scavenging rate; (C) Ferric Reducing Antioxidant
power capacity; (D) O2

− radical scavenging capacity. Data are presented as the means ± SD of three
replications. Different letters represent significant differences (p < 0.05).

In the ABTS radical scavenging assay, each soybean isoflavone showed a stronger scav-
enging ability than DPPH radicals. Among these, the antioxidant ability of genistein was
similar to that of the extracted samples. At lower concentrations (0.05 mg/mL~0.1 mg/mL),
the extracted sample had a higher ability to scavenge ABTS radicals than genistein. In gen-
eral, the antioxidant activity is as follows: isoflavone sample exacted from natto > genistein
> daidzein > genistin > daidzin. The trend of decreasing antioxidant capacity with the
increasing molecular weight of soy isoflavones may be attributed to the steric hindrance as
indicated in the DPPH assay, and its antioxidant activity is inversely proportional to the
size of molecular weight.

For the FRAP system, the antioxidant capacity for soybean isoflavones decreased
as follows: genistein > daidzein > isoflavone sample exacted from natto > genistin >
daidzin, indicating that antioxidant capacity depends on the functional moieties bound to
3-benzopyrone parent nucleus. Compared with the previous FRAP experiment, the antiox-
idant capacity of aglycones was consistent [35]. Additionally, in the present experiment,
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genistin showed a stronger antioxidant capacity than daidzin, which is consistent with the
findings of previous studies [10].

As we all know, isoflavones’ ability to scavenge O2
− free radicals are linked to their

structure. The crucial component in isoflavones that provides them antioxidant properties
is the hydroxyl group on the B ring and A ring. All kinds of items could scavenge O2

− free
radicals structurally [36]. However, the ability to scavenge superoxide anion radicals varies
due to differences in steric hindrance and solubility produced by the varied molecular
weights of each sample. This was proved by our experimental results. Isoflavone glycosides
have a significantly lower O2

− inhibition effect than aglycones due to steric hindrance
caused by conjugation (Figure 6D). The antioxidant capacity of test samples for the su-
peroxide anion radical scavenging experiment is genistein > isoflavone sample exacted
from natto > daidzein > genistin > daidzin. The effect of glycoside soybean isoflavones on
scavenging superoxide anion free radicals is poor (less than 50 U/L). The experimental
results are consistent with those of the DPPH experiment. This is closely related to their
charge effect.

3.4. Anti-Glycation Activity of Soybean Isoflavones from Natto

The above results determined that soybean isoflavones are powerful natural antioxi-
dants. Previous studies showed that AGEs formation is negatively correlated with antioxi-
dant activity against free radicals. Therefore, we reported the AGE’s inhibitory properties
of genistein, daidzein, genistin, daidzin, and natto isoflavone extracts in three models
in vitro of the AGEs inhibition effect. The results are shown in Figure 7.
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The fructose-BSA model is commonly used to evaluate the inhibitory effect of natural
products on AGEs in vitro. As is shown in Figure 7A, in this system, isoflavone standard
and extract showed a strong inhibitory effect on the formation of AGEs, and there was a
dose–response relationship. Among them, genistein has the best effect. When its concen-
tration was only 200 µg/mL, the inhibition rate reached 50%, and when the concentration
increased to 1.0 mg/mL, the inhibition rate was 75.63% (Figure 7A). The activity of natto
isoflavone extract was second only to genistein. This is related to the highly active succinyl
daidzin and succinyl genistin products after fermentation.

The order of their inhibitory activity was genistein > sample > daidzein > genistin >
daidzin. Anti-glycation activity appeared to be more dependent on the chemical structure
of the aglycone, in agreement with the conclusion of Wang et al. [19]. The effect is consistent
with the experimental result of the antioxidant test. ROS can interact with the side chains of
protein or amino acid residues to increase the content of carbonyl proteins and mercaptans.
The mechanism lies in the effective inhibition of ROS by isoflavones.

The lactose–lysine model was set up to mimic the generation of AGEs in the food
system. Free amino group residues, especially lysine, arginine, and cysteine (the N-terminal
amino group can α-dicarbonyl compounds form adducts), and glycosylation produce
irreversible protein modification, thus reducing its nutritional value. As a reducing sugar,
lactose can be widely ingested in the daily diet and easily oxidized to form α-dicarbonyl
compounds. Therefore, a lactose–lysine model could be used to assess the antiglycation
capability of soybean isoflavones in preventing α-dicarbonyl from binding to lysine. In the
current research, on the contrary, the effect of glycosides is more significant than that of
aglycones (Figure 7B). Aglycones only show a weak inhibitory effect, which is contrary
to the experimental results of the first two models. The inhibitory effect of flavonoids
extracted from natto is significantly better than that of glycosides and aglycones, which
may be the result of the joint action of a variety of flavonoids. As the extract sample
concentration increased to 0.6 mg/mL, the inhibition rate exceeded 50%. The conclusion of
this model is consistent with that of Genova [37].

Methylglyoxal (MGO) has high reactivity among the many reactive dicarbonyl com-
pounds and AGEs precursors. It is believed to contribute significantly to intracellular AGE
formation. MGO could readily react with arginine, lysine, and cysteine residues of proteins,
modify proteins, and damage DNA. Additionally, the concentration of MGO in diabetes
mellitus was found to be increased 2- to 6-fold [38].

As is shown in Figure 7C, the MGO-BSA model is of great significance for evaluating
the level of AGE and the development of diabetes. In the BSA-MGO system, all isoflavones
samples showed a strong inhibition effect on the formation of AGE, with the best activity
of genistein, and its maximum inhibitory concentration reached 95.31% at 1.0 mg/mL [29].
Mechanism studies showed that the inhibition effect of genistein for AGE was due to the
genistein trapping of MGO by the formation of mono- and di-adducts between genistein
and MGO, which prevented the reaction of MGO with protein.

Then, the capture effect of genistein on MGO and the inhibition effect on AGEs
were analyzed by the kinetic study, and the mechanism of genistein inhibiting AGEs was
analyzed by UPLC-Q-TOF-ESI-MS/MS analysis [17,39,40].

3.5. Mechanism of Genistein Inhibiting AGEs in BSA-MGO System
3.5.1. Kinetic Study of the Inhibitory Effects on the Formation of AGEs by Genistein

In order to provide more detailed inhibitory parameters, we further evaluate the
efficiency that genistein trapped MGO (Figure 8A). Within 240 min, more than 80% of MGO
was trapped, with trapping efficiency reaching 97.1% after 1440 min. Meanwhile, genistein
can significantly inhibit the generation of AGEs in the BSA-MGO system (Figure 8B). The
inhibition rate of AGEs can reach more than 85% when the reaction time reaches 1440 min.
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Figure 8. (A) Trapping of MGO by genistein under physiological environment (PH 7.4, 37 ◦C) and
(B) inhibitory effect of the formation of AGEs by genistein in the BSA-MGO system.

3.5.2. UPLC-Q-TOF-ESI-MS/MS Analysis

The reaction mixtures of MGO and genistein (1:1 ratio) were incubated at 37 ◦C for
24 h. After incubation for 24 h, two new major peaks (RT 3.49 and 3.79 min) were observed.
Figure 9A depicts a retention time of 3.79 min with the molecular ion m/z 341 [M − H]−.
The peak was 72 mass units higher than genistein (m/z 269 [M − H]−), indicating the
mono-MGO adduct of genistein. The peak at 3.49 min in Figure 9B had the fragment
ion m/z 413 [M − H]−, which had 72 mass units more than the mono-MGO adduct of
genistein, indicating that it is the di-MGO adduct of genistein. This result is in line with
prior findings [17,29].
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4. Conclusions

Through a systematic study of natto isoflavones, current results showed that the
microorganism process was a feasible technical method for improving the nutritional value
and bioactivity of soybeans. Due to the fermentation, the content of total isoflavones in natto
increased by 1.62 times that in soybean, which further enhances the health value of natto.
Meanwhile, UPLC-ESI-MS/MS analysis was applied to analyze the bio-transform of natto
isoflavone, and 14 isoflavone isomers were identified. Among them, daidzin, genistin, and
succinyl genistin were detected for the first time, and it indicated the existence of related
enzymes and bio-reactions. Based on these structure change analyses, the antioxidant
and anti-glycation activity of natto isoflavones and their main monomers were tested for
the first time, and both natto isoflavone and genistein owed relative higher bioactivities.
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Therefore, our research laid a theoretical foundation for the utilization of active isoflavones
and the development of fermented soybean-based food in the food industry.
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isoflavone standard; Figure S3: Soybean isoflavone isomers detected by UPLC-ESI-MS/MS Total ion
flow; Figure S4: Total ion flow diagram of isoflavones extracted from natto in positive ion mode.
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