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Abstract: The effects of whey protein hydrolysates (WPH) on myofibrillar protein (MP) oxidative sta-
bility and the aggregation behavior and the water-holding capacity of pork patties during freeze–thaw
(F–T) cycles were investigated. During F–T cycles, the total sulfhydryl content and zeta potential of
MP decreased, while peroxide value, surface hydrophobicity, particle size, pressure loss and trans-
verse relaxation times increase. The oxidative stability and the water-holding capacity of pork patties
were enhanced by the addition of WPH in a dose-dependent manner, whereas the MP aggregation
decreased. The addition of 15% WPH had the most obvious effects on the pork patties, which was
similar to that of the 0.02% BHA. After nine F–T cycles, the POV, surface hydrophobicity, particle size
and pressure loss of the pork patties with 15% WPH were reduced by 17.20%, 30.56%, 34.67% and
13.96%, respectively, while total sulfhydryl content and absolute value of zeta potential increased by
69.62% and 146.14%, respectively. The results showed that adding 15% WPH to pork patties can be an
effective method to inhibit lipid and protein oxidation, reducing protein aggregation and improving
the water-holding capacity of pork patties during F–T cycles.

Keywords: whey protein hydrolysates; pork patties; freeze–thaw cycles; myofibrillar protein;
antioxidant activity; water-holding capacity

1. Introduction

Freezing is the most widely accepted and safest method for preservation and storage
of meat and meat products [1]. Refrigeration at low-temperature has long been known
to prevent the growth of microorganisms, spoilage and biochemical degradation of meat
products [2]. Freezing can extend the storage time of meat and meat products, but it
cannot inhibit oxidation completely. In the real storage, production and sales process, the
lack of a cold chain will cause the frozen meat to inevitably undergo freeze–thaw (F–T)
cycles [3,4]. The F–T cycles have an impact on the structure, functionality and quality
of meat products, causing water loss and texture and colour deterioration [5]. The food
quality deterioration caused by F–T cycles has drawn the attention of researchers in the
meat industry. Especially, the demand for chopped pork-based meat products, such as
pork patties, meatballs, sausage, hamburgers and fillers, has gradually increased, and the
quality deterioration of these products caused by F–T cycles has become a key problem to
solve [6,7]. Therefore, it is of great theoretical and practical value to explore the methods to
improve the oxidation stability of frozen meat and maintain its quality.

During F–T cycles, protein and lipid oxidation are the important factors responsible
for the deterioration of meat quality [8]. Primary lipid oxidation products include mainly
hydroperoxides and free radicals. Hydroperoxides easily decompose to secondary oxi-
dation products, such as malondialdehyde, hexanal and furan, which tend to produce
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an unpleasant flavour [9]. Free radicals usually react with proteins to promote oxidative
deterioration of proteins [10]. Myofibrillar protein (MP), as the main constituent of muscle
protein and accounting for 55% to 60% of total muscle protein, are essential factors in the
quality of meat and meat products [11]. In general, MP aligns in an orderly fashion, forming
a compact and uniform three-dimensional gel network after heat treatment [12]. Protein
oxidation can increase MP unfolding, leading to protein aggregation, which also alters the
intracellular and intercellular structure of MP. On the other hand, protein oxidation can
result in free radical formation, exposure of hydrophobic domain, formation of amino acid
derivatives and protein polymerization and degradation [13].

MP is primarily responsible for maintaining water in muscle cells [14]. However, pro-
tein oxidation reduces the number of water-protein binding sites [15]. The slight damage
to the cell membrane caused by protein oxidation may facilitate the movement of internal
moisture under the influence of osmotic pressure [16]. Through osmosis, intracellular juice
is released into the extracellular region, forming ice crystals. The formation of extracellular
ice crystals and the redistribution of water during multiple F–T cycles promote cell rup-
ture and muscle fiber destruction, resulting in significant mechanical damage to the cell
membrane and tissue structure [17]. Cheng et al. [18] also confirmed that protein oxidation
causes water migration and water loss, resulting in deterioration of texture and sensory
perception of meat products, such as tenderness and juiciness. Overall, the extent of meat
oxidation denaturation is the most important factor affecting meat quality in the multiple
F–T cycles.

In recent years, considering the potential hazards of synthetic antioxidants, natu-
ral antioxidant peptides exploited by various proteins have been widely used in frozen
meat products to retard lipid and protein oxidation and improve quality [19]. Protein hy-
drolysates can bind covalently and non-covalently to proteins in meat systems, preventing
protein oxidation [20–22]. Nikoo et al. [23] demonstrated that proteolytic peptides could
efficiently reduce the water loss of MP during F–T cycles. Our previous studies found that
whey protein hydrolysates (WPH) played an important role in inhibiting the oxidation of
MP at 4 ◦C and improving the stability and water-holding capacity of the meat system.
Therefore, the aim of this work was to determine the protected effect of WPH on the pork
patties and MP undergoing multiple F–T cycles. The effect of WPH content on the lipid
and protein oxidation, MP structure and water retention of pork patties was investigated.

2. Materials and Methods
2.1. Chemicals and Materials

Whey protein isolate (WPI, 95%) or native whey protein (NWP) was obtained from Davisco
Foods International, Inc., (Minnesota, MN, USA). Fresh pork longissimus and back fat were
collected from a commercial meat processing plant (Yantai, Shandong, China). Alcalase 2.4 L
(6 × 104 U g−1) was purchased from Novo Nordisk Biochem Inc. (Franklinton, NC, USA).
Phosphate buffer, bromophenol blue (BPB), 5,5′-Dithiobis-(2-nitrobenzoic acid) (DTNB), ethy-
lene diamine tetraacetic acid (EDTA), butylated hydroxyanisole (BHA) were obtained from
Sigma Chemical Co., Ltd. (St. Louis, MO, USA). All of the other testing chemicals were of analyt-
ical grade and purchased from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of WPH

NWP was configured into a 5% solution, preheated at 95 ◦C for 5 min, and then
transferred to a water bath at 65 ◦C; 2% Alcalase (6 × 104 U/g) basic protease was mixed.
During the enzymatic hydrolysis, 1 mol/L NaOH was added to the solution to maintain
the pH at 8.5. Finally, the enzyme was inactivated by a boiling water bath for 5 min after
hydrolysis for 5 h. The degree of hydrolysis of whey protein hydrolysate was determined
according to the method of Peng et al. [24], and the final degree of hydrolysis reached
35~36%. The whey protein hydrolysate was lyophilized for subsequent experiments.



Foods 2022, 11, 2133 3 of 15

2.3. Preparation of Pork Patties

The pork longissimus was trimmed of fat and connective tissues. Furthermore, the
pork longissimus and back fat at a ratio of 4:1 were minced by a meat grinder to make
chopped pork and then randomly divided into 6 groups. The chopped pork sample without
any additive was used as the control group, and the other 5 groups were, respectively,
added with 10% NWP, 5%, 10% and 15% WPH and 0.02% BHA. Afterwards, 1.5% NaCl
was added to the pork mixture for each group. After thoroughly mixing, the meat patties
(about 75 g each) were produced using a round mold (diameter: 6.5 cm, thickness: 1.5 cm).
The temperature was maintained at around 4 ◦C during the entire meat patties manufac-
turing. Finally, polyethylene bags were used to individually wrap the meat patties. All
samples were stored at −18 ◦C for 5 days and then thawed at 4 ◦C for 12 h until the center
temperature reached 0~2 ◦C, representing one freeze–thaw cycle. According to the above
operations, 3, 5, 7 and 9 F–T cycles were repeated.

2.4. Lipid Peroxide Value

The peroxide value (POV) of meat patties was evaluated following a method described
by Wang et al. [25]. A 5.0 g minced sample was used to measure POV. The results were
expressed as µg/kg of meat.

2.5. Extraction of Myofibrillar Protein (MP)

MP was extracted using the method described by Xue et al. [26] with some modifica-
tions. The minced pork patty was homogenized in the isolation buffer (0.1 mol/L NaCl,
1 mmol/L EDTA, 2 mmol/L MgCl2, 10 mmol/L K2HPO4, pH 7.0) and centrifugation
(3500× g, 15 min). The supernatant was discarded, and the pellet was extracted twice
more with the isolation buffer as indicated above. The pellet was then washed twice with
0.1 mol/L NaCl. After filtering through four layers of cheesecloth, the adjusted pH to
6.0. MP concentration was determined by the Biuret method. Subsequently, the MP was
kept at 4 ◦C and used within 48 h.

2.6. Total Sulfhydryl (SH) Content

The SH content of MP was evaluated using the method according to Yu et al. [27] with
minor modifications. An aliquot (1 mL) of MP solutions (4 mg/mL) was supplemented
with 9 mL phosphate buffer (8 mol/L urea, 2% sodium dodecyl sulphate and 10 mmol/L
ethylenediaminetetraacetic acid, pH 7.0). Then, 5 mL resultant mixture and 1 mL 0.1%
DTNB-Tris-HCl buffer (pH 7.0) were mixed and incubated at 40 ◦C for 30 min. The
absorbance was measured at 412 nm. The SH content was calculated using the molar
extinction coefficient of 13,600 L·mol−1·cm−1 and expressed as µmol/g of protein.

2.7. Surface Hydrophobicity

The surface hydrophobicity of MP was determined according to the method performed
by Yu et al. [27]. In brief, the MP solution was adjusted to 5 mg/mL with phosphate buffer
(pH 6.0); 200 µL of 1 mg/mL BPB was added to 1 mL of the MP solution. The same
treatment without MP was used as the control. The samples were centrifuged at 2000× g
for 15 min at 4 ◦C. Subsequently, the supernatants were separated and diluted 10 times,
and their absorbance was measured at 595 nm. The BPB bound content was calculated by
the following equation:

BPB bound (µg) = 200 µg ×
Acontrol −Asample

Acontrol

where 200 µg is the mass of bromophenol blue.
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2.8. Zeta Potential

The zeta potential of MP was determined using a Malvern Zetasizer Nano ZS90
(Malvern Instruments Ltd, Worcester, Worcester shire, UK) [28]. The MP solution was
diluted to 2 mg/mL in a 10 mmol/L phosphate buffer (pH 7.0) and vibrated for 2 h to
ensure the samples were homogeneous. After vibration, the MP solution was stirred at
4 ◦C until required for use.

2.9. Particle Size

The particle size and particle size distributions (PSD) of MP solutions were determined
by a Mastersizer laser light scattering analyzer (Mastersizer 2000, Malvern Instruments Ltd.,
Worcester, Worcester shire, UK) in accordance with Zhao et al. [28]. The refractive index
was installed to 1.52 for the solution particles and 1.33 for the deionized water. Meanwhile,
the absorption coefficient of the dispersed phase was set to 0.01, and the particles were set
to non-spherical. The particle size was expressed as volume-weighted (d4,3) mean diameter
and particle size distribution.

2.10. Dynamic Rheological Properties

The dynamic rheological properties of meat patties were measured using a Rheome-
ter (MCR301, Anton Paar, Austria) with oscillatory mode according to Zhao et al. [28];
5.0 g samples were placed between two 50 mm diameter parallel plates (0.4 mm plate
gap). Samples were heated from 20 to 80 ◦C with a temperature control rheometer at
a scan rate of 1 ◦C/min. The tests were conducted at a maximum strain of 0.012 and a
frequency of 1 Hz. The storage modulus (G′) was recorded and analyzed for determining
rheological behavior.

2.11. Pressure Loss

The pressure loss was determined from the description of Farouk et al. [29]. Thawing
samples were held under pressure of 35 kg for 5 min, and visible exudates were wiped.
The pressure loss was calculated using the following equation:

Pressure loss (%) =
W0 −W1

W0
× 100

where W0 and W1 are the weights of the patties before and after pressure, respectively.

2.12. Low-Field Nuclear Magnetic Resonance (NMR) Analysis

The NMR relaxation measurements were performed based on the method of
Han et al. [30]. Briefly, approximately 2.0 g of minced samples was put inside the NMR
tubes (diameter: 15 mm) and connected with an NMR probe. The measurements of the
transverse relaxation time (T2) were carried out on a Niumag Benchtop Pulsed NMR
analyzer (PQ001; Niumag Corporation, Shanghai, China) with a magnetic field strength of
0.5 ± 0.08 T, operating at a frequency of 22.6 MHz. The relaxation times were measured
using the Carr–Purcell–Meiboom–Gill (CPMG) sequence, and three relaxation times (T2b,
T21 and T22) were recorded as outputs.

2.13. Statistical Analysis

The effect of the WPH on the lipid and MP oxidative, MP aggregation and the
water-holding capacity of pork patties was assessed using the Statistix 8.1 software pack-
age (Analytical Software, St. Paul, MN, USA). Principal component analysis (PCA) was
performed between all parameters using the SIMCA software (version 14.1, Umeå, Sweden)
to elucidate similarities and differences between samples. Significant differences (p < 0.05)
were determined by one-way analysis of variance (ANOVA) with Tukey’s multiple com-
parisons, and the data were expressed as mean ± standard error (SE).
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3. Results and Discussion
3.1. Lipid Peroxide Value

POV is used to assess the extent of lipid oxidation and rancidity, and it can indicate the
amount of primary oxidation products (hydroperoxides) formed during lipid oxidation [31].
As shown in Figure 1, the POV of all samples increased gradually with F–T cycles increasing
and reached the maximum value of 5.44–6.57 µg/kg after nine F–T cycles. This finding was
consistent with Chen et al. [32], who found that the POV of beef increased significantly after
the F–T cycles (p < 0.05). Lipid oxidation can cause tissue destruction, protein denaturation
and muscle fiber damage in pork patties [27]. In general, antioxidants could prevent lipid
oxidation and improve the quality of meat products [31]. The POV of the patties with 15%
WPH and 0.02% BHA was significantly lower than that of the control sample during each
F–T cycle (p < 0.05). Especially, the POV of the patties with 15% WPH was significantly
decreased by 17.20% compared with that of the control after nine F–T cycles. These results
indicated that the addition of 15% WPH exhibited a high antioxidant capacity, which could
significantly reduce the formation of lipid free radicals, thus delaying lipid oxidation in the
F–T cycles.
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Figure 1. Changes in peroxide value (POV) of multiple freeze–thaw (F–T) cycles of pork patties with
different whey protein hydrolysate (WPH) contents. The significant differences among different
samples are indicated by different lowercase letters (a–c). Control: without any additives in the
sample; NWP: native whey protein; BHA: butylated hydroxyanisole.

3.2. Total Sulfhydryl Content

Sulfhydryl is both exposed on the surface and buried within protein molecules, influ-
encing the spatial structure of the protein [33]. Total sulfhydryl content is an important
indicator to assess the oxidation and denaturation of proteins. As shown in Figure 2, the
total sulfhydryl content of control was 85.73 µmol/g, which reduced with the increase
of F–T cycles and reached the lowest value of 36.75 µmol/g after the nine F–T cycles.
This result was consistent with the findings of Wu et al. [34], which may be attributed to
the fact that sulfhydryl in MP was easily oxidized to disulfide bond during F–T cycles,
resulting in a decrease in total sulfhydryl content [5]. The decrease of total sulfhydryl
content caused the destruction of protein spatial structure, which may result in protein
aggregation and coagulation [34]. The total sulfhydryl content of the patties with WPH
was significantly higher than that of the control (p < 0.05), and it increased gradually as
the WPH concentration increased from 5% to 15% (p < 0.05). This may be because WPH
overlapped the sulfhydryl groups of actomyosin molecules, contributing to the decrease of
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oxidation sensitivity of the sulfhydryl group. Similar to our findings, Jonenberg et al. [35]
found that natural antioxidants effectively inhibited protein oxidation and increased the
total sulfhydryl content of protein. Therefore, when 15% WPH was added to the pork
patties, the total sulfhydryl content was significantly higher than that of other samples
after F–T cycles. This finding supported the results of POV mentioned above; 15% WPH
effectively prevented protein oxidation during F–T cycles and improved the oxidation
stability. It should be noted that there was no significant difference in sulfhydryl content
between 15% WPH and 0.02% BHA samples during each F–T cycle (p > 0.05).
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Figure 2. Changes in total sulfhydryl content (SH) of myofibrillar protein (MP) of multiple
freeze–thaw (F–T) cycles of pork patties with different whey protein hydrolysate (WPH) contents.
The significant differences among different samples are indicated by different lowercase letters
(a–d). Control: without any additives in the sample; NWP: native whey protein; BHA: butylated
hydroxyanisole.

3.3. Surface Hydrophobicity

Surface hydrophobicity is related to protein structural denaturation and conformation
modification, and it has a significant impact on the physicochemical properties, functional
properties and gel stability of MP [36]. As shown in Figure 3, the surface hydrophobicity of
all the samples without NWP or WPH increased with the increase of F–T cycles, implying
unfolding of MP and exposure of hydrophobic amino acid residues [25]. After F–T cycles,
MP molecules were stretched and unfolded, leading to the destruction of hydrophobic
and hydrogen bonds in protein molecules, further leading to protein aggregation and
functionality loss [37]. Wang et al. [38] demonstrated that oxidation can change the phys-
ical properties of protein and increase surface hydrophobicity. Surface hydrophobicity
decreased with the addition of WPH during F–T cycles (p < 0.05), especially 15% WPH, with
no significant difference with 0.02% BHA (p > 0.05). The results indicate that the addition
of WPH and BHA reduced the extent of denaturation of protein in pork patties, and the
protein could maintain its original structure well. The surface hydrophobicity of the sample
with 15% WPH was significantly decreased by 30.56% compared with that of the control
after nine F–T cycles. These results showed that adding 15% WPH to pork patties could
reduce the exposure of nonpolar amino acid side chain groups and the tendency of protein
aggregation through intermolecular hydrophobic interactions [39].
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Figure 3. Changes in surface hydrophobicity of myofibrillar protein (MP) of multiple freeze–thaw
(F–T) cycles of pork patties with different whey protein hydrolysate (WPH) contents. The significant
differences among different samples are indicated by different lowercase letters (a–c). Control:
without any additives in the sample; NWP: native whey protein; BHA: butylated hydroxyanisole;
BPB: bromophenol blue.

3.4. Zeta Potential

The zeta potential reflects the characteristics of the electrostatic potential near the
particle surface [40]. Higher zeta potential may be due to more charged groups exposed to
the protein surface and increased particle repulsion, resulting in increased stability [28].
Proteins with low zeta potentials, on the other hand, tend to coagulate or flocculate. As
shown in Figure 4, the zeta potential of MP is negative in all samples, indicating that there
are more negatively charged amino acids on the protein surface than positively charged
amino acids. As the number of F–T cycles increased, the absolute value of the zeta potential
decreased. This result could be attributed to oxidative denaturation of the protein, which
leads to the deterioration of the MP stability, and coacervate was formed between the MP
after F–T cycles [41].
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Figure 4. Changes in the zeta potential of myofibrillar protein (MP) of multiple freeze–thaw (F–T)
cycles of pork patties with different whey protein hydrolysate (WPH) contents. The significant
differences among different samples are indicated by different lowercase letters (a–e). Control:
without any additives in the sample; NWP: native whey protein; BHA: butylated hydroxyanisole.
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Increasing surface charge on protein particles may reinforce electrostatic repulsion
between particles and prevent further formation of aggregates [42]. Compared with the
control sample, the addition of NWP, WPH and BHA significantly increased the zeta
potential (p < 0.05), especially the 15% WPH, and 0.02% BHA caused the highest zeta
potential value. After nine F–T cycles, the absolute zeta potential increased from 12.39 mV
to 15.07 mV as WPH concentration increased from 5% to 15%, showing a dose dependency.
In particular, the absolute value of the zeta potential with 15% WPH was significantly
increased by 146.14% compared with that of the control after nine F–T cycles (p < 0.05).
Therefore, the addition of 15% WPH could maintain the charge quantity in the MP after
F–T cycles, preventing system disorder during protein oxidation through electrostatic
interactions and improving protein oxidative stability [43].

3.5. Particle Size

Particle size is a critical indicator of stability in the meat system [44]. The difference
in particle size is mainly affected by the denaturation and aggregation of the protein. The
enhancement of protein–protein hydrophobic interactions will promote intermolecular
cross-linking and the formation of protein aggregates [45]. As shown in Figure 5, the
average volume diameter of MP increased during F–T cycles, indicating that F–T cycles
could lead to the destabilization of the protein with increased heterogeneity and particle
enlargement [46]. This result was consistent with the finding of surface hydrophobicity
and the zeta potential (Figures 3 and 4). During F–T cycles, the formation of aggregates
may be through intermolecular disulfide bonds, intra-or inter-molecular cross-links and
hydrophobic interactions [41]. Furthermore, the MP oxidation would result in more loss of
free sulfhydryl groups, the formation of carbonyls and an increase in particle size [16].
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Figure 5. Changes in particle size of myofibrillar protein (MP) of multiple freeze–thaw (F–T) cycles
of pork patties with different whey protein hydrolysate (WPH) contents. The significant differences
among different samples are indicated by different lowercase letters (a–d). Control: without any
additives in the sample; NWP: native whey protein; BHA: butylated hydroxyanisole.

Protein with smaller sizes exhibits better emulsification and oxidation stability [47].
The addition of WPH resulted in better stability and smaller particle size in the F–T cycles
when compared to the control sample (p < 0.05), especially with the 15% WPH sample.
Except for the nine F–T cycles, no significant differences in d4,3 were found between the
15% WPH and 0.02% BHA samples (p > 0.05). As a result, the addition of 15% WPH and
0.02% BHA could result in the smallest particle size of protein. The particle size of the
sample with 15% WPH was significantly decreased by 34.67% compared with that of the
control sample after nine F–T cycles, indicating that WPH decomposed the macromolecular
structure of MP into small particles and disrupted the aggregation of proteins.
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3.6. Rheological Properties

The G′ represents the viscoelasticity behavior of meat protein, and it also describes
gel strength. High G′ in meat products indicated improved elasticity, intricacy and gel
structure [48]. As shown in Figure 6, changes in G′ revealed that the MP formed a gel in
three stages. With the increase of temperature in the first stage (20 ◦C–55 ◦C), the G′ of all the
samples first showed a slight decrease from 20 ◦C to 55 ◦C, mainly because the MP dissolved,
swelled and folded during the heating process, resulting in a decrease in G′ [49]; then it
gradually increased to the first peak at around 55 ◦C, which was due to the protein–protein
interactions, resulting in gelation [50]. During the second stage (55 ◦C–60 ◦C), G′ decreased
rapidly and reached a nadir at 60 ◦C, which may be due to the heat treatment causing the
myosin tail to unfold, thus increasing the fluidity of the newly formed gel and destroying
the gel structure [51]. During the third stage (60 ◦C–80 ◦C), G′ increased rapidly with
increasing temperature. The reason is that the increased temperature caused the myosin
molecule’s conformation to loosely unfold to expose the active groups, enabling cross-
linking to form a firm, irreversible and elastic three-dimensional gel structure [52].
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Figure 6. Changes in dynamic storage modulus (G′) of multiple freeze–thaw (F–T) cycles of pork 
patties with different whey protein hydrolysate (WPH) contents. (a–f): 0, 1, 3, 5, 7, 9 freeze–thaw 
cycles. Control: without any additives in the sample; NWP: native whey protein; BHA: butylated 
hydroxyanisole. 

The changed trend of the G′ in different samples was similar during the whole heat-
ing process. The results of the control sample show that the freeze–thaw process has a 
great influence on G′. At 80 °C, the G′ dropped from 15,650 Pa to 11,290 Pa after the nine 
F–T cycles, indicating that the gel properties of the control MP were damaged severely. 
The interaction and the formation of intermolecular covalent bonds between proteins 
were blocked due to F–T cycles [53]. The addition of WPH alleviates the decrease of G′. 
After nine F–T cycles, the G′ of the patties with NWP, WPH and BHA were higher than 
that of the control, especially in the samples with 15% WPH and 0.02% BHA. The increase 
of G′ of the pork patties by adding NWP, WPH and BHA could be related to the increase 

Figure 6. Changes in dynamic storage modulus (G′) of multiple freeze–thaw (F–T) cycles of pork patties
with different whey protein hydrolysate (WPH) contents. (a–f): 0, 1, 3, 5, 7, 9 freeze–thaw cycles. Control:
without any additives in the sample; NWP: native whey protein; BHA: butylated hydroxyanisole.

The changed trend of the G′ in different samples was similar during the whole heating
process. The results of the control sample show that the freeze–thaw process has a great
influence on G′. At 80 ◦C, the G′ dropped from 15,650 Pa to 11,290 Pa after the nine F–T
cycles, indicating that the gel properties of the control MP were damaged severely. The
interaction and the formation of intermolecular covalent bonds between proteins were
blocked due to F–T cycles [53]. The addition of WPH alleviates the decrease of G′. After
nine F–T cycles, the G′ of the patties with NWP, WPH and BHA were higher than that
of the control, especially in the samples with 15% WPH and 0.02% BHA. The increase of
G′ of the pork patties by adding NWP, WPH and BHA could be related to the increase of
sulfhydryl content (Figure 2). The increased sulfhydryl content can reduce rigidity and
increase elasticity, resulting in the improvement of rheological properties [53]. Overall,
the addition of 15% WPH resulted in more ordered and elastic behavior of the sample,
facilitating the formation of three-dimensional protein networks. Therefore, WPH could
promote a higher cross-linking between protein molecules, preventing the deterioration of
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the gel structure caused by oxidation, as well as improving the elasticity and water-holding
capacity of the gel network.

3.7. Pressure Loss

Pressure loss is a crucial index for determining the water retention capacity and quality
of meat products [54]. As shown in Figure 7, the pressure loss in pork patties increased
significantly during F–T cycles (p < 0.05). Similar results were found by Wang et al. [24],
who reported that the pressure loss of F–T cycle samples was significantly higher than
fresh samples (p < 0.05). The results may be attributed to the mechanical damage caused by
recrystallization. In freezing and frozen storage, the ice crystals formed inside or outside the
cells and caused a disruption of the cellular membranes. As a result of perimysium leakage,
water in the intracellular space moves to the extracellular space, which increases the drip
loss of muscle after thawing [55]. In addition, F–T cycles may induce meat oxidation by
causing direct texture damage of meat tissues and damage to specific cellular structures,
especially membrane lipids, resulting in pressure loss [1]. During F–T cycles, the pressure
loss in the samples added WPH and BHA decreased obviously. After seven or nine F–T
cycles, the water retention of sample with 15% WPH was significantly higher than that of
the sample with 0.02% BHA (p < 0.05). The pressure loss of the sample with 15% WPH
was significantly decreased by 13.96% compared with that of the control sample after nine
F–T cycles. Therefore, adding 15% WPH to pork patties during F–T cycles could effectively
improve water retention.
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Figure 7. Changes in pressure loss of multiple freeze–thaw (F–T) cycles of pork patties with different
whey protein hydrolysate (WPH) contents. The significant differences among different samples are
indicated by different lowercase letters (a–d). Control: without any additives in the sample; NWP:
native whey protein; BHA: butylated hydroxyanisole.

3.8. Low-Field Nuclear Magnetic Resonance Analysis

Low-field NMR technique provides information about the mobility and distribution
of water in meat systems, especially water-binding capacity to muscle proteins [30]. Longer
relaxation time means that the binding ability between water and meat becomes weaker.
As shown in Figure 8, three peaks were observed during F–T cycles, which represented
that there were three different water phases, including T2b (1–10 ms), T21 (10–100 ms) and
T22 (100–1000 ms). T2b with the shortest relaxation time represents the bound water that
associated with macromolecules tightly; T21 represents the immobile water entrapped
in the MP network; T22 with the longest relaxation time represents the free water in the
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protein lattice [56]. In Figure 8, T2b did not change obviously during F–T cycles, indicating
that the bound water was tightly bound to the proteins and had high freezing resistance.
However, T21 and T22 increased during F–T cycles, which is dependent on the change in the
spatial structure and a reduction in the water-holding capacity of proteins. The difference
in T22 may indicate that free water molecules in the gel system are dismissed during F–T
cycles, increasing the molecular mobility of free water [57].
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cycles of pork patties with different whey protein hydrolysates (WPH) contents. (a–f): 0, 1, 3, 5,
7, 9 F–T cycles. Control: without any additives in the sample; NWP: native whey protein; BHA:
butylated hydroxyanisole. T2b: bound water; T21: immobilized water; T22: free water.

The changes in T2 relaxation times were associated with the denaturation of proteins
caused by repeated F–T cycles. The results are consistent with Zhang et al. [3], who found
that T2b, T21 and T22 in porcine longissimus muscle increased significantly after the F–T
cycles, indicating that immobile water was transferred to free water, and free water mobility
increased. In general, the mobility of water molecules increased during F–T cycles, thus
prolonging the corresponding relaxation time. However, the addition of WPH reduced
the T2; the T2 of samples with 15% WPH added was shorter than that of the other samples
during F–T cycles. The decrease in T2 may be due to the fact that WPH promotes the
formation of protein network structures, thus restricting proton migration related to water
and fat molecules [56]. These results indicated that WPH treatment could improve the
hydration status of polypeptides by expanding intermolecular spaces and increasing active
side chains so that more free water was converted to immobile water, which improved
water binding ability and inhibited water mobility, resulting in a tight gel structure and
increased elasticity.

3.9. Principal Component Analysis

Principal component analysis (PCA) was used to determine the relationship between
the oxidation reaction, protein structure and water-holding capacity of pork patties during
repeated freeze–thaw cycles. As shown in Figure 9, the first two principal components
account for 88.87% of the total variance. Among them, the first principal component (PC1)
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was the most important variable, accounting for 80.31% of the total variance. The samples
after five F–T cycles, seven F–T cycles and nine F–T cycles were located on the positive
PC1 axis and positively correlated with surface hydrophobicity, particle size, pressure loss,
POV and T2b, T21, and T22 content. In contrast, the samples after no F–T cycles, one F–T
cycle and three F–T cycles were located on the negative PC1 axis and positively correlated
with the total SH content, G′ and the zeta potential. These results indicated that as the
number of repeated freeze–thaw cycles increased, the oxidation degree increased, the
protein structure changed, and the water-holding capacity of pork patties decreased. Under
the same freeze–thaw cycles, the distribution of samples with 15% WPH was the closest to
the distribution of samples without freeze–thaw cycles, indicating that the addition of 15%
WPH was more effective at preserving the quality of freeze–thawed pork patties. After nine
F–T cycles, the POV, surface hydrophobicity, particle size and pressure loss of the samples
with 15% WPH were reduced by 17.20%, 30.56%, 34.67% and 13.96%, respectively, and G′

at 80 ◦C was reduced by 16.16%. The total SH content and the absolute value of the zeta
potential increased by 69.62% and 146.14%, respectively. This indicates that adding 15%
WPH to the pork patties can effectively inhibit the oxidation reaction and protein structure
changes and improve the water-holding capacity of the pork patties during the F–T cycles.
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Figure 9. Principal component analysis (PCA) of the oxidative reaction, protein structure and
water-holding of multiple freeze–thaw (F–T) cycles of pork patties. PC1: the first principal component;
PC2: the second principal component; control: without any additives in the sample; NWP: native
whey protein; BHA: butylated hydroxyanisole. T2b: bound water; T21: immobilized water; T22: free
water; G′: storage modulus; POV: peroxide value; total SH content: total sulfhydryl content.

4. Conclusions

The results showed that repeated F–T cycles had a significant impact on the quality
of pork patties as well as the oxidative damage to proteins. During F–T cycles, significant
differences in physical properties, protein oxidation, structures and elasticity were observed
in pork patties with different concentrations of WPH added. Pork patties with 15% WPH
had better quality, microstructure and oxidation stability in all samples, similar to the
sample with 0.02% BHA. The findings revealed that 15% WPH played an important
role in inhibiting protein oxidation and improving the functionality and water retention
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of pork patties. These results serve as a guide for obtaining fresh pork patties during
cryopreservation and improve the further application of WPH in the food industry.
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