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Abstract: Annona crassiflora Mart., the marolo fruit of the Cerrado biome, is one of the most frequently
consumed species from the Brazilian Midwest. This study aimed to evaluate the chemical composi-
tion and the antioxidant and cytotoxic properties of the fruit pulp of A. crassiflora collected at Chapada
das Mesas, Maranhão, Brazil. The volatile concentrate was identified as mainly ethyl octanoate, ethyl
hexanoate, and methyl octanoate. From the ethanol (LFP-E) and ethyl acetate (LFP-A) extracts were
identified phenolic acids (p-coumaric, gallic, quinic, and ferulic), flavones and derivatives (apigenin,
epicatechin, 2′-5-dimethoxyflavone, 3′,7-dimethoxy-3-hydroxyflavone, kaempferol-3-O-glucoside
and 3-O-rutinoside, quercetin-3-O-glucoside, procyanidin B2, and rutin), aporphine alkaloids (xylop-
ine, stephagine, and romucosine), and acetogenin (annonacin). For the LFP-E and LFP-A extracts,
the total phenolic compound values were 15.89 and 33.16 mg GAE/g, the flavonoid compound
content values were 2.53 and 70.55 mg QE/g, the DPPH radical scavenging activity showed EC50

values of 182.54 and 57.80 µg/mL, and the ABTS radical activity showed TEAC values of 94.66 and
192.61 µM TE/g. The LFP-E extract showed significant cytotoxicity and cell selectivity for the U251-
glioma strain, presenting a GI50 value of 21.34 µg/mL, which is close to doxorubicin (11.68 µg/mL),
the standard chemotherapeutic drug. The marolo fruit seems to be a promising source for developing
innovative and healthy products for the food industry.

Keywords: marolo fruit; phenolic compounds; antioxidant and antiproliferative activities; volatile
concentrate

1. Introduction

Annonaceae has been listed among the most diversified families due to its hetero-
geneity and abundance in the world’s tropical forests. It is a pantropical plant family
of ca. 2450 species of trees and lianas, well represented in the neotropical flora with ca.
950 species. The Annonaceae comprise 26 genera and ca. 260 species in Brazil, known for
their edible fruits and medicinal properties, where Annona, Guatteria, and Xylopia are the
most common genera [1,2]. Some paper reviews have highlighted the traditional medici-
nal uses, phytochemical and pharmacological studies, and toxicity of most Annonaceae
species, which indicate the presence of bioactive compounds exhibiting antimicrobial,
insecticide, antiparasitic, pesticide, vermicide, and cytotoxic properties, among others [3,4].
Annonaceae are significant from an economic point of view given the numerous ways of
using their species, such as fruits in food and cooking, rich in lipids and carbohydrates, in
addition to diterpenes, acetogenins, alkaloids, and essential oils, among the constituents
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of secondary metabolism with a more outstanding contribution to the biological activities
already observed, and which have served as primary compounds in the production of new
drugs [5–7].

Annona crassiflora Mart. (syn. A. macrocarpa Barb. Rodr.), known as “marolo”,
“araticum”, and “bruxo-da-quaresma”, is a medium-sized tree, 4 to 8 m tall, trunk usually
20 to 30 cm in diameter. The fruit is a subglobose berry with a 12–15 cm diameter and up
to 2 kg in weight, oval to a rounded shape. It is one of Brazil’s twenty most frequently
consumed fruits of the Cerrado biome, and its maturation occurs between February and
April. When ripe, it has an aromatic and pleasant white-yellow pulp with numerous
elliptical-shaped seeds [8]. The “marolo” fruits are highly appreciated by the native popu-
lation and present unique sensory features, such as the intense flavor and exotic aroma,
as well also used in the treatment of diarrhea, venereal and parasitic diseases, wounds,
ulcers, cancer, and rheumatism. Its pulp is a rich source of dietary fiber, nutrients, and
bioactive compounds, such as carotenoids, polyphenolics, tocopherols, flavonoids, and
some vitamins and minerals [9–12]. These qualities make this fruit a promising source
for developing innovative and healthy products for the food industry, and also, the fruit
by-products and other plant parts are potential sources of value-added compounds [13–16].
Annona crassiflora fruit pulp showed 8.37 ◦Brix soluble solids, titratable acidity of 0.66 g of
citric acid per 100 g. The amounts of metals, moisture, proteins, fiber, and sugars changed
during the maturation of the fruit. The total amounts of sugars, as well as soluble and
insoluble pectin and other parameters, were affected by the storage temperature of the
fruits [17–19].

Annonacin and squamocin are acetogenins (ACGs) present in A. crassiflora and other
Annonaceae species with neurotoxic action, which produce aggression to specific regions
and cellular elements of the central nervous system. ACGs lead to some pathologies, such as
an atypical Parkinson’s disease caused by the death of dopaminergic neurons, a decrease in
energy production [20], and no response to the use of the L-DOPA standard medication [21].
The excessive consumption of “graviola” (Annona muricata) pulp is possibly related to the
appearance of the etiology for some forms of an atypical Parkinson’s disease in Guadalupe,
the French Caribbean [20,21]. There is insufficient data to determine the dose of ACGs
or the fruits amount of Annonaceae that is neurotoxic. However, it seems unlikely that
it is overconsumed in Brazil because the per-capita incidence of Parkinson’s disease (PD)
in Brazil is less than half that of the USA, even though very little “graviola” or other
Annonaceae are consumed there [22]. Squamocin and annonacin concentrations in another
sample of lyophilized marolo fruit pulp and seeds were 0.403 and 142 mg/g of dry weight
for the first and 0.334 and 5.905 mg/g of dry weight for the second, respectively [23]. The
annonacin content determined in the fruit pulp of A. crassiflora was below that found for
the fruit pulp of A. muricata L. (graviola), which was 0.768 mg/g of dry weight, but was
above the value obtained for the fruit pulp of A. squamosa L. (atemoya), of 0.0038 mg/g
of dry weight [24]. For the squamocin content, the value determined in A. crassiflora was
above those found in the fruit pulp of A. muricata and A. squamosa, which were 0.0045 and
0.068 mg/g of dry weight, respectively [24].

Although there are many works on the characterization, application, and mechanisms
of action in vitro and in vivo of the bioactive compounds from the leaves of Annona species,
there are few studies related to the chemical composition and biological property of the
extracts from Annona fruits. This work aimed to investigate the chemical composition and
the potential antioxidant and antiproliferative effects exerted by the hydroethanolic extract
of the A. crassiflora fruits.

2. Materials and Methods
2.1. Chemicals

The reagents, solvents, and standard compounds were purchased from the Sigma-
Aldrich Chemical Company (St. Louis, MO, USA).
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2.2. Plant Material and Extractions

Semi-ripe fruits of Annona crassiflora were collected at Parque Nacional Chapada das
Mesas (7◦20′16” S/47◦28′04” W), Carolina, Maranhão, Brazil, March 2016, and transported
to Laboratório de Engenharia de Produtos Naturais (LEPRON), Universidade Federal do
Pará, Belém, Brazil. The leaves and flowers of A. crassiflora collected for taxonomic purposes,
were identified and deposited in the Emílio Goeldi Herbarium, Belém Pará state, Brazil,
under number MG 222438. The lyophilized fruit pulp (LFP, 50 g) was exhaustively extracted
with n-hexane (500 mL), and then the LFP residue was extracted with a hydroethanolic
solution (300 mL, ethanol 70%), thereby yielding the LFP-E extract. Subsequently, the
LFP-E extract was fractionated with ethyl acetate (300 mL) to furnish the LFP-A extract.
The LFP-E and LFP-A extracts were dried and used for the chemical and biological tests.
The lyophilized fruit pulp (10 g) was also subjected to microdistillation-extraction [25] to
obtain its volatile concentrate using n-pentane (99% HPLC grade, 3 mL) (Sigma-Aldrich,
São Paulo, Brazil) as the solvent.

2.3. Chemical Characterization of A. crassiflora Extracts

A clean-up step was performed to remove contaminants for the HPLC-ESI-IT-MS/MS
and FIA-ESI-IT-MSn analyses. The LFP-E (hydroethanolic) and LFP-A (ethyl acetate)
extracts were purified by solid-phase extraction (SPE) using Phenomenex Strata C18 car-
tridges (500 mg, stationary phase) that were previously activated with MeOH (5 mL) and
equilibrated with MeOH:H2O (5 mL,1:1, v/v). The purified extracts were eluted from
cartridges using MeOH:H2O (5 mL, 1:1, v/v), filtered through a 0.22µm PTFE filter, and
dried. Then, the extracts were diluted to 10µg/mL using the HPLC solvent. Aliquots of
20µL were injected directly into the HPLC-ESI-IT-MS/MS and FIA-ESI-IT-MSn.

The LFP-E and LFP-A extract analyses were performed on an HPLC-ESI-IT-MS mass
spectrometer LCQ Fleet Thermo Scientific using a Kinetex C18 (4.6 × 100 mm, 100 Å
and 5µm) analytical column for the LC separation. The linear gradient elution from two
mixtures was used in the mobile phase: 0.1% formic acid in water (A) and 0.1% formic
acid in acetonitrile (B). A gradient elution starting from 10% to 100% of B for 10 min was
used with a flow rate of 1.0 mL/min. The samples emerging from the HPLC system were
analyzed online by ESI-MS in the negative ion mode in series with a UV detector. For
the FIA-ESI-IT-MSn analysis, the direct flow infusion of the samples was performed on a
Thermo Scientific LTQ XL linear ion trap analyzer equipped with an electrospray ionization
(ESI) source (Thermo, San Jose, CA, USA). A stainless steel capillary tube was used at
280 ◦C, a spray voltage of 5.00 kV, a capillary voltage of 90 V, a tube lens of 100 V, and a
flow rate of 5 µL/mL. A full scan analysis was recorded in the range from 100 to 1000 m/z.

Multiple-stage fragmentations (ESI-MSn) were performed using the collision-induced
dissociation (CID) method against the helium for ion activation. The first event was a
full-scan mass spectrum to acquire data for the ions in that m/z range. The second scan
event was an MS/MS experiment performed using a data-dependent scan on the [M-H]
molecules from the compounds of interest at a collision energy of 30% and an activation
time of 30 ms. The product-ions were then submitted to further fragmentation in the same
conditions until no more fragments were observed. The identification of the different
compounds in the chromatographic profiles of the hydroalcoholic (LFP-E) and ethyl acetate
(LFP-A) extracts was performed by comparing their retention times and spectra with
literature data.

The volatile concentrate of the lyophilized fruit pulp of A. crassiflora was submitted
to GC and GC-MS analysis. It was performed on a GCMS-QP2010 Ultra system (Shi-
madzu Corporation, Tokyo, Japan) equipped with an AOC-20i auto-injector and the GCMS-
Solution software containing standards libraries [26,27]. A Rxi-5ms (30 m × 0.25 mm;
0.25 µm film thickness) silica capillary column (Restek Corporation, Bellefonte, PA, USA)
was used. The conditions of analysis were as follows: Injector temperature: 250 ◦C; Oven
temperature programming: 60–240 ◦C (3 ◦C min−1); Helium as the carrier gas, adjusted
to a linear velocity of 36.5 cm s−1 (1.0 mL min−1); split mode injection (split ratio 1:20) of
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1.0 µL of the n-pentane solution; electron ionization at 70 eV; and ionization source and
transfer line temperatures of 200 and 250 ◦C, respectively. The mass spectra were obtained
by automatic scanning every 0.3 s with mass fragments in the range of 35–400 m/z. The
retention index was calculated for all volatile components using a homologous series of
C8-C40 n-alkanes (Sigma-Aldrich, Milwaukee, WI, USA) according to the linear equation of
van den Dool and Kratz (1963) [28]. Individual components were identified by comparing
their retention indices and mass spectra (molecular mass and fragmentation pattern) with
those existing in the GCMS-Solution system libraries [26,27]. The quantitative data regard-
ing the volatile constituents were obtained using a GC2010 Series gas chromatograph that
was operated under similar conditions to those of the GC-MS system. A flame ionization
detector (GC-FID) was used to quantify the relative amounts of individual components by
peak-area normalization. Chromatographic analyses were performed in duplicate.

2.4. Antioxidant Capacity of the Fruit Pulp of A. crassiflora
2.4.1. Determination of Total Phenolics Content

The amount of total phenolics (TP) of the LFP-E and LFP-A extracts was determined
according to the Folin-Ciocalteu colorimetric procedure [29,30]. A calibration curve with
gallic acid at concentrations of 1, 2, 4, 6, 8, and 10 µg/mL was prepared. The acid gallic
solutions’ aliquots and the samples (500 µL) were mixed with Folin-Ciocalteu reagent
(250 µL, 1N) and sodium carbonate (1250 µL, 75.0 g/L). After 30 min of reaction, the
absorbance was read at 760 nm in a spectrophotometer UV/Visible (Shimadzu, UV 1800,
Shimadzu Corporation, Tokyo, Japan) at 25 ◦C and in a dark environment. The LFP-E and
LFP-A extracts were solubilized in methanol at initial concentrations of 20,000 µg/mL (for
the extract) and 10,000 µg/mL (for the fractions) to induce an absorbance between 0.3 and
0.7. The total phenolic content was expressed as gallic acid equivalents in mg per g of
extract (mg GAE/g).

2.4.2. Determination of Total Flavonoids Content

The amount of total flavonoids (TF) of the LFP-E and LFP-A extracts was determined
according to the aluminium chloride colorimetric procedure [31]. A calibration curve
with the quercetin standard at concentrations of 0.625, 1.25, 2.5, 5, 10, and 20 µg/mL
was prepared. The aliquots of the quercetin solutions (1000 µL) were mixed with alu-
minum chloride (1000 µL, 2%). After 30 min of reaction, the absorbance was read in a
UV/Visible spectrophotometer (Shimadzu, UV 1800, Shimadzu Corporation, Tokyo, Japan)
at 420 nm in a dark environment, and at 25 ◦C. The LFP-E and LFP-A extracts were solubi-
lized in methanol at an initial concentration of 6000 µg/mL. The total flavonoid content
was expressed as quercetin equivalents in mg per g of extract.

2.4.3. DPPH Radical Scavenging Assay

The LFP-E extract was evaluated by the DPPH radical-scavenging assay [30]. DPPH
is a stable dark violet free radical with a maximum absorption of 517 nm and is reduced
by antioxidants. A stock solution of 2,2-diphenyl-1-picrylhydrazyl (DPPH; 0.5 mM) was
prepared in ethanol. The solution was diluted to approximately 60 µM and measured an
initial absorbance of 0.62 ± 0.02 at 517 nm (Shimadzu, UV 1800, Shimadzu Corporation,
Tokyo, Japan) at room temperature. The absorbance was measured at the start of the
reaction, every 5 min during the first 30 min, and then at 30 min intervals until constant
absorbance values were observed (plateau of reaction, 2 h). The extract (50 µL ethanol)
was mixed to 1950 µL of methanolic DPPH solution (0.5 mM). The standard curves were
prepared with concentrations of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid) (Sigma-Aldrich, St. Louis, MO, USA) of 1, 2, 4, 6, 8, and 10 µg/mL. The results were
expressed as a 50% inhibitory concentration (IC50) and milligrams of Trolox (mgTE/g)
equivalents per gram of the extract.
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2.4.4. ABTS Radical Cation Assay

The LFP-E extract was evaluated by ABTS radical cation assay [30,32]. ABTS radical
cation was obtained by mixing 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) so-
lution (7 mM, 5000 µL) with potassium persulfate solution (140 mM, 88 µL), followed by
incubation for 16 h in the dark at room temperature. After, ABTS radical cation solution
was diluted in ultrapure water until reaching the absorbance of 0.70± 0.02 at 734 nm (ABTS
work solution). Aliquots (20 µL) of extract prepared in ultrapure water were added to
ABTS work solution (2020 µL) and the absorbance was measured in a spectrophotometer
(Shimadzu, UV 1800, Shimadzu Corporation, Tokyo, Japan). The results were expressed
in Trolox Equivalent Antioxidant Capacity (TEAC, µMTE/g). The TEAC value was calcu-
lated by measuring the area under the curve and plotting the percentage inhibition of the
absorbance as a function of time. The area under the curve was calculated for one sample
dilution, which had a final percentage inhibition between 20% and 80%.

2.5. Antiproliferative Assay

The MTT 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide colorimetric
assay was used to measure cellular metabolic activity [33]. The antiproliferative activity
of the LFP-E and LFP-A extracts were tested against six cancer cell lines: U251 (brain,
gliobrastoma), MCF-7 (breast, adenocarcinoma), PC-3 (prostate, adenocarcinoma), OVCAR-
3 (ovarian, adenocarcinoma), HT-29 (colorectal, adenocarcinoma), and HEP-G2 (liver,
hepatocellular carcinoma), and one non-tumor cell line, HaCaT (skin, keratinocyte). The
cells were seeded in 96-well plates and treated with extract concentrations of 1.3, 3.2, 6.5,
12.5, 25.0, 50.0, and 100.0 µg/mL, and then incubated for 48 h at 37 ◦ C with 5% CO2.
MTT was dissolved in RPMI medium (0.25 mg/mL), added to the plate, and incubated
at 37 ◦ C with 5% CO2. After 24 h, the plates were solubilized with DMSO solution (5%)
and stirred for 15 min. The determination of cell proliferation was performed using a
microplate reader (EpochBiotek) at 570 nm. The 50% growth inhibition (GI50), used for
cytostatic samples, was calculated by non-linear regression using the software ORIGIN
8.0 (OriginLab Corporation). Doxorubicin was used as the positive control. MTT analyses
were performed in triplicate.

2.6. Statistical Analysis

The samples were assayed in triplicate, and the results are shown as the mean ±
standard deviation. An analysis of variance was conducted, and the differences between
variables were tested for significance by a Tukey test and Student’s t-test. Differences at p <
0.05 were considered statistically significant. The IC50′s values were calculated by nonlinear
regression using the GraphPad program (version 5.0, Intuitive Software for Science, San
Diego, CA, USA).

3. Results and Discussion
3.1. Composition of Fruit Pulp Extracts of A. crassiflora

The hydroethanolic (LFP-E) extract from the hydrophilized fruit pulp of A. crassiflora
yielded 15.6%. The fractionation of the LFP-E extract (4 g), with n-hexane and ethyl
acetate furnished the LFP-H (2.9%) and LFP-A (1.5%) extracts, respectively. The chemical
profiles of the LFP-E and LFP-A extracts were analyzed using the LC-ESI-IT-MS technique
(m/z 100–1000 Da) and the fragmentation data recorded are shown in Table 1. The main
secondary metabolites identified were phenolic acids; flavonoid glycosides derived from
quercetin, kaempferol, rutin, aporphine alkaloids; and tetrahydrofuran-type acetogenin
(see Table 1 and Figure 1).
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Table 1. Mass spectral characteristics of secondary compounds detected by HPLC-ESI-IT-MS in the
A. crassiflora pulp fruit extracts at negative ionization mode *.

LFP-E and
LFP-A Extracts Compounds RT (min) [M-H]-

(m/z) MSn Fragments (m/z) c

1 p-Coumaric acid a 2.1 163 119(45), 93(100)
2 Gallic acid a 2.1 169 125(25)
3 Quinic acid a,b 2.3 191 173(40), 85(100)

4 Ferulic acid b 2.4 193 178(35), 149(100),
134(25)

5 Apigenin b 7.2 269 151(100), 117(35)
6 Rutin a 12.3 609 463(25), 301(100)
7 Kaempferol 3-O-β-D-glucoside a,b 12.9 447 285(100), 152(25)
8 Kaempferol-3-O-rutinoside a 13.1 593 285(100), 255(45)
9 Quercetin-3-O-β-D-glucoside a 14.2 463 301(100)

10 Procyanidin B2 a 16.1 577 541(35), 425(35),
407(25), 289(100)

11 (-)-Epicatechin a 18.3 289 271(100), 163(50)

12 Xylopine a,b 18.6 294 264(100), 249(35),
219(45), 191(25)

13 3′,7-Dimethoxy-3-hydroxyflavone a,b 19.6 297 265(100), 249(15),
183(18)

14 2′,5-Dimethoxyflavone a 19.7 281 151(100)
15 Stephalagine a 19.7 308 278(100)
16 Romucosine a 19.9 322 267(100), 252(35)

17 Annonacin a 21.2 595 471(100), 379(35),
361(28), 343(25)

* Identification by comparison of retention times and mass spectra data with reference compounds; a Identified in
LFP-E extract, (hydroethanolic); b Identified in LFP-A extract (ethyl acetate); c Relative ionic abundance for each
ion is in parentheses.
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Compounds 1 (m/z 163), 2 (m/z 169), and 4 (m/z 193) undergo decarboxylation
(loss of CO2, 44 Da) and correspond to p-coumaric, gallic, and ferulic acids [34,35]. Com-
pound 3 (m/z 191), characterized by quinic acid, produced ion-fragments in m/z 173 and
m/z 111, which correspond to H2O molecule loss and the ring-opening by a retro-Diels-
Alder (RDA) mechanism [36]. Compounds 5 (m/z 269), 13 (m/z 297), and 14 (m/z 281)
refer to apigenin, 3′,7-dimethoxy-3-hydroxyflavone, and 2′,5-dimethoxyflavone, respec-
tively, and an RDA mechanism primarily fragmented all these flavonoid compounds [37].
The fragmentation of compound 6 (m/z 609) produced two main ion-fragments, the ion
m/z 447 due to the loss of the deoxyhexose unit and the ion m/z 301 derived from the loss
of the hexose-deoxyhexose unit, which is characteristic of rutin, a biflavonoid derived from
quercetin with a glycosidic bond in carbon 3 of the central pyran-ring [38]. Compound
8 (m/z 593) was identified as kaempferol-3-O-rutinoside, which produced compound
7 (m/z 447), the kaempferol-3-O-β-D-glucoside, by the loss of a glycoside unit. The
ion-fragment m/z 285 arose from the loss of another glycoside unit [39]. The two first
fragmentations occur by the loss of the glycosyl units, thereby leaving only the structure
of kaempferol that undergoes cyclization by the RDA mechanism—generating the ion
m/z 152. Compound 9 (m/z 463) produced the ion-fragment m/z 301, which is related to
glycoside unit loss. It was identified as quercetin-3-glycoside (isoquercetin) [40,41]. The
mass spectrum of compound 10 (m/z 577) showed the ion m/z 425, which is derived
from the loss of 152 Da by a retro-Diels-Alder fragmentation (RDA), the ion m/z 407 of a
subsequent neutral loss of a water molecule, and the ion m/z 289, which is attributed to
the interflavanic link fragmentation. The comparison between the ion-fragments allowed a
structural proposal for the dimer B2-type procyanidin [42,43].

Compound 11 showed a precursor ion in m/z 289, and the subsequent fragmentation
pattern, which is related to the ions m/z 271, 245, and 205, was attributed to the epicatechin.
The ion of greatest intensity (m/z 245) is compatible with the molecule’s enol unit loss [44].
Compound 12 (m/z 294), generated ion-fragments arising from losses of CH3O (m/z 264),
NH (m/z 249), CH2O (m/z 219), and CO (m/z 191). The observed fragmentations are
consistent for the aporphine alkaloid xylopine—with m/z 294. The initial loss of the
mass fragments 15 and 31 Da is essential to identify whether the nitrogen of the amine
group is linked to hydrogen or methyl, respectively [45]. Still, through the fragmentation
analysis, it was possible to identify stephalagine (compound 15, m/z 308) and romucosin
(compound 16, m/z 322), also aporphine alkaloids. The presence of such alkaloids, xylopine,
stephalagine, and romucosin, was previously predicted in the extracts of A. crassiflora since
they are found in several Annonaceae species and considered chemotaxonomic markers
for the family [46]. The fragmentation analysis of compound 17 furnished the ions m/z 397,
379, 361, 343, 327, and 309, which are related to cleavages between the linkages C19–C20
and C15–C16, and a series of fragments with H2O loss, thereby indicating a tetrahydrofuran
ring at position C16–C19. The structure was identified as acetogenin annonacin [47,48].
Acetogenins are natural compounds isolated from Annonaceae species and derived from
long-chain fatty acids (C35–C37) via a polyketide route, which shows a γ-lactone-type
terminal ring and a tetrahydrofuran-type (THF) ring along the chain, in association with
oxygenated functional groups, such as hydroxyls, ketones, and epoxides [47,49].

Previously, polar components of hydroethanolic extract of fruit pulp of A. crassiflora
were investigated by direct electrospray ionization mass spectrometry (ESI-MS) in the neg-
ative ion mode. Characteristic ESI mass spectra with various diagnostic ions were obtained
from the extract. Fumaric acid (m/z 115), malic acid (m/z 133), and some hexoses (m/z 161,
179, 341, 503, 683) were identified [50]. Also, a more recent HPLC-MS analysis revealed 10
phenolic compounds (catechin, epicatechin, rutin, quercetin, and protocatechuic, gentisic,
chlorogenic, caffeic, and ferulic acids) in the fruit pulp of A. crassiflora [51].

3.2. Composition of Volatile Concentrate of Fruit Pulp of A. crassiflora

Volatile constituents are responsible for the characteristic aroma and flavor of fruits and
are present in a wide range of concentrations, which are represented by different chemical
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classes. The constituents of the volatile concentrate in the fruit pulp of A. crassiflora were
analyzed by GC-FID and GC-MS and are listed in Table 2. The yield of volatile concentrate
was 0.4%. In total, 25 constituents were identified comprising more than 94% of the volatile
concentrate. The primary components were ethyl octanoate (34.8%), ethyl hexanoate
(29.4%), and methyl octanoate (18.3%), which comprised 82.5% of the volatile concentrate.

Table 2. Constituents of volatile concentrate of lyophilized fruit pulp of Annona crassiflora.

Constituents RIC RIL
Concentrate

(%) Constituents RIC RIL Concentrate (%)

n-Octane 799 800 a 0.1 Ethyl octanoate 1195 1196 a 34.8
n-Hexanol 861 863 a 0.2 Ethyl (2E)-octenoate 1245 1245 a 0.3
2-Heptanone 888 889 a 0.1 Isopentyl hexanoate 1249 1252 b 0.8
Methyl hexanoate 920 921 a 2.4 (2E)-Decenal 1260 1260 a 2.0
Hexanoic acid 965 967 a 0.1 (2E,4Z)-Decadienal 1290 1292 a 0.5
Ethyl hexanoate 996 997 a 29.4 Methyl decanoate 1321 1323 a 0.1

n-Octanol 1061 1063 a 0.1 Hexenyl
(3Z)-hexanoate 1381 1382 b 0.2

Propyl hexanoate 1094 1096 b 0.1 Hexyl hexanoate 1386 1390 b 0.1
n-Nonanal 1100 1100 a 0.1 Ethyl decanoate 1395 1395 a 0.7
Methyl octanoate 1122 1123 a 18.3 Ethyl dodecanoate 1596 1598 b 0.5
Isobutyl hexanoate 1149 1149 a 0.1 Ethyl tetradecanoate 1794 1795 a 1.8
Octanoic acid 1164 1167 a 1.1 Ethyl hexadecanoate 1991 1992 a 0.1
Butyl hexanoate 1185 1186 a 0.2

Total (%) 94.2

RIC = Calculated Retention Index (Rxi-5ms column); RIL = Literature Retention Index; Bold = Main constituents;
a Adams 2007 [26]; b Mondello 2011 [27].

The odor description of ethyl hexanoate (fruity, sweet), ethyl octanoate (fruity, floral),
and methyl octanoate (fruity, green) point them to a significant contribution to the charac-
teristics of the “marolo” fruit aroma, and correspond to about 90% of the total identified
compounds. These results agree with previous reports, which found that esters were more
abundant in the lyophilized and fresh A. crassiflora fruit, thereby justifying their character-
istics as essential compounds derived from the plant lipid metabolism [12,52]. A similar
result regarding the abundance of ester derivatives was obtained from the analysis of the
volatile concentrate of Caryocar brasiliense Cambess.(pequi) (Caryocaraceae), another vital
fruit of the Brazilian Cerrado, where ethyl hexanoate and ethyl octanoate are also the main
volatile constituents [53].

3.3. Antioxidant Capacity of Fruit Pulp of A. crassiflora
3.3.1. Total Phenolics Content

The Folin–Ciocalteau assay allowed the estimation of flavonoids, anthocyanins, and
other phenolic compounds present in the LFP-E and LFP-A extracts. The total pheno-
lic content (TPC) for the LFP-E and LFP-A extracts were 15.89 ± 0.11 mg GAE/g dw
and 33.16 ± 1.1 mg GAE/g dw, respectively. According to Vasco and coworkers [54],
fruits extract are classified into three categories based on their total phenolic content: low
(<1 mg GAE/g), medium (1–5 mg GAE/g), and high (>5 mg GAE/g). Therefore, the
LFP-E and LFP-A extracts can be considered excellent sources of phenolic compounds. The
results for the phenolic compound content in the LFP-E and LFP-A extracts of A. crassiflora
fruit pulp were lower and similar to fruits collected in Goiânia, Brazil, which displayed a
content of 31.08 ± 1.23 mg GAE/g [55]. However, the samples displayed higher TPC levels
compared to fruits collected in Brasília, Brazil (5.80 ± 1.43 mg GAE/g) and Minas Gerais,
Brazil (2.11 ± 0.60 mg GAE/g) [56,57].

The variation in the levels of total phenolic compounds analyzed in a given sample
compared to the results in the literature may be due to the geographic and environmental
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conditions of the region of origin, physiological and genetic factors of the plant, preparation
and storage conditions, and extraction method [54].

3.3.2. Total Flavonoids Content

The estimation of the flavonoid compounds present in the LFP-E and LFP-A ex-
tracts was quantified based on the standard curve prepared with the compound quercetin.
The flavonoid content for the LFP-E and LFP-A extracts were 2.53 ± 0.51 mg QE/g and
70.55 ± 0.5 mg QE/g, respectively. The total flavonoid content of the LFP-E (2.53 mg QE/g)
extract was much lower than that obtained in a previous study, which was collected in
Minas Gerais and displayed amounts of 40.0 ± 0.15 mg QE/g [58]. On the other hand, the
content observed in the LFP-A extract was much higher than samples previously (0.631 and
±0.04611.64 mg QE/g) [10,56]. According to the literature, flavonoids are the predominant
class of phenolic compounds present in the fruit pulp of A. crassiflora [59,60]. These data
are also related to the higher antioxidant activity evaluated in the reducing power tests of
DPPH and ABTS reagents.

3.3.3. Antioxidant Activity by the DPPH and TEAC/ABTS Assays

Phenolic compounds exhibit various functional properties due to their antioxidant
capacity, acting as reducing agents, hydrogen donors, transition metal chelators, reactive
oxygen and nitrogen species (ROS/RNS) quenchers, enzyme inhibitors involved in ox-
idative stress, and regulators/protectors of endogenous defense systems [51]. The DPPH
and TEAC/ABTS assays have been used to evaluate the antioxidant activity of extracts
of food matrices. DPPH is applied to evaluate hydrophilic and lipophilic compounds,
while TEAC/ABTS is widely used to determine the antioxidant activity of hydrophilic
compounds. Both methods are based on sample antioxidants’ ability to reduce the radicals
by electron transferences and/or hydrogen atoms measured by absorption, which decrease
at 517 nm (DPPH) and 734 nm (ABTS) [61].

The DPPH radical scavenging activity showed the EC50 values 182.54 ± 7.3 µg/mL
and 57.80 ± 3.9 µg/mL of the LFP-E and LFP-A extracts, respectively. In the ABTS method,
the LFP-E and LFP-A extracts showed significant antioxidant activities through the discolor-
ing action of the cation radical ABTS, whose results expressed Trolox equivalent antioxidant
capacity (TEAC) values that were 94.66 ± 1.9 µM TE/g and 192.61 ± 2.8 µM TE/g, respec-
tively. The results showed a significant statistical difference in both methods according to
Student’s t-test (p < 0.0001) (Figure 2).
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The antioxidant activity of fruit extracts can be classified in three distinct categories
based on DPPH/EC50 values: significant (DPPH/EC50 ≤ 100 µg/mL), medium (100 µg/mL
< DPPH/EC50 ≤ 316 µg/mL), and weak (DPPH/EC50 > 316 µg/mL) [62]. Therefore, the
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LFP-E and LFP-A extracts have medium to good antioxidant properties, respectively. In
comparison to previous studies, the alcoholic extracts from the fruit pulp of two other samples
of A. crassiflora have shown EC50 values of 148.82 ± 0.98 µg/mL [55] and 93.76 µg/mL [51],
exhibiting a lower antioxidant action than the LFP-A extract (57.80 ± 3.9 µg/mL).

Regarding the ABTS assay, the LFP-A extract presented higher and lower antioxidant
activities than other extracts of A. crassiflora, whose values were 131.58± 19.61 µM TE/g [63]
and 231.79 ± 8.65 µM TE/g [51], respectively. In general, the antioxidant activity of
A. crassiflora fruit pulp, determined in this work by the DPPH and TEAC/ABTS methods, is
lower when compared with the results obtained for the fruit peel and seed, where there is a
more significant presence of phenolic compounds: DPPH (peel: 1065.0 ± 4.45 µM TE/g;
seed: 917.0 ± 7.76 µM/TE/g) and TEAC/ABTS (peel: 2022.13 ± 0.98 uM TE/g; seed:
190.54 ± 7.54 µM TE/g) [64].

3.3.4. Antiproliferative Assay

The evaluation of the antiproliferative activity of the LFP-E extract from the fruit pulp
of A. crassiflora was carried out in six human tumor cell lines: U251 (brain), MCF-7 (breast),
PC-3 (prostate), OVCAR- 3 (ovary), HT29 (colon), and HEP-G2 (liver), and one non-tumor
cell line, HaCaT (skin) (Table 3, Figure 3).

Table 3. Antiproliferative activity of A. crassiflora hydroethanolic extract against human tumor cell lines.

Extract/Standard
Cell Lines (GI50 µg/mL)

U251 MCF-7 PC-3 OVCAR-3 HT29 HaCaT HEPG2

LFP-E 21.34 >100 >100 >100 >100 >100 >100
Doxorubicin 11.68 3.09 24.46 53.92 26.16 4.79 27.53
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The results presented high values for 50% growth inhibition (GI50) in most tumor
cell lines, demonstrating the low cytostatic activity. Except for the glioblastoma strain
(U251), in which the LFP-E extract showed a significant antiproliferative effect, presenting
a GI50 value of 21.34 µg/mL, close to that obtained for doxorubicin (11.68 µg/mL), the
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chemotherapeutic drug widely used to treat different types of cancer, and, in this work,
was used as the positive control. Furthermore, LFP-E was at least 21 times less toxic for
the non-tumor cell line (HaCaT) than doxorubicin, with GI50 values of >100 µg/mL and
4.79 µg/mL, respectively. The tumor cell selectivity is an essential factor for possible drugs
since they exhibit low selectivity against cancer cells and can cause toxicity to normal cells
(side effects) [65]. The antiproliferative activity observed for the LFP-E extract of A. crassi-
flora can be explained by the presence of the acetogenins annonacin and squamocin, which
are compounds capable of preventing electron transport in the mitochondrial complex I
through the inhibition of the NADH coenzyme, which is responsible for the production of
cellular energy [23]. The LFP-A extract of A. crassiflora showed no antiproliferative effect.

Other hydroethanolic extracts of A. crassiflora leaves in a human tumor cell lineage
were previously reported, with significant antiproliferative activity and GI50 values less
than 10 µg/mL for various cell lines [66,67]. Interestingly, the peels and seeds of the
A. crassiflora fruit contained similar phytochemicals [64]. Also, the extracts were found
to have in vitro anticancer activities against multidrug-resistant ovary adenocarcinoma,
glioma, breast, non-small cell lung cancer, prostate, ovary, colon, and leukemia.

4. Conclusions

The present study revealed that the extracts of the fruit pulp of A. crassiflora showed
significant phytochemical constituents belonging to phenolic acids, flavonoids, aporphine
alkaloids, acetogenins, and fatty acid esters classes. Many of the identified compounds are
correlated to the observed antioxidant and antiproliferative activities, suggesting that the
extracts could be used in the future for potential applications in functional foods, oxidative
stress control, and cancer treatment. Also, the odors of ethyl hexanoate (fruity, sweet), ethyl
octanoate (fruity, floral), and methyl octanoate (fruity, green) contribute significantly to the
characteristics of the “marolo” fruit aroma.
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