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Abstract: Eight wheat products differing in texture (porridge vs. bread), grain fineness (fine, kibbled,
intact), and cooking (raw vs. cooked), with pre-measured glycaemic indexes (GI), were analysed by
in vitro amylolytic digestion to determine effects of processing to reduce GI on quantities of starch
fractions differing in digestibility. The accuracy and precision of the in vitro analysis was assessed
from its ability to concurrently predict clinical GI. In porridges, kernel intactness and lack of cooking
reduced GI while increasing Type 1 (inaccessible) and Type 2 (ungelatinised) resistant starch. Porridge
in vitro GI values (GIiv), calculated from the area under in vitro digestion curves minus estimated
blood glucose disposal, were: raw fine, 26.3; raw kibbled, 12.6; cooked fine, 63.9; cooked kibbled,
44.1; and correlated closely with clinical GI values (R2 = 0.97). In bread, the negative association of
kernel intactness and resistant starch with GI was seen in vitro but not in vivo. Bread GIiv values
were: roller milled flour, 67.4; stoneground flour 61.1; kibbled grain, 53.0; kibbled + intact kernel, 49.5;
but correlation with clinical values was low (R2 = 0.47), and variability in the clinical results was high
(clinical CV = 72.5%, in vitro CV = 3.7%). Low glycaemic potency of wheat by minimal processing
was achieved by maintaining particle size, avoiding hydrothermal treatment, avoiding crushing and
using a food matrix requiring little chewing for ingestion. Use of in vitro digestive analysis for high
precision measurement of starch fractions with potential secondary health benefits was validated by
accurate concurrent prediction of the glycaemic index but needed to account for effects of chewing.

Keywords: milling; cooking; starch fractions; glycaemic index; processing

1. Introduction

Two recent papers showed how different degrees of cooking and milling of wheat
grain could be used to modify the glycaemic response in eight products [1,2]. Associated
changes in starch digestibility were not measured. To fill this knowledge gap, we carried
out timed in vitro digestive analysis of starch in the same products as were used in the
foregoing clinical trials. The results are of interest for a number of reasons. In vitro analysis
of starch digestibility in such a set of physiologically characterised samples may help to
explain directly how the cooking and milling processes lead to the measured differences
in glycaemic response. The analyses may also identify changes in starch fractions in
wholegrains that have benefits, such as improved colonic health, secondary to the primary
aim of reducing glycaemic potency. Having the two sets of data—from the clinical and
in vitro digestive analyses—on the same samples also provides an opportunity to reassess
the accuracy and relative precision of in vitro digestive analysis in developing products
of low glycaemic impact. Furthermore, if data on starch digestion from timed sampling
during in vitro digestion accurately predict a time-dependent physiological response, the
starch analysis will have been physiologically validated.
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Having timed the in vitro and in vivo responses for two texturally contrasting types
of wholegrain products, porridges, and bread, also provides an opportunity to examine
the effect of product type on glycaemic analysis. Porridges, such as mueslis, are grains
ingested as slurries, require little chewing to swallow, and their starch component is
derived wholly from partially intact grain fragments. In bread, on the other hand, grain
particles are embedded in a relatively dry starch-based matrix which requires chewing
and bolus formation to be easily swallowed. The inhibitory effect of coarse wheat grain
structure on the glycaemic response to bread is largely eliminated during normal ingestion
because of the effects of mastication [3]. Therefore, in vitro digestive analysis without an
oral processing step that involves crushing should predict the glycaemic effects of grain
particles consumed in porridges more accurately than when consumed in bread. Bread
should be a less effective medium than porridges in which to capture the glycaemia-limiting
benefits of grain structure retained by minimal processing.

A number of factors determine the effects of minimal processing on starch digestibility
and have been exploited to make products of reduced glycaemic potency [4]. Native
structures in wheat may inhibit starch digestion at a number of levels [5]. At the molecular
level, the organisation of starch chains within granules retards digestion until disrupted
by gelatinisation during hydrothermal processing [6,7]. At the morphological level, the
starch density in the intact endosperm and an impenetrable seed coat may retard ingress
of water for hydration and swelling of starch and limit access of digestive enzymes [8,9],
particularly in wholegrain particles with an adherent seed coat. With such diverse factors
acting to retard starch digestion, the interaction of particle size and cooking is likely to lead
to a specific spectrum of nutritionally relevant starch fractions in any product. The starch
complement may include rapidly digested (RDS), slowly digested (SDS), inaccessible (Type
1 resistant (RS1)), and ungelatinised (Type 2 resistant (RS2)) starches, with the proportions
of the fractions depending on processing history [10,11]. Rapidly digested starch has
been associated with postprandial hyperglycaemia [12], which may induce a subsequent
transitional insulin-driven hypoglycaemic over-reaction in both healthy and metabolically
impaired individuals [13]. More slowly digested starch induces a lower postprandial
glucose peak but may sustain blood glucose above fasting into the late postprandial, inter-
meal period [14]. Resistant starch fractions, which are, by definition, forms of dietary fibre,
may act as prebiotics, with microbiota-mediated gut health benefits [15]. Such functional
diversity in cereal starch fractions no doubt contributes to the multiple benefits recently
linked to “carbohydrate quality” in whole grains [16]. It justifies analysing starch fractions
in whole grain products because of the secondary health benefits they may have, even if
developed primarily for low glycaemic impact.

Establishing a valid association between changes in starch fractions and glycaemic
impact would require measurement of starch digestion in the same material as was respon-
sible for the glycaemic response, with a sampling of intestinal contents. However, if an
in vitro digestion method used to determine starch fractions releases digestion product at a
rate that correlates closely with the glycaemic response, it is likely to provide an accurate
estimate of the starch fractions in vivo associated with the response and would validate the
method. A method based on clinical data has been developed. It provides simulated blood
glucose response curves by progressively subtracting estimated blood glucose disposal
from available carbohydrates released in the course of in vitro digestion [17]. The area
under these curves may be used to obtain an accurate in vitro estimation of glycaemic index
(GI) by the same trapezoid summation analysis as is used in the clinical determination of
GI [18]. If the GI values obtained during in vitro starch analysis accurately predict clinical
GI values determined on the same material, it would provide concurrent validation of
the method.

An aim of the present research was to determine how the content of nutritionally
relevant starch fractions in wheat grain products would change as a result of processing
to reduce the glycaemic potency of the products. A second aim was to test the correlation
between GIs of the products predicted from in vitro digestion and GIs determined from
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the incremental area under the postprandial blood glucose response curves, as a test of
the accuracy of the in vitro digestive analysis, and as a concurrent validation of the starch,
fractions measured. A further aim was to determine whether the type of product in
which kibbled wheat structure was ingested affected the survival of the low glycaemic and
resistant starch properties of the kibbled grains. Two auxiliary experiments were conducted
on the effects of cutting, crushing and cooking, respectively, on the digestibility of starch in
cereal grains to demonstrate the effect of the individual physical processes on the glycaemic
potency of cereal products. Finally, the research illustrates how processing steps taken to
reduce the glycaemic impact of cereal products may lead to secondary changes in starch
fractions considered to be of potential benefit to gut health [15].

2. Materials and Methods
2.1. Samples

Four bread and four porridge samples (Table 1) were prepared for clinical trials, and
sub-samples supplied for the in vitro analyses reported here by the Dept. of Food Science,
University of Otago. Preparation procedures have been detailed in publications presenting
the clinical results [1,2]. The bread were nutrient matched, as were the porridges. A
commercial white bread (Tip Top White) purchased at a local supermarket was included
as an external reference, representing the white bread standard for which a GI of 70 is
assumed [19]. The particle size of the flours was <150 µm, while the kibbled grains
were >1680 µm [1,2]. The four experimental bread were baked using the same standard
commercial procedures.

Table 1. Samples of wholegrain wheat products supplied for in vitro glycaemic impact analysis 1.

Sample Product Type Cooking Whole Grain Components Proportions (%)

1 Porridge Uncooked Fine 2 100
2 Porridge Cooked Fine 100
3 Porridge Uncooked Kibbled 3 100
4 Porridge Cooked Kibbled 100
5 Bread Cooked Flour, roller milled (RM) 100
6 Bread Cooked Flour, stoneground 100
7 Bread Cooked Roller milled (RM) flour + coarse kibble 50:50
8 Bread Cooked RM flour + coarse kibble + intact kernel 40:30:30

1 Based on published data [1,2]. 2 Fine ≤ 150 µM. 3 Kibbled ≥ 1680 µM.

The cooked porridges were made by heating the grain preparations in water at 85 ◦C
for 15 min and served at 65 ◦C to prevent starch retrogradation. The porridges were served
with yoghurt in portions required to deliver a 50 g carbohydrate dose 1.

2.2. In Vitro Digestion

The in vitro digestion has been described in detail elsewhere [18]. Briefly, the bread
was coarsely fragmented by rubbing gently through a 0.5 cm grating with care taken not to
crush any particles. The porridge samples were dispersed gently in the digestion medium
with a spatula, also with care not to crush particles. The samples were then subjected to an
in vitro digestive analysis, which included a 30 min gastric phase followed by intestinal
digestion lasting 150 min. During the intestinal phase, samples of the digestion medium
were removed from the digestion pots for analysis of the accumulation of carbohydrate
digestion products with time.

The digestions were carried out in duplicate in 70 mL specimen pots (LabServ, LBS
30002, Thermo Fisher Scientific, Auckland, New Zealand) placed in a custom-built heating
block on a 15-place magnetic stirrer. A sub-sample (2.5 ± 0.01 g) of each bread was
accurately weighed into each pot, 30 mL of water added, followed by 1.0 mL of 1 M HCl
and 1 mL of 10% pepsin protease (Sigma-Aldrich, P-7125, Merck Life Science, Auckland,
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New Zealand) dissolved in 0.05 M HCl. The samples were incubated at pH 2.5 and 37 ◦C
for 30 min to simulate gastric digestion.

The intestinal phase was initiated by adjusting the samples to pH 6.3 by adding
2 mL of 1 M NaHCO3 and 5 mL of 0.2 M Na maleate buffer pH 6.3 and made to the
full (53 mL) mark with distilled water. Intestinal digestion, during which carbohydrate
digestion was monitored, was initiated by adding 0.1 mL of amyloglucosidase (Megazyme,
E-AMGDF, Megazyme, Wicklow, Ireland) and 1.0 mL of 1% pancreatin (Sigma-Aldrich,
P-7545, 4 × USP, Merck Life Science, Auckland, New Zealand) solution in maleate buffer
to the digestion pots, which were stirred at 130 rpm and 37 ◦C. Samples (0.5 mL) were
removed to ethanol (2.0 mL) at 0, 10, 20, 40, 60 and 120 min and immediately mixed to stop
digestion and precipitate any undigested starch. At 120 min, the digests were homogenised
(Omni-GLH with an S18N-19G dispersing tool) to a slurry in the digestion pots, a further
0.1 mL of amyloglucosidase added, and the samples digested for a further 30 min to capture
any starch protected by food structure before a final 0.5 mL sample was removed to ethanol.

The ethanolic samples were centrifuged and a sub-sample of the supernatant given
a secondary digestion, with 1% amyloglucosidase and 1% invertase, to simulate brush
border processing and convert all 80% ethanol-soluble fragments from digestion of starch
(short dextrins, maltose) to glucose for analysis. Soluble sugars were then measured as
grams of glucose equivalents (GE) using the standard dinitrosalicylic acid colourimetric
procedure [20].

Starch fractions determined in the above analysis were:
Rapidly digested starch (RDS)—starch digested in vitro up to 20 min. RDS refers

solely to the time period of digestion, although it will contain glucose from starch species
that differ in their intrinsic rates of digestion.

Slowly digested starch (SDS)—starch digested between 20 and 120 min in vitro.
Resistant starch Type 1(RS1)—starch that is not digested because amylase access is

restricted by food structure. It was measured as the increase in sugar release at 150 min
when the sample had been given secondary digestion after homogenising at 120 min.

Resistant starch Type 2 (RS2)—starch resistant to digestion as a result of native molec-
ular structure. Hydrothermal processing converts Type 2 RS to digestible gelatinised
starch as long as the starch is able to hydrate. RS2 was measured as difference be-
tween total starch in the fully cooked dispersed as the difference between total starch
(TS) digested in the dispersed fully cooked sample and the sum of the preceding fractions
(RS2 = TS − (RDS + SDS + RS1)).

2.3. In Vitro GI Values

In vitro glycaemic index (GIiv) was determined from the digestion curves as previously
described [21]. Curves of cumulative sugar release from the products were determined,
as well as theoretical cumulative glucose disposal over the same time (Figures 1 and 2).
Equations for glucose disposal (GD) rate as a function of glycemic glucose equivalent
(GGE) intakes had previously been determined in clinical studies [18] and were applied to
in vitro values adjusted to serving size to provide realistic GD lines specific for each of the
individual digestion curves. The difference (net GGE) between the lines of GGE release
and GD provided a simulated blood glucose response from which the area under the curve
(AUC) was determined by trapezoid summation. Comparison of the AUC for a product
with the AUC for white bread with an assumed GI of 70 was used to derive the GIiv of
the product:

GIiv = (AUCproduct/AUCwhite bread) × 70
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2.5. Confirmation of Cutting, Crushing and Cooking Effects 

Two additional experiments were conducted to show the role that three factors may 

play in the observed differences between treatments in the main study of porridge and 

bread: (A) The role of cutting and crushing in digestibility of cooked wheat grain; (B) The 

role of cooking in digestibility of crushed grain, using wholegrain rolled oats. 

In Experiment A, wheat grains were allowed to hydrate overnight and cooked for 10 

min in a glass tube in a boiling water bath. The cooked grains were digested individually 

either intact, sliced equatorially with a sharp razor blade, or crushed to 1 mm between 

Figure 1. (A) Digestogram for porridge samples (all 50 g potentially available carbohydrate) differing
in particle intactness and cooking. Samples were homogenised at 120 min and digestion continued to
150 min. Points are means of duplicate samples. Mean absolute deviation from mean = 1.2 g. Glucose
disposal (GD) baselines corresponding to each digestion curve are shown. (B) Net glycaemic glucose
equivalents were determined from the difference between each digestion curve and its corresponding
GD baseline in Figure 1A. Potential available carbohydrate content was assumed to be that measured
in the cooked homogenised flour sample at 150 min digestion.
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Figure 2. (A) Digestogram for bread samples (all 50 g available carbohydrate) containing wheat
preparations differing in degree of milling. Samples were homogenised at 120 min and digestion con-
tinued to 150 min. Points are means of duplicate samples. Mean absolute deviation from mean = 1.2 g.
Glucose disposal baselines (GD) for each curve are shown. (B) Net glycaemic glucose equivalents
(GGE) were determined from the difference between each digestion curve and its corresponding
GD baseline in Figure 2A. Potential available carbohydrate content in the wholegrain samples was
assumed to be that measured in the homogenised, roller milled sample at 150 min.

2.4. Clinical GI Values

The clinical GI values were determined from the mean iAUC values given in the publi-
cations describing blood glucose responses to the porridges [1] and bread [2], subsequently
subjected to the in vitro digestive analysis described in the present paper.

2.5. Confirmation of Cutting, Crushing and Cooking Effects

Two additional experiments were conducted to show the role that three factors may
play in the observed differences between treatments in the main study of porridge and
bread: (A) The role of cutting and crushing in digestibility of cooked wheat grain; (B) The
role of cooking in digestibility of crushed grain, using wholegrain rolled oats.

In Experiment A, wheat grains were allowed to hydrate overnight and cooked for
10 min in a glass tube in a boiling water bath. The cooked grains were digested individually
either intact, sliced equatorially with a sharp razor blade, or crushed to 1 mm between glass
sides, with 5 grains for each treatment. A scaled-down version of the in vitro digestion
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(above) was used with sugar release measured at 20 min (RDS), 120 min (RDS + SDS) and
after homogenising with further digestion (RDS + SDS + RS1).

In Experiment B commercially available wholegrain rolled oats (Harraway’s, Dunedin,
New Zealand) were digested using the full-scale in vitro digestion procedure (above;
2.5 g/50 mL) either as is or after cooking for 10 min in a boiling water bath for determination
of RDS, RDS + SDS, and after homogenising, total starch.

2.6. Data Analysis

Mean values were calculated for all time points in the digestion. Precision of the
analyses was estimated as the mean absolute deviation between duplicate values for sugar
release per 100 g sample.

Values for total potentially available carbohydrates in the products were obtained from
the 150 min value for the homogenised cooked version of the product (bread or porridge)
made from the finest particle size flour. This would correspond to a standard available
carbohydrate analysis.

Standard deviations (SD) of the clinical GI values (SDGI) were calculated from the
given SDs of the IAUC values used to calculate GI using the formula:

SDGI = SD (X × 100/Y) = ((Mean x/Mean y) × sqrt((SD x/Mean x)2 + (SD y/Mean y)2)) × 100

where X and Y are the IAUCs of the sample and glucose reference, respectively [1,2].

3. Results

The analysis of soluble sugar release during digestion of all samples was conducted in
a single batch, in duplicate, with good precision; the average between-duplicate deviation
was 1.2 g/100 g sample (Table 2). For the Tip Top Supersoft white bread reference sample,
the total available carbohydrate measured as total sugar released by 150 min of pancre-
atic/amyloglucosidase action was 44.7 g/100 g sample. This compared with a value of
48.2 g/100 g in the nutrient information panel (which is usually determined by difference
so slightly overestimates true available carbohydrate) of the reference bread, indicating
that the digestive analysis used in the present study was reasonably accurate.

Table 2. Content of starch fractions in wholegrain wheat products (g/100 g sample) 1 and percent
contribution to total starch (TS) in each sample (%TS).

RDS SDS RS1 RS2 TS
Sample and Components Mean (% TS) Mean (% TS) Mean (% TS) Mean (% TS) Mean

Porridge
1 Fine, raw 7.43 (29) 4.87 (19) 2.57 (10) 10.4 (41) 25.3
2 Fine, cooked 19.9 (79) 1.96 (7.8) 3.46 (14) 0 (0.0) 25.3
3 Kibbled, raw 3.50 (14) 1.58 (6.3) 0.74 (3.0) 19.1 (77) 24.9
4 Kibbled, cooked 13.6 (54) 3.35 (13) 3.43 (14) 4.92 (19) 25.3

Bread
5 Flour, roller milled (RM) 29.0 (78) 7.0 (19) 1.21 (3.2) 0 (0.0) 37.2
6 Flour, stoneground 25.4 (69) 9.3 (25) 2.33 (6.3) 0 (0.0) 37.0
7 Flour, RM + kibbled 23.1 (64) 6.5 (18) 6.68 (18) 0 (0.0) 36.3
8 Flour, RM + kibbled + intact 21.4 (51) 6.8 (16) 8.16 (20) 5.23 (13) 41.6

White bread (reference) 36.5 (82) 8.2 (18) 0 (0.0) 0 (0.0) 44.7
1 Means of duplicate determinations. (Mean of absolute deviations from mean = 1.22 g, SD = 1.04 g).

3.1. Porridges

The initial rate and extent of starch digestion, as indicated by RDS, were affected by
processing more in the porridges than in the bread, ranging from 3.5 to 19.9 g/100 g sample
in the porridges compared with 21.4 to 29.0 for the bread. (Table 2). Rapidly digested starch
(RDS) as a percentage of total starch was least in the uncooked porridge samples (raw flour
29.4%; raw kibbled 14%) (Table 2) and increased considerably upon cooking (cooked flour,
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78.6%; cooked kibbled, 53.8%). RS2 was a large proportion of total starch in the uncooked
porridge samples (raw flour, 41.2%; raw kibble, 76.7%). Approximately 80% of the raw
kibbled sample was dietary fibre in the form of resistant starch, compared with about 14%
in the cooked wholemeal flour.

3.2. Bread

Across all bread, the rate of starch digestion and the distribution of starch fractions
differed (Table 2). The most rapidly digested starch was in the bread based on flour, which
also contained the least resistant starch. The fine kibble (stoneground) contained less RDS
than the flour bread and more SDS than the other bread, but still a relatively low content
of RS1. In the bread containing coarse kibble, and coarse kibble/whole wheat, the RDS
was lowest, and there was a notable increase in RS1. In the coarse kibble/whole wheat
bread, a small proportion (12.6% of total starch) of RS2 appeared, so about 30% of the starch
(RS1 + RS2) was in the form of dietary fibre (Table 2).

3.3. Glycaemic Indexes

The digestograms for the bread, which were all cooked, were much more tightly
grouped than those of the porridges (Figures 1 and 2). The uncooked porridges gave much
lower in vitro and clinical GI values than the cooked samples (Table 3). The in vitro GI
values accurately predicted clinical values for the porridges (R2 = 0.97; y = 1.11x = 2.83) but
not for the bread (R2 = 0.47, y = 1.28x − 7.16) (Figure 3). For all products combined the
correlation was R2 = 0.88, y = 1.11x + 2.31.

Table 3. GI values determined from incremental areas under the net GGE curves from in vitro
digestion (Figures 1 and 2) compared with GI values calculated from published areas under the
curves of blood glucose response to the same products.

GI In Vitro Clinical GI 1

Sample and Components Mean ±SD 2 Mean ±SD 1 ±SEM

Porridge
1 Fine, raw 26.3 ±0.9 38 ±26 ±6.1
2 Fine, cooked 63.9 ±2.2 73 ±51 ±12.0
3 Kibbled, raw 12.6 ±0.4 13 ±13 ±3.1
4 Kibbled, cooked 44.1 ±1.5 50 ±34 ±8.0

Bread
5 Flour, roller milled (RM) 67.4 ±2.6 81 ±56 ±14.5
6 Flour, stoneground 61.1 ±2.4 63 ±51 ±13.2
7 Flour, RM + kibbled 53.0 ±2.1 75 ±40 ±10.3
8 Flour, RM + kibbled + intact 49.5 ±2.0 47 ±48 ±12.4

1 Values calculated from published mean iAUC values and associated standard deviations [1,2].2 Based on mean
coefficient of variation (CV) of carbohydrate release at each time point during in vitro digestion: Bread, CV = 3.8%;
Porridge CV = 3.5%.

The in vitro GI values were determined with much greater precision than the clinical
values because they were unaffected by individual differences in glycaemic responsiveness.

RDS as a percentage of TS (x) closely predicted clinical GI (y) for porridges (R2 = 0.99,
y = 1.03x − 2.05), but less closely for the bread (R2 = 0.68, y = 0.97x − 2.37). Across all
products the percentage of starch that was RDS was a strong predictor of both the clinical
and in vitro GI values (GIclin: R2 = 0.92, y = 0.95x + 3.21; GIiv: R2 = 0.97, y = 0.83x + 2.25,
where y = GI and x = RDS as a percentage of TS).

3.4. Supplementary Experiments

In the intact cooked wheat grain, starch was almost completely protected from amylase
digestion. However, when the grain was crushed, the starch was almost completely
digested (Figure 4A). When the grain was cut without crushing, about half of the RS
was digested.
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Figure 4. Effects of physical state and cooking on starch fractions in cereals: (A) Effect of cutting
versus crushing (chewing) of cooked wheat kernels on starch digestion. (B) Effect of complete cooking
(porridge) versus no cooking (muesli) of a crushed partially cooked (steamed) cereal product (rolled
oats). Means ± SD. (RDS = rapidly, SDS = slowly, RS = resistant and TS = total starch).

The results with the rolled oats show that crushing grain alone will not render starch
digestible if it is not fully cooked. Rolled oats are a partially cooked (steamed) grain that
has been crushed during rolling. In the form of muesli, its starch was only slowly digested,
but upon cooking as hot porridge, there was a large increase with in vitro digestible starch
fractions (Figure 4B), with RDS increasing as a proportion of total starch from 32 to 81%,
and GIiv based on the area under the digestion curve increasing from 51.3 to 83.2.

4. Discussions

The results have shown the extent to which increased particle size and reduced
gelatinisation, which may be part of minimal processing of whole grains for reduced
glycaemic potency, lead to changes in starch fractions that could have secondary health
benefits. Amongst these changes, an increase in RS may make an important contribution
to gut health through its prebiotic effects in the colon, with numerous secondary health
benefits [15]. Processes increasing RS in bread could, in theory, substantially improve
dietary fibre intakes and associated gut health. In the bread containing 30% intact and
30% kibbled kernels, for instance, about 30% of the starch was in the form of resistant starch.
Two average (45 g) slices of the bread, each containing 16 g of starch, would provide about
10 g of dietary fibre as RS, probably combined with 3–4 g of non-starch polysaccharide, thus
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potentially providing almost half of the daily recommended intake of about 30 g dietary
fibre. However, the measured proportion of RS will be the maximum possible because a
proportion of the RS1 may be lost through structural disintegration by chewing during
normal ingestion. Thus, the in vivo contribution from intact grains may be lower in reality
than was suggested by the in vitro results and would depend on the chewing characteristics
of the consumer [22]. Nevertheless, in the present study, the reduction in GI of the intact
kernel bread of about 20 GI units compared with the wholemeal bread was consistent with
the in vitro reduction in RDS and increased in RS to about 30% of total starch.

A typical serving of porridge or muesli containing 50 g of wholegrain, with a “carbo-
hydrate” (total starch) content of about 35 g would, according to Table 2, provide dietary
fibre in the form of resistant starch ranging from 4.9 g for fine cooked, to 17.8 g for fine
uncooked, to 28 g for kibbled uncooked, and 11.5 g for kibbled cooked. Thus, the uncooked
kibbled grain could, in theory, provide most of the recommended daily intake of dietary
fibre to augment the soluble and insoluble non-starch polysaccharide already present. Thus,
the grain would be a valuable source of mixed dietary fibre in cereal mixtures consumed as
intact and uncooked or partially uncooked grains, such as muesli. However, as the results
in Figure 4 showed, dietary fibre in the form of resistant starch is extremely susceptible to
conversion to available carbohydrates by cooking and crushing treatments, which provides
the opportunity to develop products with specific physiological effects by careful control of
processing conditions.

An important advantage of consuming resistant starch in the form of intact and
partially intact cereal kernels in whole grain products is that it is accompanied by bran.
While RS may improve gut health by acting as a prebiotic substrate for the microbiota [15],
it adds little to faecal bulk because it is fermented. In contrast, the bran is a protective
integument that resists bacterial attack, so it survives colonic transit and contributes more
effectively to faecal bulk [23]. Faecal bulking is an extremely important complementary role
of dietary fibre in maintaining gut function and health, with many downstream benefits [24].
Cereal products with the bran fraction removed are generally inadequate as sources of
distal colonic bulk, while those that retain the bran have a high faecal bulking capacity [25].

The two supplementary experiments on cooked wheat kernels (Figure 4A) and rolled
oats (Figure 4B) respectively illustrated the importance of several factors determining the
glycaemic potency of wholegrain cereals, namely cutting and crushing of intact cooked
grains as would occur in kibbling and chewing to form a bolus, and starch gelatinisation as
a result of hydrothermal processing. Both crushing cooked grain and cooking crushed grain
largely eliminated the protective effect of structure at the plant morphological and starch
granule levels. Cooking and crushing effects on glycaemic impact will combine when solid
cooked wholegrain products, such as bakery products containing coarse kibbled and intact
kernel particles in a dryish food matrix, are ingested because chewing will be induced as
an essential part of bolus formation for swallowing. However, in products such as muesli,
in which the starch is incompletely gelatinised, and the product is swallowed in the form
of a slurry rather than a bolus, the combined effects of incomplete starch gelatinisation and
grain structure may substantially modify the glycaemic index, as seen in the wide spread
of GI values for porridge (Figure 3). In cooked porridge, the effect of grain structure is
likely to escape the effects of chewing, as the grains are swallowed in a slurry lubricated by
gelatinised starch.

The high correlation between in vitro and in vivo GI values for the porridges suggests
that in vitro digestion gives a true indication of the functional states of starch in vivo
because the starch fractions and the in vitro GI values were based on the same starch
digestion data. Furthermore, the physical form in vivo and in vitro would have been
similar because bolus formation was not required for ingestion. The reason for the weaker
correlation between the in vitro and in vivo GI values in the bread is probably because
the population density of wholegrains was reduced by the flour-based bread matrix, The
“hydrothermal” process of baking would have converted most of the RS1 to RDS, and
the data were subject to large errors intrinsic to clinical GI determinations [26]. The
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clinical study was probably underpowered to measure the differences between the bread
in glycaemic impact. The figure illustrates the value of the precision of in vitro analysis of
glycaemic impact compared with the unavoidable imprecision of in vivo measurements
due to large individual differences. Although the intact grains were still able to yield a
lower GI than the wholemeal, the difference was due partly due to Type 2 (ungelatinised)
RS (Table 3), suggesting that the intact grain structure had inhibited endosperm hydration
and/or starch gelatinisation.

In an earlier study of bread containing fully hydrated, cooked, coarse grain, swal-
lowing the bread without chewing lowered glycaemic impact, but the effect was largely
eliminated when the bread was ingested normally [3]. Presumably, chewing during bolus
formation [27], prolonged exposure to amylase during bolus persistence in the stomach,
and other physical and enzymatic processes that the stomach uses to disintegrate foods
obliterated the glycaemia-inhibiting effects of grain structure [28,29].

The results of the present study indicate that if coarsely kibbled grains are used to
lower the glycaemic potency of foods, the foods containing them should be moist enough
or textured to avert the need and urge to form a well-chewed bolus containing crushed
particles before swallowing. Secondly, as RS2 formed such a substantial portion of the
products with the lowest in vitro and clinical GIs (Figure 4, Table 2), limited hydrothermal
processing should be part of minimal processing for low glycaemic impact wholegrain
foods. Thus, a muesli-type product would be preferable to hot porridge for glycaemic
control.

The present study has also shown how in vitro digestive analysis can be a useful tool
in developing whole grain products for low glycaemic potency and/or improved prebiotic
potential based on restricting the conversion of RS to digestible starch. The correlation
between in vitro GI and clinical GI across all eight products was R2 = 0.88, consistent with
the value of R2 = 0.90 obtained with 24 carbohydrate foods of diverse types [21], and with
earlier research showing that RDS predicts glycaemic response [12]. The present research
has confirmed that RDS is an accurate predictor of glycaemic response, at least in simple
cereal products. A great advantage of the in vitro GI analysis over clinical GI is its far greater
precision (Table 3, Figure 3), with CVs of about 5%, typical of laboratory analysis. Although
clinical determination is mandatory for values to be assigned to consumer products, during
the development phase, in vitro analyses can provide economic and precise identification
of the best products to be taken into far more costly clinical trials. They can therefore allow
greater speed, economy and accuracy than going directly from formulation to clinical trials
in product development for glycaemic control.

However, as the present study has shown, if in vitro digestion is to be used to gauge
the relative glycaemic impact of whole grain foods, such as experimental preclinical cereal
products, it is important that the food be disintegrated in a way that accurately replicates
the physical effects of ingestion, such as crushing (Figure 4). For foods that do not need to
be chewed before swallowing, such as a porridge or muesli slurry, the in vitro GI estimation
proved to be reasonably accurate in this study.

If the in vitro procedure is to be applied beyond simple wholegrain cereal products,
to produce low glycaemic impact composite products, the influence of food components
that affect gastric emptying rate may need to be considered. Components such as fat,
highly viscous polysaccharides, and organic acids may need to be made constant across
comparisons so that effects of cereal and starch structure are not confounded by separate
effects of food components on digestion and glucose absorption. Once the role of cereal
structure has been defined under controlled conditions, other factors may be included
to determine their additional contribution to an overall improvement in the nutritional
attributes of a product.

This paper, by showing the substantial impact of factors, such as particle size, pre-
hydration, cutting, crushing, and gelatinisation on the glycaemic potency of wholegrains,
has highlighted a set of variables that can be systematically varied during minimal pro-
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cessing of grains. The products generated could create a matrix of minimally processed
wholegrains for use in numerous composite products of predictable glycaemic impact.

The present study suffered from some limitations imposed by the fact that the primary
aim of the study was to measure the effects of milling and cooking of wheat on human
glycaemic responses to wheat products, with a necessarily limited number of samples. The
design of the clinical study meant that changes in starch fractions and glycaemic responses
as a detailed function of isolated processing variables could not be determined. However,
the availability of the clinical data and the products responsible provided an excellent
opportunity to retest in vitro digestive analysis and obtain some explanation for the clinical
effects in terms of the effects of processing on starch fractions.

5. Conclusions

Minimal processing to preserve structure in kernel fragments and whole grains, and
molecular organisation in starch granules, may moderate the rate of digestion of starch
in cereal products, leading to low glycaemic potency and an increase in resistant starch
fractions. A dual benefit of improved glycaemic control and improved gut health may
therefore be obtained. In vitro digestive analysis can be an accurate and economical tool
in the preclinical development of healthier wholegrain products, provided the effects of
in vivo ingestion on food structure are allowed.

Author Contributions: Conceptualization, J.M. and S.M.; methodology, J.M. and S.M.; formal analy-
sis, J.M.; investigation, J.M. and S.M.; writing—original draft preparation, J.M.; writing—review and
editing, J.M. and S.M.; funding acquisition, J.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the New Zealand Institute for Plant and Food Research
Limited with additional external funding from The New Zealand Association of Bakers Incorporated
(Baking Industry Research Trust) (Contract no. 338875), and the Riddet Centre of Research Excellence
(Contract no. 33428).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Pat Silcock (Dept. Food Science, University of Otago) supplied subsamples of
materials used in the linked clinical trials [1,2].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elbalshy, M.M.; Reynolds, A.N.; Mete, E.; Robinson, C.; Oey, I.; Silcock, P.; Haszard, J.J.; Perry, T.L.; Mann, J.; Te Morenga, L.

Gelatinisation and milling whole-wheat increases postprandial blood glucose: Randomised crossover study of adults with type 2
diabetes. Diabetologia 2021, 64, 1385–1388. [CrossRef]

2. Reynolds, A.N.; Mann, J.; Elbalshy, M.; Mete, E.; Robinson, C.; Oey, I.; Silcock, P.; Downes, N.; Perry, T.; Te Morenga, L. Wholegrain
Particle Size Influences Postprandial Glycemia in Type 2 Diabetes: A Randomized Crossover Study Comparing Four Wholegrain
Breads. Diabetes Care 2020, 43, 476–479. [CrossRef]

3. Akila, S.R.V.; Mishra, S.; Hardacre, A.; Matia-Merino, L.; Goh, K.; Warren, F.J.; Monro, J.A. Glycaemic potency reduction by coarse
grain structure in breads is largely eliminated during normal ingestion. Br. J. Nutr. 2022, 127, 1497–1505. [CrossRef]

4. Jenkins, D.J.A.; Wesson, V.; Wolever, T.M.S.; Jenkins, A.L.; Kalmusky, J.; Guidici, S.; Csima, A.; Josse, R.G.; Wong, G.S. Wholemeal
versus wholegrain breads-proportion of whole or cracked grain and the glycemic response. Br. Med. J. 1988, 297, 958–960.
[CrossRef]

5. Gidley, M.J.; Yakubov, G.E. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’ vs ‘insoluble’. Trends Food Sci.
Technol. 2019, 86, 563–568. [CrossRef]

6. Bhattarai, R.R.; Dhital, S.; Mense, A.; Gidley, M.J.; Shi, Y.C. Intact cellular structure in cereal endosperm limits starch digestion
in vitro. Food Hydrocoll. 2018, 81, 139–148. [CrossRef]

7. Dhital, S.; Bhattarai, R.R.; Gorham, J.; Gidley, M.J. Intactness of cell wall structure controls the in vitro digestion of starch in
legumes. Food Funct. 2016, 7, 1367–1379. [CrossRef]

http://doi.org/10.1007/s00125-021-05400-y
http://doi.org/10.2337/dc19-1466
http://doi.org/10.1017/s000711452100252x
http://doi.org/10.1136/bmj.297.6654.958
http://doi.org/10.1016/j.tifs.2018.12.006
http://doi.org/10.1016/j.foodhyd.2018.02.027
http://doi.org/10.1039/C5FO01104C


Foods 2022, 11, 1904 12 of 12

8. Grundy, M.M.L.; Edwards, C.H.; Mackie, A.R.; Gidley, M.J.; Butterworth, P.J.; Ellis, P.R. Re-evaluation of the mechanisms of
dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br. J. Nutr. 2016, 116,
816–833. [CrossRef]

9. Luo, K.Y.; Zhang, G.Y. Nutritional property of starch in a whole-grain-like structural form. J. Cereal Sci. 2018, 79, 113–117.
[CrossRef]

10. Englyst, K.N.; Englyst, H.N. Carbohydrate bioavailability. Br. J. Nutr. 2005, 94, 1–11. [CrossRef]
11. Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch—A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [CrossRef]
12. Englyst, K.; Englyst, H.; Hudson, G.; Cole, T.; Cummings, J. Rapidly available glucose in foods: An in vitro measurement that

reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [CrossRef]
13. Brun, J.F.; Fedou, C.; Mercier, J. Postprandial reactive hypoglycemia. Diabetes Metab. 2000, 26, 337–351.
14. Mishra, S.; Willis, J.; Ansell, J.; Monro, J.A. Equicarbohydrate partial exchange of kiwifruit for wheaten cereal reduces postprandial

glycaemia without decreasing satiety. J. Nutr. Sci. 2016, 5, e37. [CrossRef]
15. Topping, D.L.; Fukushima, M.; Bird, A.R. Resistant starch as a prebiotic and synbiotic: State of the art. Proc. Nutr. Soc. 2003, 62,

171–176. [CrossRef]
16. Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of

systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [CrossRef]
17. Mishra, S.; Monro, J. Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine

nutritionally distinct carbohydrate fractions in cereal foods. Food Chem. 2012, 135, 1968–1974. [CrossRef]
18. Monro, J.A.; Mishra, S.; Venn, B. Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic

impact of customarily consumed food quantities. Br. J. Nutr. 2010, 103, 295–305. [CrossRef]
19. Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008.

Diabetes Care 2008, 31, 2281–2283. [CrossRef]
20. Englyst, H.N.; Hudson, G.J. Colorimetric method for routine analysis of dietary fibre as non-starch polysaccharides. A comparison

with gas-liquid chromatography. Food Chem. 1987, 24, 63–76. [CrossRef]
21. Monro, J.A.; Mishra, S. Glycemic Impact As a Property of Foods Is Accurately Measured By an Available Carbohydrate Method

That Mimics the Glycemic Response. J. Nutr. 2010, 140, 1328–1334. [CrossRef] [PubMed]
22. Ranawana, V.; Monro, J.A.; Mishra, S.; Henry, C.J.K. Degree of particle size breakdown during mastication may be a possible

cause of interindividual glycemic variability. Nutr. Res. 2010, 30, 246–254. [CrossRef] [PubMed]
23. Monro, J.A. Wheat bran equivalents based on faecal bulking indices for dietary management of faecal bulk. Asia Pac. J. Clin. Nutr.

2001, 10, 242–248. [CrossRef] [PubMed]
24. Deroover, L.; Tie, Y.X.; Verspreet, J.; Courtin, C.M.; Verbeke, K. Modifying wheat bran to improve its health benefits. Crit. Rev.

Food Sci. Nutr. 2020, 60, 1104–1122. [CrossRef]
25. Monro, J.A. Faecal bulking efficacy of Australasian breakfast cereals. Asia Pac. J. Clin. Nutr. 2002, 11, 176–185. [CrossRef]
26. Wolever, T.M.S.; Vorster, H.H.; Bjorck, I.; Brand-Miller, J.; Brighenti, F.; Mann, J.I.; Ramdath, D.D.; Granfeldt, Y.; Holt,

S.; Perry, T.L.; et al. Determination of the glycaemic index of foods: Interlaboratory study. Eur. J. Clin. Nutr. 2003, 57, 475–482.
[CrossRef]

27. Freitas, D.; Le Feunteun, S.; Panouille, M.; Souchon, I. The important role of salivary alpha-amylase in the gastric digestion of
wheat bread starch. Food Funct. 2018, 9, 200–208. [CrossRef]

28. Guerra, A.; Etienne-Mesmin, L.; Livrelli, V.; Denis, S.; Blanquet-Diot, S.; Alric, M. Relevance and challenges in modeling human
gastric and small intestinal digestion. Trends Biotechnol. 2012, 30, 591–600. [CrossRef]

29. Bornhorst, G.M.; Singh, R.P. Gastric Digestion In Vivo and In Vitro: How the Structural Aspects of Food Influence the Digestion
Process. Annu. Rev. Food Sci. Technol. 2014, 5, 111–132. [CrossRef]

http://doi.org/10.1017/S0007114516002610
http://doi.org/10.1016/j.jcs.2017.09.006
http://doi.org/10.1079/BJN20051457
http://doi.org/10.1111/j.1541-4337.2006.tb00076.x
http://doi.org/10.1093/ajcn/69.3.448
http://doi.org/10.1017/jns.2016.30
http://doi.org/10.1079/PNS2002224
http://doi.org/10.1016/S0140-6736(18)31809-9
http://doi.org/10.1016/j.foodchem.2012.06.083
http://doi.org/10.1017/S0007114509991632
http://doi.org/10.2337/dc08-1239
http://doi.org/10.1016/0308-8146(87)90084-7
http://doi.org/10.3945/jn.110.121210
http://www.ncbi.nlm.nih.gov/pubmed/20484544
http://doi.org/10.1016/j.nutres.2010.02.004
http://www.ncbi.nlm.nih.gov/pubmed/20534327
http://doi.org/10.1046/j.1440-6047.2001.00242.x
http://www.ncbi.nlm.nih.gov/pubmed/11708317
http://doi.org/10.1080/10408398.2018.1558394
http://doi.org/10.1046/j.1440-6047.2002.00280.x
http://doi.org/10.1038/sj.ejcn.1601551
http://doi.org/10.1039/C7FO01484H
http://doi.org/10.1016/j.tibtech.2012.08.001
http://doi.org/10.1146/annurev-food-030713-092346

	Introduction 
	Materials and Methods 
	Samples 
	In Vitro Digestion 
	In Vitro GI Values 
	Clinical GI Values 
	Confirmation of Cutting, Crushing and Cooking Effects 
	Data Analysis 

	Results 
	Porridges 
	Bread 
	Glycaemic Indexes 
	Supplementary Experiments 

	Discussions 
	Conclusions 
	References

