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Abstract: The water-soluble pigment protein phycocyanin (C-PC) from cyanobacteria Arthrospira
sp. is an excellent natural food colorant and nutritional supplement with a brilliant blue color.
However, C-PC is highly unstable, especially at high temperatures and when exposed to oxidative
stress. The lack of simple and economical methods for improving the stability of C-PC greatly limits
the application of this functional protein in the food industry. This study investigated the effect of
adding saccharides (glucose, mannose, galactose, and maltose) and sugar alcohols (mannitol and
maltitol) on the stability of food-grade C-PC extracted from Arthrospira platensis; the relevant reaction
kinetics were also analyzed. The results revealed that glucose, mannose, mannitol, galactose, and
maltose could effectively improve the thermal stability of C-PC. This improvement was positively
correlated with the concentration of the additives and decreased sharply when the temperature
exceeded 60 ◦C. Furthermore, the results also revealed the instability of C-PC when subjected to
oxidative stress and the effectiveness of glucose, mannose, mannitol, and maltose in preventing the
oxidative degradation of C-PC. In general, this study demonstrates that glucose, mannose, mannitol,
and maltose are promising compounds for promoting the thermal and oxidative stability of C-PC,
providing an economical and effective method for C-PC preservation.

Keywords: phycocyanin; thermal stability; oxidative stability; Arthrospira platensis; mannose; mannitol;
maltose; glucose

1. Introduction

C-phycocyanin (C-PC) is a water-soluble pigment-protein complex that is widely
distributed in cyanobacteria and functions as a light-energy-capture molecule in the
615–620 nm wavelength range [1]. The monomer of C-PC has a molecular weight of
44 kDa and includes an open-chain linear tetrapyrrole (chromophore of C-PC) and its
two covalently linked subunits (α and β peptide chains) [2]. In cyanobacterial cells, this
pigment is usually present as a monomer (αβ), trimer (αβ)3 and hexamer (αβ)6 [3]. C-PC
is abundant in cyanobacteria, where its content can even exceed 20% of the dry weight
under specific growth conditions (blue light treatment, etc.) [3–5]. Owing to its unique
brilliant blue color, C-PC is widely used as a natural colorant in multiple industries and
has been certified as a safe food additive by the US Food and Drug Administration [6]. The
application of C-PC as an ideal blue natural pigment in the food industry has continued to
gain attention, with the increasing social interest in health and ‘natural’ appeal [7,8]. Con-
sidering the content and proportion of amino acids, anti-inflammatory effects, immunity
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enhancement, and other health functions [8–10] of C-PC, the addition of this pigment to
food not only provides a lovely color that consumers find attractive, but also significantly
improves the nutritional value of food.

The global C-PC market exceeded USD 110 million in 2018 and is expected to dou-
ble to more than USD 200 million in the next decade [10]. Arthrospira (mainly refers to
Arthrospira platensis), commercially known as ‘Spirulina’, has a global annual production
that currently exceeds 20,000 tons, and is the main biological source of commercial C-
PC [4,11]. Although C-PC has significant advantages in terms of color, safety, and biological
origins, this algae-derived pigment is characterized by high instability to many extrinsic or
intrinsic factors such as temperature, pH, and light. Temperature is one of the main factors
affecting the stability of C-PC. The results of previous studies [5,12,13] indicate that the
degradation of C-PC is significantly accelerated in the aqueous phase when the ambient
temperature exceeds 45 ◦C, and the degradation rate increases rapidly with increasing
temperature. High-temperature processes such as sterilization and cooking are unavoid-
able in food production; thus, the low stability of the C-PC color to heat greatly limits its
application in the food industry.

An increasing number of studies have focused on improving the thermal stability of
C-PCs in recent years, and some achievements have been made. The use of additives is
the main strategy for stabilizing C-PC, where small-molecule saccharides have received
the most attention as potential additives [3,8]. The results of previous studies [7,12,14,15]
revealed that high concentrations of certain sugars, including glucose, sucrose, sorbitol,
and fructose, could significantly increase the thermal stability of C-PC, where this improve-
ment was positively correlated with the final sugar concentration. Furthermore, sodium
chloride, calcium chloride, and polymeric nanofibers have been reported to be effective
C-PC-stabilizing agents [5,15]. Processing methods are another strategy for C-PC stabiliza-
tion, preventing the thermal degradation and color loss of C-PC through crosslinking [16],
complexation with polysaccharides (beet pectin) [17], microencapsulation [18], and micro-
cellularization [19]. In general, compared with the complex processing steps and expensive
processing methods, the use of additives to improve the thermal stability of C-PC has the
advantages of easy operation, high safety of the used additives, and no requirement for
expensive instrument, and thus has better application prospects in the food industry [3,8].

As mentioned above, current research has demonstrated the significant effects of
saccharide additives on the thermal stability of C-PC in the aqueous phase. However, there
are still many areas, including—but not limited to—screening of more sugars that exert
thermal protective effects on C-PC, are suitable for food application and have an acceptable
price. The reaction kinetics of C-PC under the action of different sugar species and additives
need to be further studied for application of these additives to special foods [3,8,20]. In-
depth research on the above aspects will deepen our understanding of the mechanisms by
which the thermal stability of C-PC is enhanced by sugar and will greatly promote the utility
of this excellent natural colorant in the food industry and commercial applications. Notably,
the application of C-PC in food is also limited by the oxidizing environment/compounds
during food processing and preservation, which is a very important but neglected aspect,
and methods of improving the oxidative stability of C-PC need to be studied as a matter
of urgency.

The present study systematically evaluates the protective effect of glucose and maltose,
which have been reported as efficient saccharides for C-PC stability, as well as four small-
molecule additives, including the saccharides mannose and galactose, and sugar alcohols
mannitol and maltitol, on the thermal stability of C-PC in aqueous solution at 65 ◦C. The
protective effects and relevant reaction kinetics of these additives at different concentrations
are studied. Furthermore, the effects of the six additives on the oxidative stability of C-
PC are tested. The objective of this study is to provide a foundation for minimizing the
degradation of C-PC for use in the food industry.
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2. Materials and Methods
2.1. C-PC and Additives

C-PC used in this study was extracted from Arthrospira platensis cultured in Zarrouk’s
medium in the laboratory. The cells were collected by filtration when the culture reached a
concentration of OD560 = 1.5–2.0, and then dried by freeze-vacuum drying. The swelling
method and ammonium sulfate precipitation were used for the extraction and purification
of C-PC. Briefly, 0.05 M phosphate buffer (pH 6.8) was added to A. platensis biomass at a
ratio of 50:1 (v/w); the mixture was set aside for 24 h for lysis of the cells by swelling at
room temperature. The supernatant containing C-PC was collected by centrifugation at
5000× g for 20 min. Subsequently, an equal volume of a precooled saturated ammonium
sulfate solution was added to the supernatant at 4 ◦C and kept for 12 h to precipitate
C-PC. The collected C-PC precipitate was dissolved in doubly distilled water (ddH2O), and
ammonium sulfate was removed using a cellulosic semi-permeable membrane (retained
MW: 14,000). Finally, the food-grade C-PC product with a purity of A620/A280 = 1.313 was
obtained and stored at −20 ◦C.

The analytically pure saccharides (glucose, mannose, galactose, maltose) and the sugar
alcohols (mannitol and maltitol) were purchased from Sinopharm (Shanghai, China) and
used as additives in evaluating the stability of C-PC.

2.2. Effects of Additives on Thermal Stability of C-PC

C-PC solutions containing different concentrations of glucose, mannose, mannitol,
galactose, maltose, and maltitol were incubated at 65 ◦C for 60 min to study the effects
of these additives on the thermal stability of C-PC. The brief steps of the experiment are
as follows: The experimental solution with a C-PC concentration of 0.5 mg mL−1 was
prepared using 10 mM phosphate buffer (pH 6.8). An 8 mL aliquot of the C-PC solution
was placed into a 15 mL centrifuge tube. The additive was weighed and added to the test
tube to give final concentrations of 5, 10, 20, 30, and 40%, respectively. The solutions were
incubated in a thermostatic water-bath (Amersham MultiTemp III, Shanghai, China) for
60 min. The absorbance of the C-PC solutions at 652 nm and 620 nm was measured at
10 min intervals using a spectrophotometer (Shimadzu UV-1800, Suzhou, China). Each
experiment was performed in triplicate and a C-PC solution without additives was used as
the control.

The C-PC concentration was calculated using the following Equation [12]:

CPC

(
mg mL−1

)
=

A620 − 0.474 × A652

5.34
(1)

In this study, the relative concentration of C-PC (CR, %) was used to indicate the effect
of the additives on the stability of C-PC and was calculated using the following equation:

CR =
Ct

C0
× 100% (2)

where Ct is the concentration of C-PC at time t (min) and C0 is the initial concentration
of C-PC.

2.3. Kinetic Study of C-PC Degradation

It was confirmed that the degradation of C-PC at high temperatures could be modeled
by first-order kinetics [20,21]. The kinetic rate constant (min−1) for each sample was
calculated using the following equation:

ln
(

Ct

C0

)
= −kt (3)
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where k, t, Ct, and C0 are the kinetic rate constant (min−1) of degradation, processing
time (min), concentration of C-PC at time t (min), and the initial concentration of C-PC,
respectively.

The half-life (t1/2, the time required for the C-PC concentration to decrease to half of
the initial value) of each sample was calculated using the equation given below:

t1/2 =
ln 2

k
(4)

2.4. Stabilization of C-PC by Additives at Different Temperatures

The effect of the additives on the thermal stability of C-PC at different temperatures
was studied using a solution with 0.5 mg mL−1 C-PC and a final 30% (m/v) concentration
of each additive. A mass of 2.4 g of glucose, mannose, mannitol, galactose, maltose, or
maltitol was added to 8 mL of the C-PC solution, dissolved, and mixed well. Each treatment
was performed in triplicate and the solutions were incubated at 40, 50, 60, and 70 ◦C. The
absorbance of the samples was measured at 620 and 652 nm after heat processing for
60 min.

The improvement in the thermal stability of C-PC by the additives was reflected by
the relative concentration of C-PC (CR, %), which was calculated using Equation (2).

2.5. Effect of Oxidative Stress on C-PC

Different concentrations of H2O2 were used to simulate oxidative stress in C-PC.
An appropriate amount of 30% H2O2 (Sinopharm, Shanghai, China) was added to a
0.5 mg mL−1 C-PC solution to prepare the test samples with final concentrations of 0.25%,
0.5%, 1.0%, 2.5%, and 4.5% (m/m) H2O2, respectively. A C-PC solution without H2O2
addition was used as a control. Each treatment with different concentrations of H2O2 was
performed in triplicate and the solutions were stored at ambient temperature (20–25 ◦C).
Samples were withdrawn at 24 h and 48 h to measure the absorbance at 620 nm and 652 nm,
and the C-PC concentration was calculated using Equation (1).

The relative concentration of C-PC (CR, %), calculated using Equation (2) was used to
evaluate the effects of different oxidative stresses on C-PC degradation.

2.6. Effects of Additives on Oxidative Stability of C-PC

The effect of the additives on the oxidative stability of C-PC was evaluated by adding
different concentrations of saccharides and sugar alcohols to a solution of C-PC containing
4.5% H2O2. Glucose, mannose, mannitol, galactose, maltose, and maltitol were added to C-
PC/H2O2 solution to prepare the test samples with 5, 10, 20, 30, and 40% (m/v) of additives,
respectively. A solution containing 0.5 mg mL−1 C-PC and 4.5% H2O2 was used as a control.
After incubation at room temperature for 24 h, the remaining and relative concentrations of
C-PC in the experimental samples were calculated using Equations (1) and (2), based on
the absorbance values at 620 nm and 652 nm.

To further clarify the protective effect of the saccharides and sugar alcohols on the
oxidative stability C-PC and the related reaction kinetics, the degradation of C-PC with
20% additives and 4.5% H2O2 was investigated at reaction times of 0, 2, 4, 8, 16, and 24 h.
Refer to Section 2.3 for the calculation of the k and t1/2 values.

2.7. Statistical Analysis

The relative concentrations of C-PC are presented as the mean ± standard deviation.
Significant differences among different treatments were analyzed using SPSS (version 17.0;
SPSS, Inc., Chicago, IL, USA) using one-way ANOVA followed by Duncan’s test with a
significance level of 0.05.
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3. Results
3.1. Effect of Saccharides and Sugar Alcohols on the Thermal Stability of C-PC

The effects of different concentrations of saccharides on the thermal degradation of
C-PC at 65 ◦C were investigated. Figure 1A,B,D,E shows that the addition of 5–40% glucose,
mannose, galactose, and maltose significantly reduced the degradation of C-PC. The effect
of these additives on improving the thermal stability of C-PC increased with increasing
concentration. Up to 73.6 ± 2.1%, 83.1 ± 0.7%, 56.5 ± 1.4%, and 50.8 ± 1.3% of C-PC was
preserved after 60 min of heat processing with 40% of the above saccharides, respectively,
which is significantly higher (p < 0.01) than that achieved in the control without additives
(less than 33.1%).
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Similar to the improvement in the thermal stability of C-PC, the addition of mannitol
inhibited the thermal degradation of C-PC at 65 ◦C. As shown in Figure 1C, the relative
concentration of C- PC (CR) was 54.9 ± 0.6%, 55.7 ± 0.5%, and 65.5 ± 1.4% with ascending
concentrations of mannitol in the range of 20–40%. These values are significantly higher
(p < 0.01) than that (27.7 ± 1.3%) of the control. The addition of another sugar alcohol (malti-
tol) at concentrations of 5–40% did not improve the thermal stability of C-PC (Figure 1F),
and there was no significant difference between the treatments and control.

3.2. Kinetic Analysis of C-PC Degradation

Two characteristic parameters of the reaction kinetics (the degradation kinetic rate
constant (k) and half-life (t1/2)) of C-PC with different additives at 65 ◦C were calculated
and are listed in Table 1. The k values of C-PC with glucose, mannose, mannitol, galactose,
and maltose addition were significantly lower than that of the control and decreased with
an increase in the concentration of the additives. C-PC in the solutions with 40% mannose,
glucose, and mannitol had the lowest k values of 0.31, 0.51, and 0.71, suggesting that these
additives led to the strongest improvement in the thermal stability of C-PC. In contrast with
the k value, the t1/2 was positively correlated with the thermal stability of C-PC. The t1/2 of
C-PC with 40% mannose was 225.20 min, which is significantly longer than 31.14–38.55 min
of the control. Among the six additives, maltitol was the only one that caused no significant
difference in the k value and t1/2 relative to the control, which suggests that this sugar
alcohol has no effect on the thermal stability of C-PC.

Table 1. The kinetic rate constant and half-life values of C-PC at 65 ◦C with different additives.

Additives
Kinetic Rate Constant Value (k) (×10−2 min−1) t1/2 (Half-Life Values) (min)

5% 10% 20% 30% 40% 5% 10% 20% 30% 40%

Glucose 1.65 1.42 0.99 0.66 0.51 41.90 48.92 70.26 105.25 135.87
Mannose 1.85 1.43 1.17 0.52 0.31 37.49 48.39 59.05 132.22 225.20
Mannitol 1.98 1.74 1.00 0.97 0.71 34.94 39.74 69.40 71.25 98.12
Galactose 2.06 1.76 1.75 1.17 0.95 33.58 39.48 39.57 59.16 72.96
Maltose 1.72 1.58 1.30 1.13 1.20 40.27 43.97 53.47 61.47 57.57
Maltitol 2.21 2.16 2.36 1.95 1.90 31.39 32.16 29.35 35.56 36.52
Control 1.79–2.21 31.14–38.55

3.3. Thermal Stability of C-PC with Additives at Different Temperatures

Considering the noticeable improvement in the thermal stability of C-PC at 65 ◦C
upon addition of the saccharides and sugar alcohols, the present study further determined
the effect of 30% additives on the thermal stability of C-PC in the temperature range of
40–70 ◦C over the course of one hour (Figure 2). There was no obvious difference in CR
for the control (without additives) versus the treatments at 40 ◦C. Thermal degradation of
the control increased rapidly in the temperature range of 50–60 ◦C, whereas the stability of
C-PC was strongly improved by the addition of 30% glucose, mannose, mannitol, galactose,
maltose, and maltitol, as reflected by the CR values of 90.9 ± 1.4%–97.1 ± 0.9% at 50 ◦C and
72.8 ± 1.6%–88.6 ± 2.1% at 60 ◦C. The effect of the additives on C-PC decreased rapidly
when the temperature exceeded 60 ◦C, and the CR values of the treated samples were
slightly higher than those of the control at 70 ◦C. Overall, the additives exerted a positive
effect on the thermal stability of C-PC, which was strongly correlated with the temperature,
and a significant improvement was observed when the temperature was below 70 ◦C.
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Figure 2. Relative concentration of C-PC treated with 30% additives after incubation for 1 h at
different temperatures.

3.4. Stability of C-PC under Oxidative Stress

The degradation of C-PC upon exposure to H2O2 in the concentration range of
0.25–4.5% at room temperature was investigated, as shown in Figure 3. The CR value was
negatively correlated with the concentration of H2O2. Only 34.2 ± 3.1% and 26.5 ± 4.9% of
C-PC were preserved, respectively after 24 h and 48 h incubation with 4.5% H2O2, whereas
little degradation of C-PC was observed in the control. These data confirm that soluble
C-PC is sensitive to the oxidative environment. Notably, there was no obvious difference
in the CR at 24 h and 48 h for the same treatment, which indicates that the inactivation of
C-PC by H2O2 mainly occurs in the early stage of incubation.
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(B) shows the results of relative concentration of C-PC and C-PC concentration, respectively.

3.5. Improvement in Oxidative Stability of C-PC by Additives

To explore potential ways to avoid oxidative degradation of C-PC, this study tested the
effect of the six additives on the oxidative stability of C-PC under oxidative stress with 4.5%
H2O2 in a 24 h experiment. Glucose, mannose, mannitol, and maltose exerted a positive
effect on the oxidative stability of C-PC in the concentration range of 5–40% (Figure 4). The
CR values of the glucose-treated samples were in the range of 83.7 ± 0.8%–87.9 ± 0.4%, with
no significant difference for the different concentrations. The positive effects of mannose,
mannitol, and maltose on the oxidative stability of C-PC increased with increasing additive
concentration, where the highest CR values were 89.6 ± 1.2%, 85.2 ± 2.8%, and 86.9 ± 2.3%,
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respectively. No significant improvement was observed with galactose or maltitol addition.
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Further studies on the degradation of C-PC treated with 20% saccharides and sugar
alcohol and exposed to 4.5% H2O2 yielded similar results (Figure 5). The CR values of
the glucose- and mannose-treated samples at 24 h were 87.3 ± 1.1% and 85.6 ± 0.7%,
respectively, and these values are significantly higher than those obtained with mannitol
and maltose. The addition of galactose and maltitol did not improve the oxidative stability
of C-PC. Table 2 lists the k and t1/2 values of the C-PC samples with the six additives. The
glucose sample had the smallest k (0.09 × 10−3 min−1) and longest t1/2 (7.03 × 103 min).
The k and t1/2 values differed by one/two orders of magnitude in the thermal versus
oxidative degradation of C-PC, which reflects that the oxidative degradation of C-PC is a
relatively slow process.
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Table 2. The kinetic rate constant and half-life values of C-PC with 20% additives under 4.5% H2O2

oxidative stress.

Additives (20%) Kinetic Rate Constant (k)
Value (×10−3 min−1)

t1/2 (Half-Life Values)
(×103 min)

Control 0.67 1.04
Glucose 0.09 7.03

Mannose 0.11 6.13
Mannitol 0.16 4.24
Galactose 0.54 2.79
Maltose 0.25 0.97
Maltitol 0.71 1.29

4. Discussion

The high instability of C-PC, especially the degradation and discoloration at high tem-
peratures, has greatly hindered the application and preservation of this excellent natural
colorant [3,8,22]. Sugars are considered typical stabilizing compounds that can prevent the
degradation of proteins or pigments [14,23]. The effects of these stabilizing agents on the
thermal stability of C-PC have attracted extensive attention in the last decade. Previous stud-
ies have revealed that glucose, sucrose, sorbitol, and fructose can effectively inhibit thermal
degradation and discoloration of C-PC [5,7,12,14,15]. In this study, 48.6 ± 2.1–83.1 ± 0.7%
of C-PC was preserved in the samples treated with 40% glucose, mannose, mannitol, galac-
tose, and maltose, respectively, after 60 min incubation at 65 ◦C, further confirming the
positive effect of sugars on improving the thermal stability of C-PC. More importantly,
mannose, mannitol, and galactose were demonstrated to be promising compounds for the
thermal stability improvement of C-PC for the first time. Glucose, mannose, and man-
nitol showed better thermal protective effects on C-PC than galactose and maltose. The
stabilizing effect of sugars on protein has been proposed to be closely dependent on the
N-linked glycosidic bond between the sugar and protein [24,25], water surface tension [12],
and increase in the free energy of the system with sugar addition [26]. Few studies on the
mechanism of saccharides stabilizing C-PC have yielded inconsistent results. Research
by [20] indicated the stabilizing effect of sugars (glucose, sucrose, and fructose) is attributed
to the glycosidic bond between sugar and protein, while the results of [12] suggested that
increasing water surface tension by adding sugars is the main factor for the improvement
of C-PC stability. Recently, the role of water state in C-PC thermostability was confirmed
by [7]. Therefore, further studies are urgently needed to unravel the stabilizing mechanism
of saccharides on C-PC.

In this study, a positive correlation between the additive content and thermal pro-
tective effect on C-PC was revealed by analyzing the relative concentration of C-PC (CR),
kinetic rate constant (k), and half-life (t1/2). The results are comparable to those in the
literature [3,5,12,14,15], and suggest that the prevention of thermal degradation of C-PC
largely depends on the concentration of the co-solute saccharides. The CR value of treat-
ment with 40% mannose, which showed the best protective effect of all the additives in the
present study, 83.1 ± 0.7%, is significantly higher than that (32.9 ± 1.1%) achieved with 5%
mannose after a 60 min heating process. In previous studies, the feasibility of using the
reported high concentration of sugars in the food industry was limited, partially because
of the potential negative impact of these sugars on human health. The monosaccharide
mannose and sugar alcohol mannitol might be good choices for application in food-grade
C-PC because these compounds have little effect on human blood glucose and are suitable
for special groups such as diabetics [27].

The addition of saccharides and sugar alcohols can effectively inhibit the thermal
degradation of C-PC below 65 ◦C (Figures 1 and 2), which makes it possible to stabilize
C-PC during certain heat treatments, such as pasteurization. However, the protective
effect of the additives reported in this study and previous literature decreased rapidly
when the temperature exceeded 65 ◦C [7,14,20]. The current findings show that more than



Foods 2022, 11, 1752 10 of 12

68.5 ± 2.1% of C-PC was degraded after 1 h incubation at 70 ◦C. Unfortunately, there is still
no research on additives that can effectively stabilize C-PC at temperatures above 65 ◦C.
Added salts, such as sodium chloride and calcium chloride [5,15], and processing methods
such as microencapsulation [18,28] and microcellularization [19] have proven to be effective
for improving the stability of C-PC but are limited by their application effect or cost. The
combination of sugar addition and the above methods is a promising approach worthy of
special attention in the future. On the other hand, despite some progress in elucidating the
mechanisms of thermal degradation and stability enhancement of C-PC, further studies are
needed to fully clarify these mechanisms and to provide theoretical support for finding
more efficient agents or stabilizing methods [3,8,14,29].

In addition to its excellent blue-coloring ability, the antioxidant properties of C-PC
and its applications in nutrition and health care have been preliminarily revealed [30]. The
tetrapyrrole of C-PC contains unsaturated double bonds, which confer the advantage of
antioxidant capacity, but also make it potentially unstable to oxidative stress [30]. However,
temperature and pH are considered the main physicochemical factors that affect the stability
of C-PC [3,12,31]; in particular, temperature-induced degradation of C-PC and methods for
improving the stability have attracted the most attention [5,8,13,20]. The effect of oxidation
on the stability of C-PC has not yet been reported. The 24 h and 48 h preservation rates of
C-PC were only 34.2 ± 3.1% and 26.5 ± 4.9%, respectively, when exposed to 4.5% H2O2
(Figure 3), which clearly shows that oxidative stress is a factor that cannot be ignored in the
degradation of C-PC. Therefore, improving the oxidative stability must be considered in
the processing and preservation of C-PC.

Interestingly, it was revealed that the oxidative stability of C-PC could be improved
by adding saccharides and sugar alcohols. Adding 20% glucose, mannose, mannitol, or
maltose significantly reduced the kinetic rate constant (k) of oxidative degradation and
extended the half-life (t1/2) of C-PC. This discovery provides a simple and economical
method for inhibiting the oxidative degradation of C-PC during processing and storage.
Studies have shown that the addition of reducing sugars can increase the stability and
antioxidant activity of proteins, and the mechanism is believed to be mainly related to
the Maillard reaction between sugars and proteins [32–34]. Whether the stabilizing effect
of saccharides and sugar alcohols on the oxidative stability of C-PC is the result of the
Maillard reaction and the antioxidants produced by this reaction needs further clarification.

5. Conclusions

This study demonstrated that addition of glucose, mannose, mannitol, galactose, and
maltose can significantly improve the thermal stability of C-PC in the aqueous phase at
65 ◦C, reflected by the rapid decrease in the kinetic rate constant (k) of degradation and
increase in the half-life (t1/2) of C-PC with an increase in the additive concentration in the
range of 5–40%. Mannose has the strongest inhibitory effect on the thermal degradation
of C-PC and is revealed herein as an effective C-PC stabilizing compound, along with
mannitol and galactose, for the first time. The improvement in the thermal stability of C-PC
due to the additives is positively correlated with the additive concentration and varies with
temperature. The thermal protective effect of these additives decreased sharply when the
temperature exceeded 60 ◦C. Furthermore, the sensitivity of C-PC to oxidative stress and its
degradation were revealed for the first time. More than 50% of C-PC is degraded after 24 h
when the concentration of H2O2 exceeds 2.5%. Oxidative degradation of C-PC is effectively
inhibited by the addition of glucose, mannose, mannitol, and maltose. These results suggest
that the above additives can not only improve the thermal stability of C-PC, but also protect
it from oxidative degradation and are promising compounds for C-PC preservation.
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