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Abstract: In this paper, we propose a method for classifying tea quality levels based on near-infrared
spectroscopy. Firstly, the absorbance spectra of Huangshan Maofeng tea samples were obtained
in a wavenumber range of 10,000~4000 cm−1 using near-infrared spectroscopy. The spectral data
were then converted to transmittance and smoothed using the Savitzky–Golay (SG) algorithm. The
denoised transmittance spectra were dimensionally reduced using principal component analysis
(PCA). The characteristic variables obtained using PCA were used as the input variables and the tea
level was used as the output to establish a support vector machine (SVM) classification model. The
penalty factor c and the kernel function parameter g in the SVM model were optimized using particle
swarm optimization (PSO) and comprehensive-learning particle swarm optimization (CLPSO) algo-
rithms. The final experimental results show that the CLPSO-SVM method had the best classification
performance, and the classification accuracy reached 99.17%.

Keywords: Huangshan Maofeng tea; near-infrared spectroscopy; tea quality level; classification;
CLPSO-SVM

1. Introduction

Tea level or tea grade is a comprehensive evaluation of tea quality and is related to
many factors, such as the age of the tea leaves, the color of the produced tea, and the
aroma and taste of the tea soup. In terms of composition, the tea level is mainly related
to the various chemical substances it contains. For example, the content of cellulose and
hemicellulose can determine the age and tenderness of the tea leaves, and the content and
proportion of amino acids, tea polyphenols, and caffeine can determine the nutrition, and
also the taste of the tea. However, many other factors affect the tea levels [1,2]. Because
of the complexity and subtlety of tea level standards, the boundaries of tea levels are not
clear, which gives profiteers the opportunity to cheat customers with low-level teas at high
prices. Therefore, it is of great significance to find a reliable, fast, and simple method for
identifying tea levels.

As a simple, rapid, and non-destructive detection method, near-infrared (NIR) spec-
troscopy has been successfully applied to the quality analysis of various agricultural
products such as tobacco, coffee, and other crops, with good results [3–9].

For tea classification, NIR spectroscopy also has certain applications. In 2006, Zhao
et al. used a support vector machine (SVM) and back-propagation artificial neural network
(BP-ANN) methods to quickly identify black tea, green tea, and oolong tea, based on NIR
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spectroscopy technology [10]. The results show that SVMs could quickly and effectively
identify tea types. In 2018, Anindya et al. used NIR spectroscopy and principal component
analysis (PCA) to quickly and non-destructively classify Indonesian black tea. The results
show that this method can be used as a potential method to identify the tea grade [11]. In
2019, Li et al. used a specific spectral region for synergy interval partial least square (siPLS)
modeling based on NIR spectroscopy technology, and obtained a 97% and 93% prediction
accuracy rate of extra-flat tea in cross-validation and external verification, respectively [12].
Then, based on NIR spectroscopy, Firmani et al. combined partial least square discriminant
analysis (PLS-DA) and SIMCA software to identify Darjeeling black tea [13]. In 2020, Li
et al. used SVMs with particle swarm optimization (PSO) to identify fresh-leaf white tea of
different maturity levels based on NIR spectroscopy technology, and achieved significant
results [14].

Classification methods are commonly established using PLS-DA [15], extreme learning
machines (ELMs) [16], support vector machines (SVMs) [17], decision trees [18], artificial
neural networks [19], etc. SVMs have particularly low generalization error rates and are
suitable for small data sets [20,21].

In order to improve the accuracy of SVM models, some scholars have combined
intelligence optimization methods with the traditional SVM methods and have applied
them in a wide range of fields [22–25]. Intelligent optimization algorithms mainly include
the genetic algorithm (GA) [26], clonal algorithm (CA) [27], differential evolution (DE)
algorithm [28], particle swarm optimization (PSO) algorithm [29], etc. Among them, PSO
is widely used because of its fast convergence and easy implementation [30]. Although
the convergence speed of PSO is fast, it has the problems of premature convergence, local
optimization, and low efficiency of later iterations.

To overcome these problems, we applied a comprehensive-learning particle swarm
optimization (CLPSO) algorithm to optimize the SVM model to classify six levels of Huang-
shan Maofeng tea [31,32]. The CLPSO algorithm can prevent particles from undergoing
premature convergence and avoid them falling into a local optimum, offering the algorithm
good robustness; thus, it has better optimizing effects and is promising for making the
optimized SVM model obtain better classification results.

2. Materials and Methods
2.1. Tea Sample Preparation and Spectral Acquisition

The experimental Huangshan Maofeng tea samples were provided by Xie Yuda Tea
Co., Ltd, Huangshan, China. They are produced and labeled to six different levels, strictly
according to the national standard GB/T 19460-2008. In our experiments, six levels of tea
(20 samples of each level) were weighed using a Shimadzu electronic balance AUY120,
with each sample being 3 g ± 0.005 g.

The NIR spectroscopy analyzer used for the acquisition of the spectra was an Antaris
II Fourier-transform near-infrared spectrometer from Thermo Fisher Scientific, Madison,
WI, USA.

During the experiments, the laboratory temperature was kept at 20 ◦C and the humid-
ity was constant. First, 150 mL of 100 ◦C boiling water was measured using a measuring
cylinder and poured into an Erlenmeyer flask with one tea sample. The tea leaves were
brewed in the boiling water for 5 min, and the tea residue was filtered out using filter paper.
Part of the tea soup was then moved into a transparent cuboid quartz container using a
pipette, as the scanning sample. Finally, the sample was scanned using the NIR spectrum
analyzer in transmittance mode, with a scanning wavenumber range of 10,000~4000 cm−1

and a resolution of 3.9 cm−1. Each sample was scanned 3 times in this way, and its average
spectrum was taken as the original spectrum of the sample [33], as shown in Figure 1.
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interference [34]. 

Figure 1. Original spectra of Huangshan Maofeng tea.

2.2. Data Preprocessing

The original spectra of the tea sample in Figure 1 are absorbance spectra. From Figure 1,
it can be seen that there exists strong absorbance in the wavenumber below 7500 cm−1,
and there is no effective information there. Directly using such spectra to construct a
classification model would make the model ill-conditioned and affect its performance.
Therefore, we converted the absorbance spectra to transmittance ones, as shown in Figure 2.
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Figure 2. Transmittance spectra of Huangshan Maofeng tea.

Due to the inevitable measuring error, noise, and redundant information generated
during the measurement of the NIR instrument, the Savitzky–Golay (SG) filtering method
(with a frame length of 21) was used to smooth the spectral data and reduce the noise
interference [34].

Since there were 1557 data points in each sample, principal component analysis (PCA)
was performed on the data to reduce the dimensions [35]. The 1557 dimensions of the
feature were mapped to the k dimensions (k < n), which could effectively reduce the
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dimension and operation, maximize the difference in the retained data from the perspective
of variance, and avoid over-fitting.

Figure 3 is the loading plot of the first 3 principal components (PCs). From Figure 3, it
can be seen that for PC 1, which can explain 91.8% of the variance, the spectral contribution
from wavenumbers below 7500 cm−1 is very close to zero; for PC 2, whose variance
explanation is 4.1%, the spectral contribution below 7250 cm−1 is almost zero; and for PC 3,
which can only explain 2.7% of the variance, the spectral contribution below 7250 cm−1

is also close to zero, and the relatively large contribution only appears below 5000 cm−1,
where the transmittance spectra are also relatively large. The model, when established by
such principal components, has a small proportion of the input with low transmittance, so
the model, when established in this way, will possess high reliability.
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Figure 3. PC loadings of filtered transmittance spectral data.

2.3. SVM Model

In this paper, we used SVMs to establish the tea level classification model. SVMs search
for a hyperplane to segment samples according to the positive and negative classes [36]. In
the sample space, the division of the hyperplane can be described using Equation (1):

y(x) = ωT
1 φ(x) + b (1)

In Equation (1), ω1 is the normal vector of the hyperplane, x is the sample data, and b
is the offset. Based on the principle of minimum structural risk, the SVM avoids learning
problems and has a strong generalization ability. It converts the solving problem into
a convex quadratic programming problem with linear constraints. The problem can be
described using Equations (2)–(4):

min
1
2
‖ ω1 ‖2 +c

n

∑
i = 1

ξi (2)

ξi ≥ 0(i = 1, 2, · · · n) (3)

K(xi, x) = exp

(
−
‖ xi − x ‖2

2
2g2

)
(4)

where ξ is the relaxation factor; K(xi, x) is the kernel function of the SVM model; c is the
penalty parameter, which determines the model’s tolerance for wrong samples; and g is
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the kernel function parameter, which determines the form of the classification hyperplane.
The purpose of the parameter selection of the SVM model is to adjust the values of c and g
within certain ranges, to give the SVM model better classification accuracy.

In practical application, the problems to be solved are multi-classification ones, and an
SVM is a two-category classification model, so the model of multi-SVMs is used as well
to deal with the multi-classification problems. In this research, we constructed six SVMs
during the training. The first SVM can discriminate Level 1 samples and other samples by
assigning Level 1 samples positive scores and other samples negative scores. The second
SVM can discriminate Level 2 samples and other samples, and Level 2 samples will obtain
positive scores while other samples will obtain negative scores. Similar work is performed
on the third-to-sixth SVMs. When a test sample is input to the six SVMs, we obtain six
different scores, and the ultimate classification result of the sample is determined according
to the largest score.

2.4. PSO Algorithm

Suitable values of c and g are helpful to improve the accuracy of an SVM classification
model. The purpose to the particle swarm optimization (PSO) algorithm is to find these
suitable values using the training samples.The PSO algorithm has the characteristics of
fast convergence, good solution quality, and good robustness for multidimensional spatial
functions or dynamic target problems [37]. In the PSO algorithm, the position of each
particle contains a pair of SVM parameters, c and g, and the purpose of the procedure for
optimization is to find the most suitable position that maximizes the classification accuracy
of the training samples. During the iteration process, the particles track the individual
extremum (Pid, the best position of a particle) and the global extremum (Pgd, the best
position of all particles) and then update the speed Vid and position Xid of the current
particle according to Equations (5) and (6):

V(k+1)
id = V(k)

id + c1r1

(
P(k)

id − X(k)
id

)
+ c2r2

(
P(k)

gd − X(k)
id

)
(5)

X(k+1)
id = X(k)

id + V(k)
id (6)

In Equations (5) and (6), i ∈ N (N represents the total number of particles), d represents
the dimension, k and k + 1 represent the numbers of current and next iterations, and c1 and
c2 are the acceleration factors.

All the particles in the PSO algorithm are the possible solution to c and g, and the best
particle when iteration ends will be used as the best c and g to establish the optimized SVM
classification model, to obtain better accuracy.

2.5. CLPSO Algorithm

In the basic PSO, the convergence speed of the algorithm is fast, but the local search
ability is not strong, which directly leads to low search accuracy and, often, local con-
vergence. In order to solve the above problems, comprehensive-learning particle swarm
optimization (CLPSO) is proposed [38–40]. In CLPSO, each particle in the population is
able to obtain the best learning experience from different dimensions of other particles,
rather than following the best individual alone. This is the essential difference between
CLPSO and basic PSO. The iterative formula is as shown in Equations (7)–(9):

V(k+1)
id = ω(k)V(k)

id + carid

(
p(k)best − X(k)

id

)
(7)

X(k+1)
id = X(k)

id + V(k)
id (8)

fi(d) = [ fi(1), fi(2), . . . , fi(D)] (9)

In Equation (7), ca represents the acceleration factor (ca = 1.49445). In Equation (9),
fi(d) means that particle i learns from the individual extremum pbest of a particle in the
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d dimension, which is determined by the learning probability Pci. Pci is calculated using
Equation (10):

Pci = a +
b
(

e10(i−1)/(pop−1) − 1
)

e10 − 1
(10)

where pop is the population size (pop = 40), and a and b are two parameters for determining
the maximum and minimum learning probabilities (a = 0, b = 0.5).

As can be seen from Equations (5) and (7), another difference between the two methods
is that CLPSO introduces inertia weight (ω(k)), which reflects the ability of a particle to
inherit the previous velocity of the particle. Studies show that a larger weight is more
beneficial to the global search, while a smaller weight is more beneficial to the local
search [40]. In order to better balance the global search and local search ability of the
algorithm, a linear decreasing inertia weight is proposed, as shown in Equation (11):

ω(k) = ωmax −
(ωmax −ωmin)(maxFEX− k)

(maxFEX)
(11)

where maxFEX represents the maximum number of iterations (maxFEX = 40), and ωmax
and ωmin are the initial inertia weight and the ending inertia weight (ωmax = 0.9, ωmin = 0.4).
With the increase in iterations, the inertia weight linearly decreases from 0.9 to 0.4, which
realizes the global search in the initial iterations and the local exact search in the later
iterations, and controls the convergence speed effectively.

If the penalty factor c and the kernel function parameter g in the SVM model are
optimized by the CLPSO algorithm, the iterative steps are as follows:

Step 1: Establish an SVM model and initialize the SVM parameter combination (c,
g) randomly.

Step 2: For each particle of CLPSO (the particle represents c and g, which can possibly
solve the problem), initialize its velocity and position and set the inertia weight randomly.

Step 3: Calculate the current fitness value (fit(Xid), the classification accuracy of training
samples), and store the individual extreme value (pbest) of the optimal position.

Step 4: Update the velocity and position of the particles according to Equations (7)–(9).
Step 5: Calculate the fitness value of the new position and update the pbest.
Step 6: End the algorithm if the iteration number reaches the maximum and substitute

the optimized (c, g) into the SVM model; otherwise, go to Step 4.

2.6. Software

All the algorithms and the statistical analysis were implemented in Matlab R2021a
(Mathworks, Natick, MA, USA) under Windows 10 in data processing.

3. Results and Discussion

Based on the NIR spectroscopy technique and the experimental method proposed in
Section 2, six levels of Huangshan Maofeng tea were classified and identified.

In the testing experiments, we randomly divided the 120 samples into four groups,
each with 30 samples. Each time one group of samples was selected as the testing sample,
the other three groups were used as training samples to construct a classification model.
By repeating this four times, every sample was tested. The final testing accuracy was
calculated from the average of the four tests.

We first conducted experiments for tea level classification based on the basic SVM
models, with c = 2, g = 1. Different characteristic variables obtained by PCA were used
as the input variables of the classification models. The tea levels are the output variables.
The tea level is expressed by a number from 1 to 6. Number 1 represents level 1, number 2
represents level 2, etc.

Figure 4a shows the classification results obtained using basic SVM models. In the
figure, the x-axis represents the number of PCs used by the model as input variables, and
the y-axis represents the average testing accuracy for different samples. From the figure,
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we can see that basic SVM models can virtually realize the tea level classification. The best
SVM model can obtain an accuracy of 95% when the input number is 21.
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As a reference, we also gave the classification results of the traditional PLS-DA model,
as shown in Figure 4b. From this figure, it can be seen that the accuracy of the PLS-DA
models is a little higher and a little steadier than that of the basic SVM models. However, it
should be noted that the PLS-DA model has no adjustable parameters. Its classification
effect is completely determined by the training samples, meaning it lacks flexibility, while
the classification performance of the SVM model is determined by the penalty factor c,
the kernel function parameter g, and the training samples together. Therefore, through
the adjustment of c and g parameters, the SVM model can be optimized and can be better
adapted to different research objectives.

In this research, c and g were optimized by PSO and CLPSO. The optimized c and g
were then used in the optimized SVM models to classify the tea levels. The classification
accuracies of the PSO-SVM models and CLPSO-SVM models are as shown in Figures 4c
and 4d, respectively. All the key numbers are also listed in Table 1.
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Table 1. Comparison of four methods.

Method PCs Training Accuracy Testing Accuracy

SVM 21 99.17% 95%
PLS-DA 25 99.17% 96.67%

PSO-SVM 13 100% 98.33%
CLPSO-SVM 16 100% 99.17%

As can be seen from Figure 4 and Table 1, the accuracy of the best PSO-SVM model on
the training set is 100%, and the accuracy on the testing set reaches 98.33%. However, the
input number is also reduced to 13.

Furthermore, since the CLPSO algorithm effectively controls the convergence speed,
and realizes the global search in the initial iteration and the local exact search in the later
iteration, the CLPSO-SVM method has the best classification results. The classification
accuracy of the training set is also 100%, and the classification accuracy of the testing set is
99.17%, with the input number being 16.

Figure 5 shows the detailed testing results obtained by the best CLPSO-SVM model,
with PC number being 16. From the figure, it can be seen that almost all the tea samples
were classified correctly, and only one sample in one testing set was misclassified.
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4. Conclusions

In this study, based on the collected NIR spectral data of Huangshan Maofeng tea,
classification models were established using SVMs. In order to improve the classification
accuracy, the penalty factor c and the kernel function parameter g in the SVM models were
optimized using PSO and CLPSO algorithms. Comparing the classification results obtained
using the basic SVM model and the models optimized using PSO and CLPSO, it can be
concluded that:

(1) The basic SVM model based on NIR spectral data can virtually realize the tea level
classification. Though its classification accuracy is not as high as the traditional PLS-DA
model’s, it has the potential to be optimized.

(2) PSO and CLPSO algorithms can effectively improve classification accuracy by
optimizing the SVM parameters.
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(3) The CLPSO-SVM model achieved the highest classification accuracy among all
four models. It obtained a classification accuracy of 99.17% in the testing samples, and
only one sample was misclassified. It is a reliable method and has broad prospects in tea
-classification applications.
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