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Abstract: Rapid and accurate detection of pesticide residue levels can help to prevent the harm of
pesticide residue. This study used visible/near-infrared (Vis-NIR) (376–1044 nm) and near-infrared
(NIR) (915–1699 nm) hyperspectral imaging systems (HISs) to detect the level of pesticide residues.
Three different varieties of grapes were sprayed with four levels of pesticides. Logistic regression
(LR), support vector machine (SVM), random forest (RF), convolutional neural network (CNN),
and residual neural network (ResNet) models were used to build classification models for pesticide
residue levels. The saliency maps of CNN and ResNet were conducted to visualize the contribution
of wavelengths. Overall, the results of NIR spectra performed better than those of Vis-NIR spectra.
For Vis-NIR spectra, the best model was ResNet, with the accuracy of over 93%. For NIR spectra,
LR was the best, with the accuracy of over 97%, but SVM, CNN, and ResNet also showed closed
and fine results. The saliency map of CNN and ResNet presented similar and closed ranges of
crucial wavelengths. Overall results indicated deep learning performed better than conventional
machine learning. The study showed that the use of hyperspectral imaging technology combined
with machine learning can effectively detect the level of pesticide residues in grapes.

Keywords: hyperspectral imaging; pesticide residue; table grape; deep learning; non-destructive detection

1. Introduction

Grapes are one of the most popular fruits due to its unique taste, multiple vitamins,
and nutrients. Grapes can be eaten fresh and processed into various products, for instance,
juice and wine. Thus, there exists excellent commercial potential for the grape industry.
During the grape growing season, fungicides, insecticides, and herbicides are often applied
to cure the stresses of the diseases and pests [1,2]. The pesticide residue in grapes has
increasingly aroused the attention of consumers. Certain intake of pesticide residue content
may harm consumers’ health [3,4].

Various methods have been developed for the detection of pesticide residue in fruits
and vegetables [5]. Generally speaking, they can be divided into conventional and rapid
detection methods. Traditional detection methods for detecting pesticide residues include
gas chromatography (GC) and capillary electrophoresis (CE) [6], gas chromatography-
mass spectrometry (GC-MS) [7], high-performance liquid chromatography (HPLC) [8],
supercritical fluid chromatography (SFC) [9], and so on. Rapid detection methods include
the fast detection card method and enzyme inhibition rate method. These methods have
high accuracy for the detection of pesticide residue. However, they are costly. Moreover,
they require complex pre-processing and highly skilled operators.
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Hyperspectral imaging (HSI) is a technology that combines spectroscopy and conven-
tional imaging to attain the spectral and spatial information from the research object [10].
HSI has been used effectively in the non-destructive quality detection of grapes, such as
total soluble solids [11–13], total phenolic compounds [12], polyphenol contents [14], amino
acids [11], and PH [11,12], etc. Moreover, there have been quantitative analyses, such as
discriminating geographical origin [15], the year of harvest [15,16], and the maturation
stage [17], etc.

Detection of pesticide residue in agricultural products combined with HSI technology
has also been used widely, due to its advantage of rapid, non-destructive, and accurate
quality detection. Sun et al. used HSI technology (431–962 nm) to quantitatively identify
the pesticide mixtures on lettuce leaves [18]. Jia et al. detected apple surface pesticide
residue based on HSI technology (865–1712 nm) [19]. Mohite et al. used hyperspectral
sensing (350–1052 nm) to detect pesticide (Cyantraniliprole) residue on grapes with no,
single, and double doses [20]. Ren used HSI technology (900–170 nm) to distinguish various
concentrations of pesticide residues of dimethoate on the surface of spinach leaves [21].
Sun et al. identified pesticide residues in lettuce combining chemical molecular structure
and NIR hyperspectral (870–1780 nm) [22]. Jiang et al. used NIR HIS (390–1050 nm)
to predict the distribution of pesticide residues on mulberry leaves and visualize the
results [23]. Studies have shown that HSI technology has been widely used in the non-
destructive detection of pesticide residue in agricultural products. However, research on
the pesticide residue in grapes is still rare, and a single spectral region was studied for most.
Therefore, it is feasible and proposed to use hyperspectral imaging technology to detect
different levels of pesticide residues in grapes here.

It is a great challenge to research massive and redundant data obtained by hyperspec-
tral imaging systems (HIS) effectively, which prevents its application. Machine learning
is exceptionally crucial for predicting features and analyzing spectral information. Re-
cently, deep learning, as a new method of machine learning, has gained remarkable results
for detecting and classifying the spectral and spatio-spectral signatures in HIS. Deep
learning learns features deeply and automatically, and processes large volumes of data
effectively [24–26]. Thus, it can construct a network containing many neurons efficiently
and quickly, and it is applied widely in spectroscopy [27–30]. Yan et al. used HIS with deep
learning to detect geographical origin of Radix Glycyrrhizae [31]. Jiang et al. used HIS
with AlexNet-CNN deep learning network to detect postharvest pesticide residues [32].
Dreier et al. used CNN and ResNet with HSI to identify the bulk grain [33]. Gomes et al.
used deep learning CNN to predict sugar and pH levels in grapes [34]. Deep learning has
decent performance, but the process is obscure and difficult to understand. The contribu-
tion of wavelength is visualized to observe crucial wavelengths, which can explain the
deep learning process well and analyze data effectively.

The purpose of the study was to use hyperspectral imaging technology combined with
machine learning to identify the different pesticide residue levels in grapes. The specific
goals were: (1) to explore the spectral differences among different pesticide residue levels
of different varieties of grape; (2) to compare the performances of hyperspectral imaging
at two different spectral regions for pesticide residue level identification; (3) to compare
the performances of conventional machine learning methods (LR, SVM, and RF) and deep
learning (CNN and ResNet); (4) and to explore the spectral features of different models
which contribute more to the identification.

2. Materials and Methods
2.1. Samples Preparation

The research was carried out in the laboratory and simulated the process of spraying
pesticides. Three grape varieties were used in this study, including Munage, Cabernet
Sauvignon (Cabernet), and Red grape. The fresh grapes of Munage were purchased from
the Jinma Market near Shihezi University, and Cabernet and Red grape were collected from
the experimental vineyard located in the School of Agriculture, Shihezi University, Xinjiang
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Uygur Autonomous Region (Xinjiang), China (73◦40′–96◦18′ E, 34◦25′–48◦10′ N). Each
grape variety was randomly divided into four groups, corresponding to four different con-
centrations of pesticide residues (corresponding to four levels mentioned later). To increase
the number of samples and comply with sampling inspection in the actual production, the
bunch of the grape was cut smaller, considering the cluster of 3–6 berries as a sample, as
shown in Figure 1. After cutting off grape bunches, 288 clusters of Cabernet, 411 clusters
of Red grape, and 372 clusters of Munage were collected. In total, 1071 small clusters of
grapes were used as input samples. The sample data were randomly divided into training,
validation, and test sets with a ratio of 3:1:1. The specific sample size of clusters of the
grape is shown in Table 1.
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Table 1. Number of samples after cutting intact grapes.

Category Cabernet Red Munage Total

Level 0 73 92 89 254
Level 1 84 99 78 261
Level 2 60 107 104 271
Level 3 71 113 101 285

Total 288 411 372 1071
Level 1, Level 2, and Level 3 mean the pesticide mixtures with concentrations of 10%, 15%, and 50% prepared
later, and Level 0 means distilled water.

In this study, Jiatu (25% trifloxystrobin, 50% tebuconazole), Xishuangke (56% cymox-
anil, 14% cyazofamid), and Huiyin (80% procymidone) were prepared, and the details
are shown in Table 2. According to relevant information and instructions, these pesticide
mixtures do not react chemically but only enhance the effect. Pesticide mixtures were
sprayed on the grapes to simulate the pesticide residue. Different pesticides were applied
to evaluate their effects on the growth of the grape. One reason for choosing these three
pesticides was wide use during the ripening period of the grapes, and the other was the
recommendations and suggestions of the planter. Roughly speaking, Jiatu, Xishuangke,
and Huiyin are common fungicides, and they have a certain inhibitory effect on the growth
of fungi.
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Table 2. Information about the pesticides used in the experiment.

Category Active Ingredients Proportion Efficacy

Jiatu 50% tebuconazole (C16H22ClN3O)
25% trifloxystrobin (C20H19F3N2O4) 4000 Brown spot

Huiyin 80% procymidone (C13H11Cl2NO2) 2400 Botrytis

Xishuangke 56% cymoxanil (C7H10N4O3)
14% cyazofamid (C13H13ClN4O2S) 6000 Downy mildew

There were two steps to making pesticides mixtures:
(1) Make standard pesticide mixtures. According to the instructions of each pes-

ticide, three single-pesticide solutions (Jiatu, Huiying, and Xishaungke) were prepared
with the proportion of 1:4000, 1:6000, and 1:24,000, respectively. Then, the three single-
pesticide solutions were mixed together to make a 2 L pesticide mixture, as 100% standard
pesticide mixtures.

(2) Make three pesticides mixtures. A beaker was used to dilute the 100% standard
solution into three different pesticide mixtures. Concentrations of three pesticide mixtures
were 10%, 15%, and 50% (respectively corresponding to Level 1, Level 2, and Level 3).
Level 0 represented distilled water as a control group for comparing with others.

The corresponding concentration of the final configuration of each pesticide is shown
in Table 3.

Table 3. Information about the concentration of each pesticide in the mixture.

Concentration Jiatu Xishuangke Huiyin

Level 0 a (0%) 0 0 0
Level 1 b(15%) 0.0375 0.0250 0.0625
Level 2 c (30%) 0.0750 0.0500 0.0125
Level 3 d (50%) 0.1250 0.0834 0.2085

Standard solution(100%) 0.2500 0.1667 0.4167
a means distilled water; b,c,d mean the pesticide mixtures with Level 1, 2, and 3, corresponding to concentrations
of 10%, 15%, and 50%. The unit of concentrations is g/L.

With a spraying bottle, four groups of grapes were sprayed with Level 0, 1, 2, and 3
mixed pesticides, respectively. Then, the sprayed grapes were placed in a low-temperature
and ventilated area for air drying for about 36 h [18,23,35–37]. When there was no more
water on the grape surface, each intact bunch of grapes was cut, as shown in Figure 1.

2.2. Hyperspectral Image Acquisition and Correction

In this study, Vis-NIR and NIR HISs (SOC 710VP and SOC 710SWIR) were used in
obtaining hyperspectral images. The SOC 710VP covers the spectral range of 376–1044 nm
(128 bands), captures the image size of each waveband with 520 pixels × 696 pixels, and
has an exposure time of 24 ms and a spectral resolution of 5 nm. The SOC 710SWIR covers
the spectral range of 915–1699 nm (288 bands), captures the image size of each waveband
with 512 pixels × 640 pixels, and has an exposure time of 34 ms and a spectral resolution of
2.7 nm. The distance from the sample to the imaging device was adjusted to 93.5 cm. Other
information about the two HISs can be shown in Yan [31]. In the study, grapes of Level 0,
Level 1, Level 2, and Level 3 were captured sequentially by the HIS. Each sample was fully
photographed by shooting the front and back (randomly, one side was the front, and the
other side was the back).

The raw hyperspectral images were corrected into the reflectance images by using a
grayscale reference image. The correction was conducted by the following Equation (1):

Ir =
Iraw − Idark

Iwhite − Idark
(1)
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Ir is the reflectance image, Iraw is the raw image, Iwhite is the entirely white reference
image, and Idark is the entirely black reference image. The grayscale reference image was
composed of 50% Idark and 50% Iwhite.

2.3. Spectral Data Preprocessing and Extraction

The segmentation between the grape and the background was necessary to obtain accu-
rate spectral information. In this study, ENV 5.2 (ITT Visual Information Solutions, Boulder,
CO, USA) was used to crop a hyperspectral image to various hyperspectral sub-images
containing a sample of 3–6 single berries. The sample in each hyperspectral sub-image
was defined as a region of interest (ROI), which is a mask formed by threshold segmenta-
tion of the 804 nm Vis-NIR hyperspectral sub-image and the 1092 nm NIR hyperspectral
sub-image. Further, spectra information in the ROI of the hyperspectral sub-image was
extracted by Matlab R 2018b (The Math Work, Natick, MA, USA). The average spectrum
of ROI was calculated as the spectral value of the sample, as shown in Figure 2. The
spectral value at the beginning and the end were removed to eliminate obvious noise. The
reserved wavelength range of Vis-NIR spectra was 476–890 nm (80 bands), and that of NIR
spectra was 970–1594 nm (230 bands). For Vis-NIR and NIR spectral value, Savitzky–Golay
(SG) [38] smoothing filter (the polynomial order was 0, the kernel size was 3) was used to
improve the smoothness of the spectra and reduce noise interference. Then, the Standard
Normal Variate transform (SNV) [39] was applied to avoid the impact of surface scattering,
solid particle size, and the optical path change of diffuse reflection spectra.
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2.4. Data Analysis Method
2.4.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a commonly used statistical method. A group of
variables related to each other can be transformed into uncorrelated and independent ones
through orthogonal transformation [40,41]. The primary purpose is to reduce the number
of variables, namely dimensionality reduction. It is a linear dimensionality reduction
method. The transformed variable is called the principal component (PC), and the top PCs
explain most of the information of the hyperspectral image. The PCA score scatter plots for
qualitative analysis of grape pesticide residues could be formed.

2.4.2. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised pattern recognition approach. SVM is a
traditional classification method, and it is widely applied in classification conditions [42,43].
Moreover, SVM has excellent generalization ability, so it is widely used in spectroscopy.
The kernel function is highly vital to the SVM model. In this paper, the tuning range of the
kernel function was “poly, rbf, sigmoid”. The kernel parameter g and penalty coefficient C
were used to get optimal performance. A grid-search procedure was used to optimize g
and C. The searching range of g and C were 10−5 to 50 and 10−5 to 50, respectively.
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2.4.3. Logistic Regression (LR)

Logistic regression (LR) is a generalized linear regression analysis model, and it is
often used in data mining, automatic disease diagnosis [44], economic forecasting [45],
and other fields [46]. Linear regression is a machine learning method used to solve binary
classification (0 or 1) problems, which are used to estimate the possibility of something.
Adding the sigmoid active function to linear regression, LR can then be used for multiple
classifications and introduced non-linear elements [47]. In this study, the optimization
range of the solver was in “newton-cg”, “lbfg”, ‘’liblinea”, ‘’sag”, and that of C was between
10−5 and 105. The penalty was set to L2.

2.4.4. Random Forest (RF)

RF is ensemble learning, which consists of the decision tree (DT) [48]. RF shows two
important traits: random sampling of training data points when building trees, and random
subsets of features considered when splitting nodes [49,50]. The last result of the decision is
determined by the voting method, so it has strong robustness. Random forest can process
high-dimensional data without feature selection. In our study, n_estimators were between
100 and 1000, and max_depth was between 4 and 8.

2.4.5. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a forward neural network. It usually
consists of the following six layers: input layer, convolution layer, activation layer, pooling
layer, fully connected layer, and output layer [31]. CNN has an excellent performance in
classification. One advantage of CNN is local perception. CNN only perceives the local
elements of the data and then merges local information in the higher-level network to
obtain all the characterization information of the data. The second is weight sharing. By
weight sharing, the number of weights of the network can be decreased, and the complexity
of the network can be reduced [29]. A simple CNN architecture was designed for our study.
The structure of the CNN is shown in Figure 3.
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In Figure 3, two main blocks were involved in the structure. The first block was the
convolutional block (Conv Block), which consisted of three convolutional layers. Each
convolutional layer was followed by a batch normalization layer (BN) and rectified linear
unit (ReLU). In the end, an average pooling layer was added to alleviate the excessive
sensitivity from the convolutional layer. In this process, one-dimensional (1D) spectral
data were involved, and Conv1D was used, as shown in Figure 3. The second was a fully
connected block (FC Block). The features extracted by the convolutional layer were learned
through the fully connected layer. A linear layer was added, and BN and ReLU followed.
The dropout was applied to alleviate overfitting. For the output layer, the network outputs
the final result according to the probability of the four classification results. The input
channels of the first three convolutional layers were 128, 64, and 32; the kernel sizes were
3, 3, and 5; the stride was 1, and the padding was 1. For the average pooling layer, kernel
size was 2. The FC block included two fully connected layers, which consisted of 256 and
128 neurons, respectively. The dropout ratio was set as 0.5. Another linear layer was set
for output at the end of the network. During the training process of CNN, the Adaptive
Moment estimation (Adam) algorithm was used to optimize softmax cross-entropy. Weights
were initialized using the Xavier algorithm.

2.4.6. Residual Neural Network (ResNet)

With the deepening of the neural network, there would be problems of overfitting, gra-
dient explosion, and network degradation, and ResNet could effectively handle those [51].
In this study, based on the ResNet18, the ResNet was applied to identify pesticide residual
levels. Figure 4a shows the structure of ResNet. The ResNet consisted of one convolutional
layer and two residual blocks, the last was average pooling. The output channel of the
convolutional layer was 64, kernel size was 1 × 3, and stride and padding were 1. Then a
batch normalization layer (BN) and rectified linear unit (ReLU) were added. The channels
of 3 residual blocks were 64, 128, and 256, kernel size was 1 × 3, and stride and padding
were 1. The average pooling was followed to extract features smoothly, the last was the
linear layer.
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identification of pesticide residues in grapes.

2.5. Saliency Map

Saliency map is a visualization technique in order to gain better insights into the
decision-making of a neural network. When a sample was predicted correctly, it would
be added to compute the feature importance [52]. Scale information contributions within
the network could be computed [53]. Once the sample label was correctly predicted, the
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corresponding weights of the elements would be obtained, which represents the contribu-
tion rate (importance) of the elements. A saliency map can visualize the contribution rate
of each element to intuitively see which elements play important roles in the process of
CNN-based sample identification. For hyperspectral data, a saliency map could effectively
visualize the importance of the wavebands.

Given the hyperspectral data X0 with the set of the test, which was built by the
classification model CNN-based, the class score function SC (X0) was obtained for all the
wavebands [53]. When the label of this sample was correctly classified, the weight w could
be calculated by the followed Equation (2).

w = abs
(

∂S
∂X

∣∣∣∣X0

)
(2)

where w means the absolute value of the derivative of the score value S concerning the
spectral data X0.

In this study, test set data were used to compute the importance of all the wavelengths,
when the sample label was predicted correctly.

2.6. Software and Model Evaluation

In this study, the areas of the samples were defined in ENVI 5.2 (ITT Visual Information
Solutions, Boulder, CO, USA). The spectral data were extracted in Matlab R 2018b (The
Math Work, Natick, MA, USA). The Python scripting language (version 3.8,64 bit) was
applied for the numerical calculations. SVM, LR, and PLS-DA were conducted by using
the machine learning library scikit learn (version 0.23.2). The 1D CNN model was built on
the deep learning Pytorch framework (version 1.5.1). All data analysis procedures were
implemented on a computer with a memory of 10 GB, a SSD of 238.35 GB, and a CPU
of i5-7200 U.

The accuracy is used to illustrate the discrimination ability of classifier systems. The
definition was the following:

Accuracy =
TP
All

(3)

TP (true positive) means the number of the predicted result consistent with the actual
label. All means the number of all samples. Accuracy is the index to evaluate the model.

3. Results
3.1. Spectral Profiles

The spectra in the range of 376–1073 and 915–1699 nm were extracted from the Vis-NIR
and NIR HISs. The beginning and end of the spectra showed obvious noises. The spectral
data were preprocessed by SG. The average spectra of four pesticide mixture levels and
corresponding standard deviation are shown in Figure 5.

According to Figure 5, it is clear that the trend of the four average spectral curves is
mostly similar. Peaks and valleys exist in the certain same positions and have no overlap
(around 825, 550 and 1725 nm), which might have the potential to identify the different
levels of pesticide residue in grapes due to variation of spectral reflectance in Vis-NIR
and NIR regions. However, different pesticide levels and spectral ranges showed some
discrepancies. In Figure 5a, the error bar overlaps at almost the entire band, and the curves
of average spectra intersect at about 690 nm and 950 nm. In Figure 5b, the error bar overlaps
in the spectra between 1160 nm and 1490 nm, and curves of average spectra intersect at
1310 nm. Therefore, it is impossible to directly distinguish different levels of pesticide
residues in grapes clearly. It is necessary and crucial to do further research.
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Figure 5. (a) Vis-NIR average (405–1016 nm) spectra with standard deviation each wavelength of
different levels of pesticide residues in grape, using Vis-NIR spectrometer. (b) NIR average spectra
(994–1641 nm) with standard deviation each wavelength of different levels of pesticide residues in
grapes, using NIR spectrometer.

3.2. Principal Component Analysis (PCA)

To preliminarily explore significant differences between four levels of pesticide residues
in grapes, spectral data were analyzed based on PCA. The two-dimensional PCA score plots
were shown in Figure S1, with the sample’s distribution of each PC. The corresponding
confidence ellipse was added, with a confidence level of 0.95.

For Vis-NIR spectra, the contributions of the first three PCs of Cabernet were 48.5%,
27.5%, and 10.0%; those of Red grape were 49.4%, 26.8%, and 12.7%; those of Munage were
71.0%, 13.3%, and 4.6%. Their cumulative contributions of them were, respectively, 86.0%,
88.9%, and 88.9%, which explained most of the sample. However, the PCA score plots were
clustered badly and there was serious overlap. For Cabernet, in Figure S1a–c, distributions
of PC1 versus PC2, PC1 versus PC3, PC2 versus PC3 are chaotic and huddled, which means
the four levels of pesticide residue are indistinguishable from each other. This phenomenon
is consistent with trends of the spectral profile in Figure 5a. In addition, there is a certain
similarity in Figure S1d–i.

For NIR spectra, the contributions of the first three PCs of Cabernet were 56.3%, 22.3%,
17.5%; those of Red grape were 57.4%, 31.3%, 6.6%; and those of Munage were 70.8%, 20.0%,
4.9%. The cumulative contributions of the first three PCs were 96.1%, 95.3%, and 95.7%,
respectively, which also explained most of the variance information. Regarding the sample
distribution, the overall clustering effect was slightly better than that of the Vis-NIR. For
Cabernet, in Figure S1j–l, two major aggregating regions were shown (Level 0 and Level 2,
Level 1 and Level 3), which is consistent with the phenomenon in Figure 5b. Therefore, the
result comparatively illustrates the feasibility of the identification of four levels of pesticide
residues in the range of NIR spectra.

In general, PCA visualizes sample distribution and provides the feasibility of classifica-
tion, but it is not easy to directly distinguish the four levels of pesticide residues. Therefore,
it is necessary to find other multivariate analysis methods for further research.

3.3. Classification Models

Three machine learning algorithms (SVM, LR, and RF) and two deep learning (CNN
and ResNet) algorithms were conducted to analyze spectral data in this stage. The results
are shown in Table 4 below.



Foods 2022, 11, 1609 10 of 16

Table 4. The classification of the accuracy of the logistic regression (LR), support vector machine
(SVM), random forest (RF), convolution neural network (CNN), and residual neural network (ResNet).

Models Categ Parameter Vis-NIR (%) Parameter NIR (%)

Train a Val b Test c Train Val Test

SVM 0 2.0, 0.1, poly 95.9 94.8 91.4 6.6, 1.0, linear 99.4 100.0 96.6
1 1.2, 0.1, poly 98.4 96.3 92.7 1.0, 1.0, poly 100.0 100.0 96.3
2 1.0, 1.0, poly 1.00 88.0 93.2 1.0, 1.0, poly 100.0 100.0 95.9

LR 0 1 × 105, liblinear 100.0 89.7 93.1 100, lbfgs 99.4 93.1 98.3
1 1 × 105, liblinear 100.0 98.8 93.9 1 × 105, liblinear 100.0 100.0 100.0
2 1 × 104, liblinear 100.0 92.0 95.9 100, newton-cg 100.0 98.7 97.3

RF 0 8, 450 100.0 77.6 79.3 6, 750 100.0 74.1 81.0
1 7, 500 99.6 72.3 73.2 5, 550 98.8 86.7 87.8
2 8, 200 100.0 66.7 75.7 4, 250 99.1 98.7 93.2

CNN 0 500, 32, 0.001 99.4 98.3 93.1 500, 32, 0.001 100.0 100.0 98.3
1 500, 32, 0.001 97.6 97.6 92.7 500, 32, 0.001 100.0 100.0 98.8
2 500, 32, 0.001 100.0 98.7 93.2 500, 32, 0.001 99.5 100.0 98.6

ResNet 0 1000, 32, 0.005 100.0 94.8 93.1 600, 32, 0.005 100.0 93.1 86.2
1 1000, 32, 0.005 100.0 100.0 98.8 1000, 32, 0.005 100.0 100.0 97.6
2 1000, 32, 0.005 100.0 97.3 94.6 600, 32, 0.005 97.7 100.0 97.3

a,b,c represent training, validation, and test sets for the model; 0,1,2 represent Cabernet, Red grape and Munage,
respectively, Categ mean Category of the grape. Parameters of the SVM, LR, RF, and CNN ResNet are shown.
The parameters of the SVM, are (C, gamma, kernel); those of the LR are (C, solver); those of the RF are (n_estimator,
max_depth); those of the CNN and ResNet are (epoch, batchsize, learning rate).

Vis-NIR spectra. All the models had good performances and had an average accuracy
of over 90% for training, validation, and prediction sets. For Cabernet, the best models,
the CNN and ResNet models, showed closed results, with the accuracy of over 99%, 94%,
and 93% for train, validation, and test sets. SVM and LR models showed closed results,
with the accuracy of over 91%, 89%, and 100% for training, validation, and test sets. For
Red grape, all the models showed an accuracy of over 90% for training, validation, and test
sets. RF showed overfitting, with the accuracy of over 100%, 77%, and 79%. For Red grape,
the best model was ResNet, with the accuracy of over 100%, 100%, and 98% for training,
validation, and test sets. CNN, SVM, and LR were slightly lower, with the accuracy of 97%,
96%, and 92% for training, validation, and test sets. RF still showed overfitting, with the
accuracy of 99%, 72%, and 73% for training, validation, and test sets. For Munage, the best
model was ResNet, with the accuracy of 100%, 97%, and 94% for training, validation, and
test sets. CNN was slightly lower, with the accuracy of 100%, 98%, and 94% for training,
validation and test sets. SVM performed with an accuracy of 100%, 88%, and 93.2% for
training, validation, and test sets. RF was inferior to others, with the accuracy of 100%, 66%,
and 75% for training, validation, and test sets. Overall, there was no significance with a
different variety. ResNet performed better than other models, RF showed the overfitting,
and SVM, LR, and CNN presented the fine result.

NIR spectra. Generally, all models had a slightly better result than Vis-NIR spectra,
SVM, LR, CNN, and ResNet showed the average accuracy of over 90% for the validation
set. For Cabernet, the CNN, LR, and SVM models presented the best and similar results,
with an accuracy of close to 96% of the validation set. The following was ResNet, with
the accuracy of 100%, 93%, and 86% for training, validation, and test sets. RF showed
overfitting, with the accuracy of 100%, 74%, and 81% for training, validation, and test sets.
For Red grape, SVM, LR, CNN, and ResNet presented closed and fine results, with the
accuracy of over 100%, 100%, and 96% for training, validation, and test sets. RF showed
lower results, with the accuracy of 98%, 86%, and 87.8% for training, validation, and test
sets. For Munage, all models presented decent results, with the accuracy of over 93%.
Overall, all the models showed fine results, and the results performed better than those
of Vis-NIR. RF still showed the overfitting for Red grape and Munage. Varieties were not
significant in the three grapes.
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Methods. Considering different methods, there was a slight difference. For Vis-NIR
spectra, overall, ResNet was the best model, with the accuracy of over 100%, 94%, and
93% for training, validation, and test sets. The following was CNN, with the accuracy of
over 97%, 97%, and 92% for training, validation, and test sets. SVM and LR model were
closed, with the accuracy of over 91% for the validation set. RF showed overfitting. For
NIR spectra, SVM, LR, CNN, and ResNet showed closed and fine results, with an average
accuracy of over 90%, but RF also showed overfitting for Cabernet. Overall, the deep
learning methods (CNN, ResNet) performed better and had more stable results than those
of machine learning (SVM, LR, RF).

The overall classification results showed NIR spectra performed better than Vis-NIR
spectra. HIS in the NIR region was attributed to the overtone and overtone combination of
molecular bonds (e.g., N-H, C-H, and O-H), and HIS in the Vis-NIR region was related to
object color (e.g., chlorophyll). The results showed that spectral information on pesticide
residues was related to the overtone of molecular, and more valuable information would
be extracted via NIR spectra than Vis-NIR spectra regarding pesticide residue in grape.
Therefore, it was more suitable to detect pesticide residues using NIR spectra. For Vis-NIR,
CNN and ResNet performed best. For NIR, all results performed equally well, with the
accuracy of over 95%. Overall, it shows that the deep learning method is superior to the
traditional method. However, RF showed overfitting, and the reason might be the small
size of the sample. The results of each grape variety showed a consistent trend. Thus, the
classification accuracy did not correlate with the grape variety.

3.4. Visualization for Discovering the Wavelength Importance

Overall, deep learning (CNN and ResNet) offered finer results than machine learning,
but their process of operation is hard to interpret. Therefore, CNN and ResNet were
selected to visualize the wavelength importance, and saliency map was applied to analyze
the model to find the critical wavelengths. The data were processed with normalization.
The larger the value of the saliency map, the more critical the wavelength. The results are
shown in Figure 6 for CNN and Figure 7 for ResNet.
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Saliency map of CNN. For Vis-NIR spectra of Cabernet, approximately 500–530 nm,
550–580 nm, 600–730 nm, and 760–900 nm showed the largest contribution, and the dif-
ference between all bands was not very significant. For Vis-NIR spectra of Red grape
and Munage, there were similar trends, approximately 660–900 nm contributed the most.
For NIR spectra of Cabernet and Red grape, there was a consistent trend, approximately
1150–1300 nm and 1320–1600 nm contributed the most, the others showed low contribu-
tion. For NIR spectra of Red grape, regions of large contribution rate were 1290–1600 nm
and 1120–1195 nm. For the NIR spectra of Munage, regions of main contribution were
960–1080 nm, 1110–1150 nm, 1280–1320 nm, 1390–1460 nm, and 1500–1550 nm.

Saliency map of ResNet. For the Vis-NIR spectra of Cabernet, the wavelengths at
approximately 470–530 nm and 650–690 nm contributed the most, followed by the wave-
lengths at approximately 530–650 nm and 750–880 nm. For the Vis-NIR spectra of Red
grape and Munage, the results presented the similarity; the wavelength at approximately
710–900 nm contributed the most. For the NIR spectra of Cabernet, the wavelengths at
approximately 1120–1210 nm and 1260–1310 nm contributed the most, followed by the
wavelengths at approximately 1210–1310 nm and 1420–1600 nm. For NIR spectra of Red
grape, the wavelengths at approximately 1300–1500 nm and 1590 nm contributed the
most, the others were low. For the NIR spectra of Munage, the wavelengths at approxi-
mately 970–980 nm, 1130–1180 nm, 1400–1420 nm, and 1580–1600 nm contributed the most,
followed by the wavelengths at approximately 980–1110 nm and 1300–1440 nm.

For Vis-NIR spectra, generally, wavelengths of 380–780 nm were mainly relevant to the
color variations of grape, e.g., chlorophyll [12,54]. For the rest of the NIR regions between
780 and 900 nm, those wavelengths are attributed to the third overtone stretch of O-H
related to water in grapes [55]. The range of 900–980 nm was contributed to by the third
overtone of C-H relevant to sugar [55]. For NIR spectra, wavelengths between 1050 nm and
1200 nm are mainly made up of the second overtone of C−H, and those between 1300 nm
and 1500 nm are mainly related to the frequency of C-H [56]. The range of 1210–1450 nm is
attributed to the 2nd overtone of C-H and the 1st overtone of O-H [54]. The wavelength
between 975 nm and 1015 nm is mainly attributed to N-H stretch second overtone [57], and
1526 nm (N-H stretch first overtone) [58], which can reflect pesticide residue differences
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among different levels. Since Jiatu, Huiyin, and Xishuangke contain a large amount of C-H,
O-H, and N-H as observed by their chemical molecular formula, these selected bands have
a great correlation with pesticides. Overall, the saliency map of CNN and ResNet showed a
similar and consistent trend, which confirmed the feasibility of visualizing the contribution
of wavelengths by this method.

4. Discussion

Visible/near-infrared spectroscopy or hyperspectral imaging is a fast and non-destructive
method to detect pesticide residues. Some studies have applied HSI to detect pesticide
contaminants in foods [9,19–22], but the research object in those experiments was single
and lacked mutual comparison between the objects. In our study, we chose three grapes
to identify the difference between the varieties. Moreover, those studies used one [23] or
two [18] pesticides as solvents for the research, and few studies mixed pesticides. Generally
speaking, mixed pesticides can more effectively control plant diseases and insect pests
without affecting the chemical properties and structure of the active ingredients. In this
study, we used three pesticides together (Jiatu, Huiyin, and Xishuangke) to make the
pesticide mixture and set four levels to compare the correlation among them, which was
more consistent with the actual production with the use of pesticide. In addition, other
studies mainly focused on assessing the pesticide residue within a single spectral range, and
there is rarely a combination of Vis-NIR and NIR used on pesticide residues. In particular,
to the best of our knowledge, no attempts have been made to analyze the different spectral
ranges of mixed pesticides in grapes. Two spectral ranges were chosen to form a contrast
and study the difference between the spectra, which increases the range of the spectrum
and makes the research more comprehensive.

Due to the redundancy and high volumes of hyperspectral data, machine learning
and deep learning were used to process the data and extract features. Previous studies
have used SVM [22,59], DT [59], KNN [59], or RF [18] to detect pesticide residue, which
showed fine results. SVM [60–62], LR [63], CNN [31,56,64], RF [60,62], and ResNet [56]
have been applied widely in quality detection of hyperspectral imaging. In this study,
classic machine learning and deep learning methods, CNN, ResNet, LR, SVM, and RF, were
used to achieve a multivariate analysis of the detection of pesticide residue levels in grapes.
More importantly, the saliency maps of CNN and ResNet were conducted to visualize the
contribution rate of the wavelength, which brought us a clear understanding of the crucial
wavelength information.

The two spectral ranges of the Vis-NIR (376–1044 nm) and NIR (915–1699 nm) showed
great potential and decent results for detecting pesticide residue at different levels. The
results (Table 4) of the NIR spectra were slightly better than those of the Vis-NIR spectra,
with average accuracies of 95% and 90%, respectively. However, in this study, the main
challenge was to make pesticide mixtures well-distributed in grapes. The uneven spraying
of pesticides has a profound impact on the reflectance of hyperspectral images. The
brightness unevenness of the hyperspectral image caused by the change in the surface
curvature of the sphere also needs to be carefully corrected. The time-varying nature of
spectrum acquisition deserves attention, such as drying time and acquisition sequence. The
study promotes the non-destructive detection of pesticide residues in grapes, and other
fruits, which accelerates the development of agro-products.

5. Conclusions

Detection of pesticide residuals in agro-products is of significant importance for food
safety. This study successfully identified pesticide residual levels of grapes using hyper-
spectral images at two different spectral ranges. The results showed that it was feasible to
detect different residual levels treated by the mixtures of different pesticides which were
in accordance with the real-world pesticide usage of grapes. Furthermore, to validate the
performances of the HSI technology, three different varieties of grapes were studied, and all
of them showed good performance. The comparison between conventional machine learn-
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ing methods and deep learning illustrated the effectiveness of deep learning in pesticide
residual level identification by HSI. More importantly, the wavelengths contributing more
to the identification were identified by saliency maps of deep learning models, which was of
great help to understand the spectral responses to the pesticides. This study illustrated that
HSI can be used for pesticide residual levels identification. The non-destructive approach
of HSI can be conducted in a contactless, rapid, and accurate manner, which improves
the detection efficiency and reduces the costs and the use of chemical reagents. HSI can
further be studied for on-line pesticide residual level identification. In future studies, a
larger number of samples and more varieties of grapes should be studied to establish more
robust models for real-world application. The optimization of deep learning models should
be studied. Deep transfer learning can be used to improve the generalization ability of
the established deep learning models. Furthermore, in addition to qualitative analysis,
the quantification of pesticide residual content and the limit of detection (LOD) should be
determined by HSI with deep learning methods. The mechanism of the active ingredients
of pesticides on the spectral responses of grapes should also be studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11111609/s1, Figure S1: PCA score plot for the Cabernet,
Red grape, and Munage spectral images photographed by using the Vis-NIR and NIR spectrometers.
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