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Abstract: This study proposes a label-free rapid detection method for aflatoxin B1 (AFB1) in pressing
peanut oil based on Raman spectroscopy technology combined with appropriate chemometric
methods. A DXR laser Raman spectrometer was used to acquire the Raman spectra of the pressed
peanut oil samples, and the obtained spectra were preprocessed by wavelet transform (WT) combined
with adaptive iteratively reweighted penalized least squares (airPLS). The competitive adaptive
reweighted sampling (CARS) method was used to optimize the characteristic bands of the Raman
spectra pretreated by the WT + airPLS, and a partial least squares (PLS) detection model for the AFB1

content was established based on the features optimized. The results obtained showed that the root
mean square error of prediction (RMSEP) and determination coefficient of prediction (R2

P) of the
optimal CARS-PLS model in the prediction set were 22.6 µg/kg and 0.99, respectively. The results
demonstrate that the Raman spectroscopy combined with appropriate chemometrics can be used to
quickly detect the safety of edible oil with high precision. The overall results can provide a technical
basis and method reference for the design and development of the portable Raman spectroscopy
system for the quality and safety detection of edible oil storage, and also provide a green tool for fast
on-site analysis for regulatory authorities of edible oil and production enterprises of edible oil.

Keywords: peanut oil; aflatoxin B1; Raman spectroscopy; characteristic wavelength optimization;
partial least squares

1. Introduction

Aflatoxins are the metabolites of Aspergillus flavus and Aspergillus parasiticus, and
exist in moldy grains, oil plants and foods made from grains and oil plants [1]. There
are various isomers of aflatoxin, among which aflatoxin B1 (AFB1) is the most toxic and
carcinogenic, and its acute toxicity is 10 times that of potassium cyanide, which can cause
liver, stomach, and kidney cancer in humans and animals [2]. In 1993, The AFB1 was
classified as a Group I carcinogen by the International Agency for Research on Cancer
(IARC). The chemical structure of the AFB1 is very stable and can only be decomposed when
heated to 268 ◦C, and it is difficult to eliminate it by ordinary food processing methods [3].
Once the AFB1 enters the human body, it causes great harm to human health [4]. Under
normal circumstances, edible oils rarely contain aflatoxins. When the oil plants are not
stored properly, mildew will occur, resulting in AFB1 in the raw material remaining in
the pressed edible oil, resulting in AFB1 in the edible oil [5]. In China, incidents of AFB1
exceeding the standard in edible oil are not uncommon. Many unscrupulous traders and
small oil extraction workshops use simple tools to extract rapeseed oil, peanut oil, etc. On
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the one hand, the environment is simple and crude, the craftsmanship is simple, and the
weather is humid and hot. On the other hand, the lack of quality control treatment such
as screening, alkali refining, and adsorption for oil plants is prone to the problem of AFB1
exceeding the standard [6]. Therefore, there is an urgent need to achieve rapid, batch, and
accurate detection of AFB1 in edible oils.

In recent years, scientists and researchers from various countries have proposed many
detection methods for AFB1 in food [7–9]. In China, “Limits of Mycotoxins in Foods”
(i.e., GB 2761-2017) stipulates that the limit value of AFB1 in peanut oil and corn oil is
20 µg/kg, and the limit value of AFB1 in other vegetable oils and fats is 10 µg/kg [10]. “De-
termination of Aflatoxins Group B and Group G in Food” (i.e., GB 5009.22-2016) provides
the methods for the determination of AFB1 in food [11], including isotope dilution liquid
chromatography-tandem mass spectrometry, high performance liquid chromatography-
pre-column derivatization, high performance liquid chromatography-post-column deriva-
tization, etc. The abovementioned methods are all laboratory detection methods, and the
sample pretreatment process is cumbersome, the detection time is long, and the cost is high,
and it is difficult to meet the needs of on-site rapid detection. Therefore, it is particularly
necessary to establish a rapid, green and accurate detection method for AFB1 in edible oil.

Raman spectroscopy uses inelastic scattering to analyze the sample, the sample does
not need pretreatment, and the instrument is simple and convenient to operate [12]. In
recent years, Raman spectroscopy combined with chemometric methods has been widely
used in the fields of variety identification, quality analysis, and adulteration detection
of edible oils [13–18]. However, in the detection of mycotoxins in edible oils [19], the
existing research has used the synthesis of highly specific substrate materials to enhance the
absorption intensity of specific Raman characteristic peaks. Then, a linear regression model
between single or multiple characteristic peak variables and mycotoxins was established
to realize the quantitative detection of mycotoxins in edible oil. For the existing research,
on the one hand, the researchers need to have specific expertise in materials science
and molecular science, and on the other hand, there is a high linear correlation between
the response intensity of the characteristic peak and the mycotoxin content. However,
the above two requirements are difficult to meet in actual field detection, especially the
linear relationship between variables and target attributes. Therefore, surface-enhanced
Raman spectroscopy can improve the detection limit of mycotoxins in laboratory studies.
However, most of the existing research belongs to labeled detection, which not only has
high requirements on researchers but also is difficult to meet the needs of modern rapid
detection technology.

In view of this, this study started with Raman spectroscopy itself, starting from the
preparation of peanut oil contaminated with aflatoxins, directly collecting Raman spectra
of peanut oil samples without using any Raman enhancer. Then, the collected Raman
spectra were denoised and characteristic wavelengths optimized from the point of view
of numerical calculation using chemometric methods. In addition, chemometric models
based on the optimized characteristic wavelength variables were established to realize the
quantitative detection of AFB1 in peanut oil, so as to meet the needs of rapid quantitative
detection of AFB1 in edible oil. Finally, the results obtained from our study were compared
with those of existing studies using chemometric models constructed from theoretically
calculated or empirically obtained Raman features.

2. Materials and Methods
2.1. Preparation of Peanut Oil Samples

First, 50 kg of white peanuts (i.e., peanut kernels of naturally dried) were pur-
chased from a local supermarket, and the origin is Henan, China. The white peanut
(Arachis hypogaea L.) used in the experiment was Kai Nong Bai No. 2. The purchased
peanut kernels were then placed in an average of 4 moisture-absorbing cartons, inserting
thermometers and hygrometers. In order to improve the process of peanut mildew, water
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mist was regularly sprayed every day to keep the humidity in the carton at about 85% and
the temperature at 26–30 ◦C.

When preparing aflatoxin-contaminated peanut oil samples (50 mL), peanut samples
(600 g) were taken from different positions in four cartons every other week, and the taken
peanut samples were placed in a drying oven at 100 ◦C for 20 min. Then, the oil press
was turned on and preheated for 30 min before oil extraction (the pressing raw peanut oil
was shown in Figure 1A). In this study, the pressed raw peanut oil was subjected to three
steps of filtration, precipitation and centrifugation. First, the pressed peanut oil was passed
through a filter (stainless steel) screen to filter the oil residue. Next, the filtered peanut oil
was left for 12 h, and the supernatant was taken to obtain the crude oil. Then the crude oil
was put into a TGL-16M high-speed centrifuge (Hunan Xiangyi Centrifuge Instruments
Co., Ltd., Changsha, China) and centrifuge at 11,000 r/min for 10 min to obtain the peanut
oil samples (as shown in Figure 1B). Finally, the prepared peanut oil samples were stored
in a refrigerator at 4 ◦C for future use.
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Figure 1. Crude oil (A) and crude oil after centrifugation (B) of peanut oil sample.

2.2. Determination of Aflatoxin B1

The first method in GB 5009.22-2016, i.e., isotope dilution liquid chromatography-
tandem mass spectrometry [11], was used to determine the AFB1 content in the prepared
peanut oil samples. The detection process was roughly as follows: The AFB1 in the sample
was first extracted with acetonitrile-water solution or methanol-water solution. Then, the
extract was diluted with phosphate buffer solution containing 1% TritonX-100, and purified
and enriched by immunoaffinity column. Finally, after the purification solution was
concentrated, fixed to volume and filtered, it was separated by liquid chromatography, and
quantified by tandem mass spectrometry detection and isotopic internal standard method.

2.3. Acquisition of Raman Spectra

In this study, the DXR laser Raman spectrometer (Thermo Fisher, Waltham, MA, USA)
was used to collect the Raman spectra of the peanut oil samples, and the OMNIC software
(Thermo Fisher, Waltham, MA, USA) was used to record the spectral data of the peanut oil
samples. Before spectral acquisition, the instrument parameters were set as follows: The
wavelength of the laser light source was 532 nm; the laser power was 10 mW; the focal
length of the eyepiece was 10X; the integration time was 10 s, the spectral scanning range
was 100–3300 cm−1, and the ambient temperature was controlled at about 20 ◦C.

During the spectral acquisition process, 0.5 µL of peanut oil sample was drawn
onto the silicon wafer by a pipette. Then, the silicon wafer was placed on the Raman
spectrometer experimental platform for spectral collection of the peanut oil sample. The
coarse adjustment knob of the Raman spectrometer was slowly adjusted to focus the
objective on the sample. The OMNIC software was used to observe spectral imaging of the
sample on the bench. Then, we fine-tuned the knob and performed the final spectral scan
when the spectrum was stable and the noise was small. Since the spectral peak information
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in the range of 800–1800 cm−1 was rich and clear, the spectra in this wavelength range were
studied as the original Raman spectra of peanut oil samples, as shown in Figure 2.
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2.4. Spectral Pretreatment Methods

The raw spectra acquired from the Raman spectrometers usually contain background
information and noise, which means that the raw spectral data must be preprocessed before
model calibration; otherwise, it may cause large biases in subsequent data analysis. The
spectral preprocessing methods used in this study were as follows:

(1) Wavelet transform (wavelet transform, WT). WT is a time and frequency manipulation
of a class of signals. In the time and frequency domains, the effective signal is
continuous, while the noise is discrete [20]. Therefore, after WT, the absolute value of
the coefficient of the effective signal is larger, and the threshold method can be used
to filter the signal. Since the shoulder widths of the Raman peaks are inconsistent, it
is necessary to select appropriate wavelet parameters to achieve a good noise filtering
effect. In this study, when using WT to process Raman spectra, the wavelet basis
function selected the “sym5” function, and the decomposition level was set to 5.
The Raman spectral signal was decomposed and reconstructed using the automatic
denoising functions “wden” and “minimaxi” thresholds of the one-dimensional signal
to remove the noise signal.

(2) Savitzky–Golay (SG) smoothing method. SG, also known as polynomial smoothing
algorithm, was proposed by Savitzky and Golay and applied to data smoothing
and noise filtering. When the SG preprocesses the spectral data, after defining the
width of the window (which must be an odd number), a polynomial is used to fit
the spectral variables in the window to predict the spectral intensity at the central
wavelength point of the window [21]. As the window passes over the spectral data,
the original value at the center of the window is replaced with the fitted value,
resulting in smoothed data [22]. In this study, when processing Raman spectra with
the SG, the polynomial order and the size of the smoothing window were set to 3 and
19, respectively.

(3) Adaptive iteratively reweighted penalized least squares (airPLS). The airPLS calculates
the spectral baseline by iteratively adjusting the weights of penalized least squares [23].
In the iterative solution, the weight remains unchanged, and the algorithm makes
an adaptive adjustment to the fidelity weight based on the difference between the
spectrum and the fitting baseline of the previous iteration.
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2.5. Variable Selection Method

Competitive adaptive reweighted sampling (CARS) is based on the jungle rule of
survival of the fittest [24]. It uses an exponential decay function (EDF) combined with
adaptive reweighted sampling (ARS) to select spectral variables with large absolute values
of regression coefficients in the calibration model, while eliminating variables with small
weights. During this process, cross-validation is used to evaluate the root mean square
error of cross-validation (RMESCV) value of the subsets, and the subset with the lowest
value is selected as the best subset.

In this study, CARS was used to optimize the Raman spectral features after prepro-
cessing with 5-fold cross-validation. When CARS was running, the number of iterations
was set to 5. Due to the randomness of the CARS algorithm, the study repeated running
the CARS algorithm 50 times, and recorded the running results with the smallest RMSECV
as the final screening wavelength variables.

2.6. Partial Least Square

Partial least squares (PLS) regression first linearly combines the original variables
to obtain their principal components, that is, the number of PLS factors. Then, multiple
linear regression is performed using the PLS factor as a new variable. The PLS has the
advantage of being able to perform regression modeling even when the independent
variables are linearly correlated, avoiding the defects of overfitting or insufficient use of
spectral information [25].

Here, the PLS was applied to construct a regression model of the AFB1 content in
peanut oil based on optimizing characteristic wavelength variables. During the model
calibration process, a 5-fold cross-validation method was used to determine the optimal
number of PLS factors.

2.7. Model Evaluation

In this study, the root mean square error of cross-validation (RMSECV) and the coef-
ficient of correction determination (R2

C) were used to evaluate the detection accuracy of
different PLS models, and the root mean square error of prediction (RMSEP) and coefficient
of predictive determination (R2

P) to evaluate the generalization performance of different
PLS models.

3. Results
3.1. Results of Spectral Pretreatment

Figure 3A shows the raw Raman spectra of the collected peanut oil samples with
different levels of aflatoxin contamination, including uncontaminated samples (AFB1
content below the national standard limit of 20 µg/kg) and mildly contaminated samples
(AFB1 content below 20–100 µg/kg) and heavily contaminated samples (AFB1 content
greater than 100 µg/kg). It can be seen from Figure 3A that with the increase of pollution
degree, the content of AFB1 in peanut oil increases, and the baseline of the Raman spectrum
of the sample gradually drifts, showing an “arch bridge” shape and becoming more and
more obvious. This may be due to the increasingly strong fluorescence interference caused
by the heavy contamination of the peanut oil with mold. The above facts indicate that
the quantitative detection of AFB1 in peanut oil by Raman spectroscopy is feasible. In
addition, the original Raman spectrum has great noise and baseline drift, which seriously
affects the shape of the spectrum and will have a greater impact on the performance of
the subsequent model building. Figure 3B shows the Raman spectrum after the WT and
airPLS preprocessing and normalization. Compared with Figure 3A, after the WT–airPLS
preprocessing, the phenomenon of noise burrs in the Raman spectrum is improved, the
phenomenon of baseline drift is basically eliminated, and the signal characteristics are
more obvious. Figure 3C is the Raman spectrum after the SG smoothing and airPLS
preprocessing and normalization. It can be seen from Figure 3C that the burr phenomenon
of the spectrogram after the SG smoothing still exists. That is to say, the SG smoothing does
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not completely eliminate the noise in the Raman spectrum with fluorescence effect, and
the effect of eliminating noise is not as ideal as the preprocessing of the WT, which can be
clearly seen in Figure 3D. In addition, comparing the effects of the airPLS combined with
the SG smoothing and the WT respectively, we find that the Raman spectral baseline after
preprocessing by the WT–airPLS is closer to 0. Therefore, we believe that the pretreatment
method combined with WT–airPLS can effectively eliminate the irrelevant background
information existing in the original Raman spectrum of peanut oil sample.

3.2. Division of Calibration Set and Prediction Set Samples

In order to ensure the rationality of the model results, the study divided the 80 peanut
oil samples obtained in the experiment according to the following rules. First, the samples
were reordered in ascending order of the AFB1 value. Then, in sorted order, the middle one
of every five samples was taken into the prediction set, and the other four samples were
entered into the calibration set. In this way, the calibration set had 64 peanut oil samples,
and the prediction set included 30 peanut oil samples. Table 1 shows the statistical results
of the AFB1 content in peanut oil samples in the two sample sets. As can be seen from
Table 1, the mean and standard deviation of AFB1 in the peanut oil samples in the two
sample sets are not significantly different, the minimum value in the prediction set is larger
than the minimum value in the calibration set, and the maximum value in the prediction
set is smaller than the maximum value in the calibration set. Therefore, the sample division
of the calibration set and the prediction set in this study are reasonable.

Table 1. Statistical results of the AFB1 value of peanut oil samples in the calibration set and the
prediction set.

Sample Sets Sample Number Maximum/µg·kg−1 Minimum/µg·kg−1 Mean/µg·kg−1 Standard
Deviation/µg·kg−1

Calibration set 64 701.7 0.097 236.8 224.2
Prediction set 16 691.5 0.11 237.6 231.0

3.3. Results of Feature Selection by the CARS Method

Figure 4 shows the results of the characteristic optimization of the preprocessed Raman
spectra by the CARS method. Figure 4A demonstrates that as the number of sampling
increases, the number of selected wavelength variables decreases rapidly in the initial
stage, then decreases slowly and finally stabilizes. This shows that the CARS algorithm has
two processes of rough selection and fine selection in the optimization process, which can
improve the efficiency of the algorithm. Figure 4B shows that with the increase of sampling
times, the RMSECV first gradually decreases to the lowest and then increases. This is
because the RMSECV value decreases due to the elimination of a large amount of useless
information at first, and then the RMSECV value increases due to the elimination of some
useful information. Figure 4C shows the regression coefficients of the retained variables
after each iteration of the CARS. The larger the coefficient, the more likely the corresponding
variable is left behind, and the remaining variable is considered as the key variable. In
this study, when the CARS iterated to 26 times, the RMSECV value of the PLS model
established on the retained characteristic variables reached the minimum value, which
was 18.6 µg/kg−1. At this time, the number of features retained by the CARS algorithm is
77, accounting for about 2.2% of the original spectral variables, which greatly reduces the
spectral dimension and reduces the time and space complexity of subsequent modeling.
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of spectra of two preprocessing methods.
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3.4. Results of the PLS Models Built on Optimized Features

This study used 77 Raman spectral features optimized by CARS to build a PLS model
to realize the prediction of the AFB1 content in peanut oil. In the model calibration process,
the optimal number of PLS factors was determined with the smallest RMSECV value.
Figure 5 shows the scatter plot of the predicted values of the best PLS model based on
15 PLS factors and the measured values. The RMSECV, R2

C, RMSEP, and R2
P of the model

were 28.1 µg/kg, 0.98, 22.6 µg/kg, and =0.99. The results show that it is feasible to apply
the Raman spectra combined with chemometrics to quantitatively detect AFB1 in peanut
oil with high accuracy, and the established CARS–PLS model has high detection accuracy
and nearly perfect generalization performance.
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4. Discussion

To verify the importance of optimization of spectral feature variables, the performance
of the CARS–PLS model was compared with that of a PLS model built on full spectral
variables (FULL–PLS). In addition, in order to verify the hypothesis proposed at the
beginning of this study, this study also established a PLS model (DFT–PLS) based on the
Raman spectral characteristic peaks of the AFB1 proposed in the existing literature, and the
performance of the model was compared with that of the CARS–PLS model. Among them,
the selected characteristic peaks of the AFB1 are calculated based on density functional
theory (DFT), and the specific characteristic peaks are listed in Table 2.
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Table 2. Raman characteristic peak attribution.

Raman Spectra Calculated by
DFT (cm−1)

Raman Spectra Collected
Experimentally (cm−1) Spectral Attribution

686 670 Ring breath(pyrane)
1076 1059 v(C-C-C)
1330 1267 v(C-O-C)
1393 1347 v(C-O)(ring skeleton vibration)
1603 1559 C-H def, v(C-C), v(C=C)
1645 1601 C-H def, v(C-C), v(C=C) (ring skeleton vibration)
1806 1701 v(C=O) (cyclopentene ring)
1883 1764 v(C=O) (pyrane ring)

Table 3 shows the detection performance and generalization performance of different
PLS models. As can be seen from Table 3, the PLS model established by the variables
screened by CARS has the best detection accuracy and generalization performance, whether
in the calibration set or in the prediction set. This shows that CARS is an effective Raman
spectral feature wavelength selection method, which can eliminate the adverse effects of
various non-target factors and obtain better prediction performance with fewer variables.
In addition, for the FULL–PLS model, the number of spectral variables used to build the
model is about 45 times that of the CARS–PLS model, but its R2

P is 11.2% lower, and its
RMSEP is 70.6 ug/kg higher. For the DFT–PLS model, the R2

P of the model was 14.4% lower
than that of the CARS–PLS model, while the RMSEP was 101.9 µg/kg higher. Among the
three PLS models, the DFT–PLS model has the worst performance. This directly proves
that the hypothesis put forward at the beginning of the study is correct. We can interpret
the above results as follows:

Table 3. Prediction results of different PLS models.

Models Number of
Variables

Parameters
Calibration Set Prediction Set

RMSECV/µg·kg−1 R2
C RMSEP/µg·kg−1 R2

P

FULL–PLS 3468 PCs = 14 64.6 0.92 93.1 0.88
DFT–PLS 8 PCs = 5 107.7 0.67 124.5 0.73

CARS–PLS 77 PCs = 15 28.1 0.98 22.6 0.99

(1) The absorption intensity of the Raman spectrum is related to the number of functional
groups. As the degree of mildew increases, it causes a baseline shift in the Raman
spectrum. And the more severe the mildew, the stronger the fluorescence effect is and
the more serious the baseline drift is. That is to say, the increase of AFB1 content in
peanut oil will cause corresponding changes in the Raman spectrum. Much existing
literature also theoretically calculates and characterizes the Raman characteristic
peaks of the AFB1, but they are all based on trace amounts of pure AFB1 or adding
the pure product to non-mold edible oil. In this regard, we compared the theoretical
characteristic peaks of the AFB1 calculated by the DFT with the Raman peaks collected
by the actual experiment, and used these Raman peaks as input to construct the PLS
model, but the model results were not satisfactory. This may be because in the process
of mildewing of peanut oil in a high temperature and high humidity environment, the
types of moldy fungi are not single (there may also be other molds, such as Salmonella,
etc.), and this may result in the presented Raman peaks being a superposition of
different mold contaminants, which is quite different from the theoretically calculated
Raman spectrum of the AFB1. In addition, the Raman spectra of the same substance
collected on different types of instruments will have deviations in the position of the
spectral peaks and differences in the heights of the spectral peaks. Moreover, the
surrounding environment of the AFB1 molecule in the experimental and theoretical
calculations is also different. There is intermolecular interaction in the experiment,
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while the theoretical calculation simulates gas-phase molecules. Therefore, using
the variable selection algorithm to optimize the collected spectral features from the
perspective of numerical calculation can effectively reduce the spectral dimension
and improve the accuracy and robustness of the subsequent model.

(2) The performance of the CARS–PLS model is better than that of the FULL–PLS model,
which directly shows the importance of variable selection in the model calibration
process. When Raman spectra are collected, they will be disturbed by environmental,
human operation and instrumental factors, resulting in a large amount of useless
and irrelevant information in the obtained spectra. The FULL–PLS model construc-
tion utilizes full-spectrum variables, and the large amount of useless and irrelevant
information will directly affect the generalization performance and stability of the con-
structed detection model. Therefore, a more reliable detection model can be obtained
by optimizing the characteristic wavelengths in the model calibration process.

Furthermore, the methods and results of our current study also have certain ad-
vantages compared to existing related studies. For example, Yang et al. assessed the
feasibility of mid-infrared (MIR) technique to screen AFB1- and AFT-positive peanut oil.
Different models could both reach 100% in calibration and validation [26]. However, the
AFT-contaminated samples used in their study were produced using the general AFTs
induction methods. This is essentially different from our current study, and their study is
still at the stage of qualitative analysis. Chen et al. developed a laser-induced fluorescence
spectroscopy (LIF) system for rapid and noninvasive screening of four varieties of peanut
oils contaminated with different levels of AFB1. The feasibility of LIF technique for the
rapid and nondestructive detection of AFB1 contamination in different varieties of edible
oils was proved in this study [27]. However, the Yang et al. study only used different
techniques, and the sample preparation was also artificially designed, and it was still at the
stage of qualitative analysis. In addition, Chen et al. developed a surface-enhanced Raman
scattering (SERS) aptasensor for ultrasensitive AFB1 detection using the amino-terminal
AFB1 aptamer (NH2-DNA1) [28]. Their study, as we mentioned earlier, requires the synthe-
sis of highly specific Raman enhancers to achieve the absorption intensity of the Raman
characteristic peaks, thereby realizing the ultrasensitive detection of AFB1 content in peanut
oil. However, their research has high requirements for the basic knowledge of chemistry
possessed by the testers, and it is difficult to achieve large-scale promotion and application.
In addition, the samples used in their study were not naturally AFB1-containing edible oil
samples. On the contrary, the results obtained from our current study are more in line with
actual production applications, and the field test is not too demanding for operators.

Although our current study has certain potential advantages compared with existing
related studies, it also has certain limitations. For example, there is a single species of
edible oil containing AFB1 in the current study. Only a single variety of peanut oil was
included in the study. Therefore, in the follow-up study, we should further expand the
type and quantity of the edible oil samples so as to improve the feasibility of practical
application of the research results. In addition, the AFB1-containing peanut oil samples
obtained in our current study were prepared by pressing moldy peanut raw materials.
Due to the inappropriate control of the mildew process of peanuts during the experiment,
the AFB1 content in some peanut oil samples obtained in the experiment exceeded the
national standard too much, which is unlikely to occur in the actual production of edible
oil. Therefore, this issue is also one of the key issues that our follow-up study needs to
focus on.

5. Conclusions

The study verified the feasibility of Raman spectroscopy combined with multivariate
analysis to achieve high-precision detection of AFB1 in the pressing peanut oil. This study
started from the simulated peanut oil extraction experiment, and the Raman spectrometer
was used to collect the Raman spectra of the peanut oil samples. The WT–SG and WT–
airPLS were respectively pretreated on the raw Raman spectra of the peanut oil samples,
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and the pretreatment effects were compared. CARS was used for variable screening of the
pretreated Raman spectra, and a PLS model based on optimized characteristic wavelengths
was established to achieve high-precision detection of the AFB1 in peanut oil. The study can
provide a technical basis for the research and development of portable Raman spectroscopy
detection devices, and also provide a method reference for the effective law enforcement of
quality supervision departments.
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