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Abstract: Roasted coffee has been the target of increasingly complex adulterations. Sensitive, non-
destructive, rapid and multicomponent techniques for their detection are sought after. This work
proposes the detection of several common adulterants (corn, barley, soybean, rice, coffee husks and
robusta coffee) in roasted ground arabica coffee (from different geographic regions), combining near-
infrared (NIR) spectroscopy and chemometrics (Principal Component Analysis—PCA). Adulterated
samples were composed of one to six adulterants, ranging from 0.25 to 80% (w/w). The results
showed that NIR spectroscopy was able to discriminate pure arabica coffee samples from adulterated
ones (for all the concentrations tested), including robusta coffees or coffee husks, and independently
of being single or multiple adulterations. The identification of the adulterant in the sample was
only feasible for single or double adulterations and in concentrations ≥10%. NIR spectroscopy also
showed potential for the geographical discrimination of arabica coffees (South and Central America).

Keywords: coffee; adulteration; infrared spectroscopy; authenticity; chemometrics

1. Introduction

Coffee is among the most consumed beverages worldwide [1], having enormous
economic relevance, and has a continuously growing market, expanding to different
applications, such as the cosmetic and pharmaceutical industries [2]. According to the
International Coffee Organization (ICO), the global coffee output achieved near 172 million
bags in 2020/21, represented by the main commercialized species, Coffea arabica (59%) and
Coffea canephora (robusta) (41%). Brazil is the main coffee producer and exporter worldwide,
with a total production estimated in the crop year 2020/2021 of 69 million bags (arabica
and robusta), followed by Vietnam (mainly robusta) and Colombia (arabica), with 29 and
14.3 million bags, respectively [3,4].

Due to its commercial value, arabica coffee has been the target of countless and
increasingly complex adulterations over the years [5], mainly through the addition of
roasted barley, corn, rice and coffee husks [6,7]. Robusta coffee, due to its lower market and
compositional similarity, is also commonly used for arabica coffee adulterations [1,7,8].

A plethora of studies have been developed to tentatively detect adulterations in
roasted ground coffee employing physical, chemical, and biological techniques. Some in-
clude DNA-based approaches [9–13], chromatographic analysis [14,15], ultraviolet–visible
spectrophotometry (UV–VIS) [16], digital image processing [17], capillary electrophore-
sis tandem mass spectrometry [18], electrospray ionization mass spectrometry [19], etc.
However, these techniques require sophisticated and expensive instrumentation, as well
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as skilled personnel, are generally time-consuming, include chemical pre-treatments that
make them destructive [20,21] and allow for the detection of only a few contaminants [22].
Microscopic inspection, one of the oldest approaches, is still commonly applied, including
in official laboratories [23], despite its recognized incapacity to distinguish accurately mul-
tiple and complex contaminations, together with its inherent subjectivity, highly based on
the analyst’s experience [7]. More expedite methods are deemed necessary to effectively
support adulteration detection worldwide [24,25].

Some vibrational spectroscopic techniques, such as NIR spectroscopy and NMR,
coupled with chemometrics have already proved to be reliable tools in the detection of
particular coffee adulterations [7,19,24,26,27]. These techniques are well known for their
high efficiency, fastness, reliability and easy use. They commonly do not demand sample
pre-treatments nor reagents, showing to be green analytical tool alternatives [7,28,29]. NIR
spectroscopy has been widely used to discriminate arabica and robusta species, in both
green and roasted coffee [30], and even to correlate with sensorial attributes in roasted
coffee [31]. The detection of different adulterants in coffee through NIR, such as corn,
barley and coffee husks, has also been reported [24,25,29], but not yet extensively tested
for the detection of mixtures, increasingly used as coffee adulterants [13,21,26]. In most
published works, only one or two adulterants per sample have been tested, which does not
represent the reality of the actual market. Therefore, models should be more representative,
composed of a wider variety of coffee origins and adulterants simultaneously in the same
sample. Additionally, the most likely types of combinations of the different varieties
and mixtures must be considered [21,24]. Recently, advances in NMR have been made,
demonstrating the versatility of this technique for the detection of multiple adulterants [32]
but not, as far as the authors know, for NIR spectroscopy.

Considering the lack of information on some of the most recent materials used for
coffee fraud, and the increased use of multiple adulterations, this work aimed to study the
feasibility to detect multiple coffee adulterants in roasted and ground coffee, in different
combinations, based on NIR spectral information.

2. Materials and Methods
2.1. Raw Material

Roasted coffee beans were kindly selected and provided by Nestlé roaster (Porto,
Portugal). Sampling was representative of the main species commercialized, including
different geographical origins as well as the main producers and exporters of coffee. Four
arabica roasted samples were used: two from Brazil (both natural), and one each from
Colombia and Honduras (both washed—“milds”). Two robusta roasted samples were used
as adulterants, from Vietnam and Cameroon. All coffee beans were ground (Retsch, GM
200, Haan, Germany) and stored at room temperature under light and air protection until
analysis using aluminum bags with one-way valves as usual in the coffee industry.

The remaining adulterants (corn, soybeans, rice seeds, barley and the dried residues
from natural coffee processing, commonly known as coffee husks) were chosen con-
sidering the most recent trends in commercial roasted and ground coffee adulteration
(Table 1) [6,11,27]. Two distinct batches of each adulterant were acquired (1 and 2), roasted
to achieve a color similar to that of the coffees used (medium dark) in a laboratory oven
(WTC Binder, Tuttlingen, Germany) (Table 1) and ground (Retsch, GM 200, Haan, Germany),
except barley which was already acquired roasted and ground in the local market.

The blends (adulterated arabica coffee) were prepared with a single adulterant up to
all the six adulterants together, in different mass percentages (0.25, 0.5, 1, 5, 10, 20, 40, 60
and 80%) and combinations. All the blends were prepared in triplicate. Briefly, the 0.25%
and 0.5% adulterations were only prepared with single adulterants, while the 40, 60 and
80% adulterations were only prepared with robusta coffee as adulterant. The adulterations
between 1 and 30% resulted either from individual adulterations or from combinations
of two to six adulterants. The 2% frauds, for example, resulted from the blend of two
adulterants at 1% and from combination of 4 adulterants at 0.5%. The 5%, similarly, was
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the result of individual adulterations at 5% or from combination of five adulterants at 1%.
Only a single adulteration at 25% and 30% was prepared, resulting from using five and six
adulterants at 5%, respectively. Single adulterations at 20% were only prepared with corn,
coffee husks and robusta coffee, although 20% fraud could result from a combination of two
(at 10%) or four (at 5%) adulterations. Globally, a total of 73 combinations were prepared,
in triplicate, totaling 219 adulterated samples. For details, please see Tables S1 and S2
(Supplementary Materials).

Table 1. List of the coffee samples and adulterants according to origin and degree of roasting.

Sample Origin Roasting Condition

Arabica B1 Brazil (natural) medium-dark

Arabica B2 Brazil (natural) medium-dark

Arabica C Colombia (washed) medium-dark

Arabica H Honduras (washed) medium-dark

Robusta 1 Vietnam medium-dark

Robusta 2 Cameroon medium-dark

Corn 1 Brazil 225 ◦C 30 min

Corn 2 Portugal 250 ◦C 45 min

Soybeans 1 Portugal 250 ◦C 15 min

Soybeans 2 Portugal 250 ◦C 15 min

Rice seeds (with chaff) 1 Brazil 250 ◦C 25 min

Rice seeds (with chaff) 2 Portugal 250 ◦C 30 min

Coffee husks 1 Brazil 220 ◦C 10 min

Coffee husks 2 Brazil 212 ◦C 14 min

Barley 1 Portugal commercial

Barley 2 Portugal commercial

2.2. Near-Infrared Spectroscopy

Near-infrared spectra of all the samples were acquired on a Fourier-transform near-
infrared spectrometer (FTLA 2000, ABB, Québec, QC, Canada) equipped with an indium-
gallium-arsenide (InGaAs) detector in diffuse reflectance mode. Each spectrum resulted
from an average of 64 scans with a resolution of 8 cm−1 in the wavenumber interval of
4000–10,000 cm−1. Bomen-Grams software (version 7, ABB, Québec, QC, Canada) was used
to control the equipment. A total of five spectra per sample were acquired for each sample
triplicate (meaning a total of 15 spectra for each plain sample of coffee and adulterant plus
all the 291 blends prepared). All the analysis took place within 6 months after roasting.

2.3. Data Analysis

Due to the large amount of spectral data, the 5 spectra of each sample were averaged
before data analysis. The mean spectra were pre-processed with standard normal variate
(SNV) and Savitzky-Golay filter (15 smoothing points, 2nd order polynomial and 1st
derivative) [33] to remove baseline drifts and further mean centered. Other data pre-
treatments were tested as: (I) different combinations of SNV and SavGol filter (SNV + mean
center; SavGol + mean center); (II) different windows of the SavGol filter (9–15) and also the
second derivative; (III) multiplicative scatter correction (MSC) and (IV) autoscale. It should
be stressed that the best results were obtained with the above-mentioned pre-treatment.
Spectra were further modelled by Principal component analysis (PCA) [34]. Outliers were
verified by Q Residuals versus Hotelling Tˆ2. The root mean square errors of calibration
(RMSEC) and cross validation (RMSECV) of all the PCA models developed in the current
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study were presented in Table S3 (Supplementary Materials). All chemometric models
were performed in Matlab version 9.5 Release 2018b (MathWorks) and PLS Toolbox version
8.7 (2019) for Matlab (Eigenvector Research, Manson, WA, USA).

3. Results and Discussion
3.1. Discrimination among Pure Samples and Adulterated Coffee

An exploratory PCA was performed to evaluate possible clusterization among all the
analyzed samples (Figure 1A). The analysis was performed considering the whole spectral
range (4000–10,000 cm−1). Spectra were pre-processed prior to the analysis (for details,
please see the Materials and Methods section).
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Figure 1. Scores plot of the PCA models developed with all the samples included in this study
(A) and their corresponding loadings (B). Legend: • arabica; • robusta; • adulterated samples with
robusta; • adulterated samples with rice/corn/soy/barley/coffee husks; • soy; • barley; • rice; • corn;
• coffee husks.

NIR spectroscopy was able to clearly discriminate the pure adulterants (rice, barley,
soybean, corn and coffee husks) from samples containing coffee (robusta, arabica and ara-
bica adulterated with robusta). It should be stressed that the first PC (PC1) mainly accounts
for the discrimination between corn, rice, barley and soybean samples (negative part of PC1)
from coffee husks (positive part of PC1). According to the loadings plot (Figure 1B), the
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wavenumber regions/bands that mostly account for such discrimination (higher-intensity
bands) were: (I) the region between 5800 and 5650 cm−1 which are due to S-H and C-H
bonds in first overtone; (II) peaks around 4360 and 4270 associated with the C-H plus C=C
combination and at 4324 cm−1, a vibration attributed to lipids. It should be noted that,
despite being high in intensity, the bands around 5200 and 7000 cm−1 are associated with
the O-H combination and the first O-H overtones regions, respectively, due to the presence
of water bands [35] and should not be taken into consideration for sample discrimination.
Additionally, corn, rice and barley samples were closer in the scores map of PCA (Figure 1A)
denoting a higher similarity when compared with soybean ones, discriminated across PC2.
The spectral bands that seem to account for the discrimination are located at 4960 and
4671 cm−1, corresponding to a spectral range dominated by C-H plus C=C vibrations, and
at 4324 cm−1, frequently attributed to lipid vibrations. Regarding the samples containing
only coffee, they are closer in the scores map, with the four plain “arabica” samples being
the most dissimilar ones. It is interesting to note that plain “robusta” and “arabica” sam-
ples adulterated with “robusta” cluster together, with the remaining adulterated samples
lying in the top of the cluster closer to the “arabica” samples. The results obtained with
the PCA demonstrate the high potential of this technique to discriminate among pure
and adulterated coffee samples. Previous studies already demonstrated the suitability of
NIR spectroscopy to discriminate among “arabica” and “robusta” varieties, which are in
accordance with the results herein obtained [8,29,30].

An additional PCA was performed solely with the spectra of coffee samples (ara-
bica, robusta and arabica adulterated with robusta) due to its closeness in the first PCA
(Figure 2A). Both pure “arabica” and pure “robusta” coffee samples are clearly discrimi-
nated from the adulterated samples (all adulterated samples were included in the analysis)
in the first PC (PC1). According to the loadings plot (Figure 2B), the spectral region re-
sponsible for the discrimination was 5150–4920 cm−1, a spectral region indicating the
predominance of carbohydrates, proteins and chlorogenic acid vibrations in coffee sam-
ples [36]. Regarding the samples adulterated with “robusta” coffee, 4/8 samples were
placed apart from the main cluster. These samples correspond to those with a higher
“robusta” proportion (20/40/60/80%). Another interesting point is that the samples are
positioned in the scores map according to their “robusta” proportion, e = with the sample
with a higher content being closer to the pure “robusta” samples. Samples with lower
“robusta” contents cluster together with the remaining adulterated samples. Regarding
plain “arabica” samples (B1/B2/C/H and their blend X), it could be seen that samples from
Brazil (B) and Colombia (C) are closer, lying mostly in the negative part of PC 3, while the
sample from Honduras (H) is on the positive part of the PC 3. The loadings plot (Figure 1,
panel IIB) shows that the regions between 5800 and 5650 cm−1 (vibration due to S-H and C-
H bonds in first overtone) and between 4460 and 4270 cm−1 (dominated by carbohydrates,
proteins and caffeine vibrations) are mainly responsible for the discrimination [36]. The
green coffee processing method cannot be used to justify this separation since the Brazilian
samples were processed by the natural method while the samples from Colombia and
Honduras are washed coffees. Therefore, the relative location of the samples in the scores
map could be related to their geographic origins. Colombia and Brazil are in South America,
probably sharing many edaphoclimatic conditions, and Honduras is located in Central
America. The geographic origin could justify the slightly different chemical composition
suggested by the PCA. Previous studies on green coffee demonstrated the suitability of
NIR spectroscopy to discriminate samples according to their geographical regions, while
this work highlights a possible difference between roasted and ground coffees in terms of
countries bases [37–39]. Precisely, following the findings of Giraudo and collaborators [40],
the green samples from Honduras and Brazil showed a tendency towards separation. Since
the “arabica” X sample corresponds to a balanced mix of all the four samples (B/B/C/H,
25% each) it is located closer to samples B and C due to their relative compositions (75% of
B plus C and 25% of H).
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Figure 2. Scores plot of the PCA models developed solely with samples containing coffee (A) and its
corresponding loadings (B). Legend: • arabica (B = Brazil, H = Honduras, C = Colombia, X = blend
of the 4 arabica samples); • robusta; • adulterated samples with robusta; • adulterated samples with
rice/corn/soy/barley/coffee husks.

3.2. Discrimination According to the Adulterant

Due to the high ability to discriminate between pure and contaminated samples, the
potential of NIR spectroscopy to discriminate between samples according to the adulterants
present was also evaluated. A PCA model was developed with spectra of pure arabica and
arabica samples adulterated with rice (rice alone + all the adulterations with rice, alone and
in combination with other adulterants). Figure 3 exhibits the scores plot of the first two
PCs of the PCA model. The first PC (PC1), which captures 90.6% of the spectral variability,
was responsible for the clear discrimination between arabica samples (cluster C1) and the
contaminated ones (cluster C2 and C3) even in the presence of coffee husks and “robusta”
coffee. The discrimination of these two clusters (C2 and C3) was related to the percentage
of the adulterant present in the coffee sample and not with the kind of adulterant. Namely,
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samples with more than 10% of adulterants were in C3 and samples with less than 10%
of adulterants were in C2, these last ones being closer to the arabica pure samples on the
scores map of the PCA model. Included in C2 were only two samples’ spectra, containing
exactly 10% of adulterants, one corresponds to spectra “Z”, with 5% of rice and 5% of coffee
husks, and the second one with 10% of rice as the unique adulterant “Y”. The spectrum
from sample Z was quite apart from the remaining ones probably due to the presence
of coffee husks in a high percentage. It should be noted that despite containing 10% of
adulterant, sample Y contains only rice as the adulterant, which makes this sample more
similar to the others present in C2 (where all the samples containing only alteration with
rice appeared). Similar PCA models were developed for each of the remaining adulterants
and the obtained results were quite similar (data not shown).
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Globally, it arises that sample discrimination according to the adulterant present was
not possible. Instead, the discrimination observed in the scores map seems to be highly
related to the total percentage of adulterants in the samples.

It should be stressed that the above conclusion was based on PCA models devel-
oped with adulterated samples with up to six adulterants simultaneously. In this context,
an additional study was undertaken to evaluate if the discrimination according to the
adulterant was feasible when solely up to two adulterants were present. Fifteen PCA
models were developed (C 6,2- combinations of six adulterants, two by two) to include
all the combinations. Figure 4 corresponds to the PCA model developed with adulterated
samples containing rice and coffee husks for example proposes. Pure arabica samples were
discriminated from the adulterated ones across the PC1 (86.2% of the spectral variability),
as stated previously. Regarding the adulterated samples, some appeared in the scores map
in a very compact cluster and others quite disperse across it. Samples belonging to the
compact cluster possess percentages of coffee between 95 and 99.75%, which makes them
all very similar even if they were adulterated with rice; coffee husks or rice + coffee husks.
The dispersed ones possessed percentages of coffee ≤90% enabling the discrimination
according to the adulterant present (rice/coffee husks/rice + coffee husks).
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Similar results were obtained for the remaining PCA models developed (data not
shown), meaning that the discrimination according to the adulterant present in the sample
is only possible for percentages of adulterants ≥10% and with up to two adulterants.
This result differs from the obtained previously because in the first attempt to discriminate
samples according to the adulterant, some samples had very small amounts of 4 to 5 distinct
adulterants.

3.3. Discrimination at a Constant Adulterant Concentration

Based on the previous approaches, samples discrimination according to the adulterant
might be possible if only up to two adulterants are considered. However, even in such
conditions, the discrimination ability was highly related to the adulterant concentration
(only feasible for adulterant concentration ≥10%). In this context, an additional study
was performed to evaluate the feasibility of the discrimination according to the adulterant
present keeping their concentration constant. Three PCA models were developed, each
including solely samples of a certain adulterant concentration, namely, 20%, 10% and
1%. These percentages were selected based on the available data in order to ensure a
representative range of adulterant amounts and based on the number of available spectra
for each amount to develop robust PCA models. The scores plot of the PCA model
developed with samples containing 20% of adulterant (Figure 5A) showed discrimination
between samples containing just coffee (arabica and arabica adulterated with robusta) from
adulterated coffee in the first PC (PC1 encompassing 88.3% of the spectral variability).
Despite lying in the positive part of the PC1, plain arabica samples were discriminated from
those adulterated with robusta. Adulterated samples with coffee husks and/or corn appear
mostly on the negative part of PC2 while samples containing a mixture of adulterants and
rice or soy plus coffee husks appear on the positive part of PC2. Even with a constant and
quite high adulterant percentage in samples, when many adulterants were included, it
seems to be not possible to discriminate samples according to the adulterants present.
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Regarding samples with 10% of adulterant (scores map of the model in Figure 5B),
a clear discrimination between pure arabica samples and adulterated ones occurred on
PC1. Contrary to samples with 20% of adulterant, the arabica sample adulterated with
robusta is on the opposite part (negative) of PC1. This might have occurred due to the
lower percentage of adulterants in these samples, which make them more similar (all of
them possess a higher arabica content, 90% versus 80% in the first case). The discrimination
between arabica and robusta coffees is important, particularly for products labelled as
100% arabica. Adulterations with robusta are frequent due to its lower price (<20–25%),
and it is frequently used to reduce the costs of the product [8,30]. Figure 5C presents the
scores map of the PCA model developed with samples containing just 1% of adulterant. It
was interesting to note that NIR spectroscopy possessed the ability to discriminate between
pure and adulterated arabica samples even with a low percentage of adulterant (1%) on the
first PC. Winkler-Moser et al. [7], in a single approach for corn detection in coffee using NIR,
showed that the model developed using partial least-squares regression (PSLR) analysis
was not able to detect samples at the 1% level, but an accurate detection by NIR was
possible at or above 5%. The detection of corn in coffee was also effective by micro NIR (the
limits of detection, LOD, and of quantification, LOQ, were 1.6 and 5.2%, respectively) [29].
In an additional work, barley adulteration was detected at 2% in coffee using PLSR [24].
It is important to highlight that the legislation in Brazil that allowed up to 1% of foreign
material in roasted ground coffee through Normative Instruction nº 16 [41] was revoked by
Normative Instruction nº 7 [42]. The results obtained in this work, allowing discrimination
of adulteration below 1% of contribute to imposing the strict regulation of coffee products
due to their high commercial value. Additionally, all of the adulterated samples appear in
a very compact cluster, highlighting their similarity.

4. Conclusions

NIR spectroscopy coupled with chemometrics proved to be able to distinguish all the
pure samples included in this work (coffee, including the two species arabica and robusta,
coffee husks, barley, soybean, rice and corn).

This technique was also able to discriminate the coffee varieties among each other,
namely, arabica, robusta and arabica contaminated with robusta from as low as 1%. Indeed,
contaminated samples appeared positioned in the scores map according to their relative
percentages. Additionally, pure arabica samples seem to be discriminated from each other
according to their geographic origins.

The discrimination between pure and adulterated arabica coffee samples was also
feasible for all the adulterants and independently of the concentration tested (from as low
as 0.25%). However, the discrimination of the samples according to the adulterant present
was only achievable if no more than two contaminants were present simultaneously and
for adulterant concentrations ≥10%.
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.3390/foods11010061/s1, Table S1: blends composition, Table S2. Prevalence of each adulterant in the
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