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Abstract: The domestic microwave oven has been popularly used at home in heating foods for
its rapid heating rate and high power efficiency. However, non-uniform heating by microwave is
the major drawback that can lead to severe food safety and quality issues. In order to alleviate
this problem, modeling of microwave heating process in domestic ovens has been employed to
simulate and understand the complicated interactions between microwaves and food products.
This paper extensively reviews the mechanistic models with different geometric dimensions and
physics/kinetics that simulated the microwave heating process. The model implementation and
validation strategies related to the model accuracy and efficiency are also discussed. With the
emergence of the machine learning technique, this paper also discusses the recent development of
hybrid models that integrate machine learning with mechanistic models in improving microwave
heating performance. Besides, pure machine learning models using only experimental data as input
are also covered. Further research is needed to improve the model accuracy, efficiency, and ease of
use to enable the industrial application of the models in the development of microwave systems and
food products.

Keywords: microwave heating; temperature uniformity; mechanistic modeling; machine learning;
product design

1. Introduction

Microwave ovens have been a popular domestic appliance for their convenience, rapid
heating rate, and high power efficiency. Over 95% of households in the U.S. own at least
one microwave oven [1] and mainly use it for cooking, defrosting, and re-heating [2]. The
fast-heating characteristic of microwave heating can help retain heat-sensitive compounds
in foods, and therefore keep the color, texture, flavor, and nutrients [3,4]. The advantages
of microwave heating are mainly attributed to its energy delivery through electromagnetic
radiation, where the microwaves penetrate into the foods and agitate the polar molecules
and charged particles to generate heat volumetrically [5]. However, this advantageous
heating method of microwaves has a non-uniform heating issue, which may cause severe
food quality and safety problems. Microwave-heated food is often considered low-quality
food due to the uneven distribution of hot and cold spots [6,7], which degrades consumers’
experience. The overheating and high moisture loss lead to significant quality loss at the
hot spot areas; and conversely, the cold spots cannot be thoroughly heated to ensure food
safety [8,9]. Several foodborne outbreaks related to microwaveable food products have
been reported in the past years [10].

The non-uniform microwave heating can be attributed to the complicated interactions
between microwave and food products, which are influenced by many oven- and food-
related factors. Previous studies showed that the oven cavity designs, shape and position
of the foods [9], dielectric [11] and thermal properties [12] of the food materials, are all
factors that influence the microwave-food interactions. The domestic microwave oven
cavity is a multimode cavity, where the electric field is not uniformly distributed within the
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cavity and food product [13]. The high and low electric field density and microwave power
distribution within the cavity are generally fixed during the heating process, known as
standing wave patterns [14]. The standing wave pattern leads to the non-uniform heating
of food products. In addition, the non-uniform level is exaggerated over the microwave
heating process, especially for frozen food products, which is known as the “thermal
runaway” effect. The “thermal runaway” phenomenon is caused by the temperature-
dependent changes of dielectric and thermal properties of food products. At frozen state
(or low temperatures), food products often have a relatively lower dielectric loss factor
than those at thawed state (or high temperatures) [15]. Due to the non-uniform distribution
of the microwave power, part of the food products will be thawed first (or heated more),
which raises the dielectric loss factors and, thus, the microwave energy absorption in those
regions. The consequence is that the hotter regions of the food product absorb more and
more microwave power. Additionally, the latent heat of melting in frozen food products
worsens the “thermal runaway” effect [16].

Based on the existing knowledge about microwave heating, various strategies that
aim to improve the heating results were proposed and demonstrated, and several of them
have already been applied to the domestic oven designs. For example, a turntable is
often used in commercial domestic microwave ovens to increase the heating uniformity,
where the improvement was reported to be up to 43% [17]. However, the improvement is
only achieved in the circumferential direction while not along the diametral direction [18].
Another approach is that different types of the mode stirrers, such as single propeller-
shaped mode stirrer [19], double propeller-like stirrers in front of the waveguide ports that
are located on the opposite sidewalls [20], double plate-shaped mode stirrers vertically
attached to the top wall [21], and rotary disk mode stirrers [22], can be incorporated into the
microwave ovens to improve the microwave heating uniformity. Furthermore, assembly
of a mode stirrer under the turntable was also proposed and demonstrated to improve
temperature uniformity [23,24].

Besides the modification on the microwave oven cavity, the properly designed food
products and packages can also improve the microwave heating performance. In mi-
crowave heating of foods, the penetration depth is one critical parameter that is defined as
the depth in foods at which the microwave power drops to 1/e of its initial value at the
surface [25]. The penetration depth is usually used as a reference to determine the thickness
of a food product for optimal microwave heating performance [26]. In addition, metal
shielding [27] and steam venting [28–30] were also used in microwavable food packages to
improve heating uniformity.

Traditionally, trial-and-error microwave heating experiments are widely used in de-
signing microwave ovens, food products, and packages. However, due to the complicated
interactions among microwaves, food, and packages, it is difficult to observe and under-
stand the complicated interactions experimentally, especially for the novel approaches (e.g.,
new package designs) that complicate the interactions where various physical, chemical,
and biological processes are involved. Hence, it is critical to deeply understand these
complicated interactions, which can guide future food product development strategies. In
the past decades, a variety of mathematical models for simulating the microwave heating
process have been developed as promising tools to understand the complicated interac-
tions but have not been extensively adopted by the industry in the designs of ovens, foods,
and packages due to significant limitations of model accuracy, efficiency, and ease of use.
Besides, there is an increasing trend to apply or couple machine learning skills to either
replace or assist the basic mechanistic models, which has been used in microwave heating
process and also raised extensive discussions in biology [31]. The novel strategy shows its
advantages in computation power while cannot fully overcome the limitations due to lack
of knowledge on the microwave-food interactions during the heating process.

The purposes of this review are to (1) review and discuss various mechanistic models
based on different geometric dimensions and physics/kinetics that simulated the heating
process in domestic microwave ovens, (2) review the recent development of using machine
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learning techniques in microwave heating modeling, and (3) summarize current models and
discuss the future aspects in improving the model accuracy and efficiency and developing
them as easy-to-use food/oven development tools for industrial implementation.

2. Mechanistic Models

Microwave heating of food in domestic ovens is a complicated process that involves
multiple physics, chemical reactions, and biological dynamics. During the heating process,
the electromagnetic wave at around 2.45 GHz is generated in the magnetron and fed into
the oven cavity through a waveguide. Part of the microwave energy is absorbed by the
food product and converted into thermal energy to heat the food products volumetrically.
Due to the non-uniform power distribution, hot and cold spots are generated within the
food product, which results in temperature gradient and heat transfer. As the temperature
increases, moisture evaporation occurs and generates high pressure at hot spots. The
pressure gradients and moisture gradients drive the moisture movement within the food
product, which also promotes the heat transfer process. The significant moisture loss
and pressure-driven flow may also have a mechanical effect, which causes geometry
change of the food product. Along with the temperature and moisture change, chemical
reactions of color change and nutrients degradation also occur during the microwave
heating process, which affects the quality of the microwaved foods. Meanwhile, the
microorganisms are also inactivated dynamically with time, which is related to product
safety. Thus, in order to develop microwaveable food products with high quality and
safety, it is necessary to understand the complicated physical process, chemical reactions,
and microbial inactivation during the microwave heating process.

Many mechanistic models have been developed to study the complicated physical,
chemical, and microbial processes with various dimensional and physics/kinetics con-
siderations. The early models start with significantly simplified model geometry (e.g.,
one-dimensional, 1-D geometry) and mechanistic physics (e.g., only electromagnetics).
There are also complex models in low dimension but with comprehensive physics to esti-
mate heat and mass change [32,33]. The most recent models can simulate the microwave
heating process using detailed 3-D oven and food geometries, as well as comprehensive
physical, chemical, and microbiological dynamics. These models have divergent capabil-
ities of predictions and require different model inputs and computational resources, as
summarized in Table 1.

Table 1. Summary of the implementation and findings of the mechanistic models for simulating microwave heating of foods.

Dimension Physics Heating Scenario Highlight Citation

1D

• Electromagnetics
• Heat transfer

Heat a sphere-shaped
minced beef sample

Hot spots were located in the
center of spheres with radii 3.5 cm. [34]

• Electromagnetics
• Heat transfer

Simulate the heating
scenarios of the sample with

arbitrarily given physical
properties and evaluated the

thermal profiles along the
wave propagation direction.

The simple 1-D analytical model
could provide accurate simulated

results compared to previously
reported models.

[35]

• Electromagnetics
• Heat transfer

Validated through the
traditional numerical model

with asphalt as the
objective samples.

Applying time-dependent physics
properties provided more details

in the simulated
temperature profiles.

[36]

• Electromagnetics
Heat different food systems

with two layers at equal
thickness and

adjusted thickness.

The two-layer food systems with
adjusted thickness proposed based

on the model had a better
heating performance.

[37]
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Table 1. Cont.

Dimension Physics Heating Scenario Highlight Citation

• Electromagnetics
• Heat transfer
• Mass transfer

Heat a mashed potato
sample filled in a tray.

For simulation of the sample with
a sufficiently large length and with

a short heating time, constant
dielectric properties can be

applied without lowering the
model accuracy significantly.

[32]

• Electromagnetics
• Heat transfer
• Mass transfer

Heat unsaturated materials
composed of glass beads,

water, and air.

In the model, frequency, particle
size, and electric field intensity are
important to the proper prediction

of microwave drying kinetics.

[33]

2D

• Electromagnetics
• Heat transfer

Heat slab- and cylinder-
shaped potato samples

The model predicted temperature
was higher than the measured
results. The locations of the hot

and cold spots were
properly predicted.

[38]

• Electromagnetics
• Heat transfer

Heat a slice of deionized
water sample

The model was relatively accurate
in estimating the temperature field

and time of hot spots over a
2D plane.

[39]

• Electromagnetics
• Heat transfer

Heat a 10-mm-thick sheet
sample in a microwave oven

with two laminar stirrers
attached to the upper wall

Locations of hot spots near the
sample’s edge were properly

predicted, but there were some
differences between measured and

predicted temperature values.
Lambert’s law is only applicable

for materials with a high
loss factor.

[7]

3D

• Electromagnetics
• Heat transfer

Heat a brick-shaped potato
sample in a microwave with

the turntable on or off.

The application of a turntable can
improve the heating uniformity by

about 40%.
[17]

• Electromagnetics
• Heat transfer

Heat mashed potato samples
with different sodium

chloride levels, filled in
cylindrical or rectangular
containers in a microwave
oven with the turntable on

or off.

A simulation approach that
simplified the step-by-step

analysis of heat transfer strategy,
the computation time was cut

down by a one-time analysis of the
initial electromagnetic fields.

[40]

• Electromagnetics
• Heat transfer

Heat brick-shaped potato
sample in a microwave oven
with a copper patch placed
in the upper surface of the
turntable, functioning as a

mode stirrer.

The added metal patch could
improve the heating uniformity

and the power efficiency, and the
rotation speed, size, location of the
turntable influenced the effects of

the proposed mode stirrer.

[24]

• Electromagnetics
• Heat transfer

Heat a brick-shaped potato
sample in a microwave oven

assembled with a
brick-shaped mode stirrer
rotating over the top of the

sample, with the
turntable on.

The incorporation of the turntable
and the mode stirrer could

improve the heating performance,
where the turntable worked to
increase the uniformity, and the
stirrer worked to enhance the

power efficiency.

[41]
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Table 1. Cont.

Dimension Physics Heating Scenario Highlight Citation

• Electromagnetics
• Heat transfer

Heat a stationary potato slice
in a microwave oven

assembled with a rotary
radiation structure, rotating

at 30◦/s, over
the waveguide.

The rotary radiation structure
could improve the heating
uniformity and efficiency

compared to the application
of turntable.

[22]

• Electromagnetics
• Heat transfer

Heat water in a
cylinder-shaped beaker

stationarily in a microwave
oven with two power ports.

The two-port microwave oven
could heat the sample more

uniformly and efficiently.
[42]

• Electromagnetics
• Heat transfer

Simulate the thermal
distribution inside a

rectangular-shaped traveling
microwave waveguide.

The microwave energy
input/output ports should be
well-positioned and matched,

which was significantly related to
the power efficiency.

[43]

• Electromagnetics
• Heat transfer

Heat brick-shaped sliced
potato samples were placed
on a stationary bracket in a

microwave oven, with a
multi-component turntable

rotating beneath.

The heating uniformity was
increased by up to 47% by the

multiple material turntable, and
the material type could affect the

heating results.

[23]

• Electromagnetics
• Heat transfer

Heat brick-shaped sliced
potato samples in a

microwave oven stationarily
under shifting frequency.

The shifting scenarios with only
pre-selected frequencies that had

higher power efficiency could
improve the heating uniformity

and power efficiency.

[44]

• Electromagnetics
• Heat transfer

Heat chicken nuggets in a
frequency-shifted solid-state

source microwave oven.

Heating scenarios under
shifting-frequency had better

heating uniformity and efficiency.
The heating results could be

affected by the shifting rate and
the shifting sequences.

[13]

• Electromagnetics
• Heat transfer

Heat potato slice in a
microwave oven with a

movable wall to adjust the
microwave phase in the

oven cavity.

Heating scenarios under the
shifting phase with constant
frequency could increase the

heating uniformity and avoid the
hot spot induced in the traditional

stationary microwave
heating method.

[45]

• Electromagnetics
• Heat transfer
• Mass transfer

Dry potato sphere in a
microwave oven.

Microwave drying of spheres in
larger sizes could be well

simulated, while the simulation of
smaller samples was less accurate
in terms of gas pressure due to the

low sample temperature.

[46,47]

• Electromagnetics
• Heat transfer
• Mass transfer

Heat mashed potato samples
in a microwave oven.

The model was sensitive to the gas
diffusion coefficient, intrinsic
water permeability, and the
evaporation rate constant.

[48]

• Electromagnetics
• Heat transfer
• Mass transfer

Heat multi-layered lasagna
samples in a microwave

oven.

Different layers of foodstuffs
showed very different heating

results, which could be employed
as instruction for food design.

[49]
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Table 1. Cont.

Dimension Physics Heating Scenario Highlight Citation

• Electromagnetics
• Heat transfer
• Deformation

Dry brick-shaped potato
samples in a

microwave oven.

The volume shrinkage during
drying affected the power

absorption, heat, and moisture
transfer within the sample

during heating.

[50]

• Electromagnetics
• Heat transfer
• Chemical kinetics

Thaw a cube-shaped sample
in a microwave oven under

either inverter or pulsed
heating mode.

The novel inverter microwave
heating mode made little

difference in terms of color
preservation and heating

uniformity compared to the
traditional cycled (on-off)

defrosting mode.

[51]

• Electromagnetics
• Heat transfer
• Chemical kinetics

Dry semi-ripe papaya
samples in a microwave

oven with an intermittent
heating strategy.

Reduced power ratio, defined as
the ratio of microwave on time to
the total cycle time (on and off),

helped retain ascorbic acid content,
total phenolic content, and color.

[52]

• Electromagnetics
• Heat transfer
• Chemical kinetics

Heat mashed potato samples
in a microwave oven under

the inverter and
cycled modes.

The two modes made little
difference to the heating

performance in terms of power
absorption, temperature

uniformity, and vitamin C
degradation level.

[53]

• Electromagnetics
• Heat transfer
• Microbiological

kinetics

Heat the carrot slices at
different power levels with

the aim to inactivate different
types of microorganisms.

The most inactivation occurred at
the early heating stage for high

power (400 W and 600 W) heating
scenarios, while when heating
with low power (200 W), the
temperature was too low to

produce an inactivation effect after
the whole heating process.

[54]

• Electromagnetics
• Heat transfer
• Microbiological

kinetics

Heat chicken nuggets in a
microwave oven and

evaluate the processing time
needed to achieve desired

sterilization effects.

A typical 90 s heating of frozen
chicken nuggets from -5 ◦C was

not enough to completely achieve
the 7-log reduction results of
Salmonella over the sample.

[55]

2.1. One-Dimensional Models for Simulation of Energy Conversion

Early-stage simulations of the microwave heating process assumed the food product
as a 1-D line (e.g., sphere sample). The microwaves were fed from one side of the product
(a point) and only propagated in one direction along the line; the electromagnetic power
was dissipated and used to heat the food product.

When the dielectric properties are constant, the generated heat from electromagnetic
power could be expressed in closed-form based on Lambert’s law. Several analytical models
have been developed to predict the temperature distribution and reveal the non-uniformity
problem along the propagation direction of the microwave [34,36,37,56]. For example, a
1-D model proposed by Campañone and Zaritzky [34] coupled electromagnetic heating,
following Lambert’s law, and conductive heat transfer to simulate the microwave heating
of sphere-shaped food. Minced beef was used as a model food, and constant material
properties were used in this study. The Lambert’s law applied in this model assumed that
microwave absorption within the products exponentially decayed with distance, which
was expressed as:

q = q0e−2αd (1)
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where q is the dissipated power, q0 is the surface power, d is the maximum distance measure
from the surface, and α is the attenuation factor expressed by Equations (2) and (3):

α =
2π

λ

√√√√ ε′
(
(1 + tan2δ)

1
2 − 1

)
2

(2)

with

δ = tan−1
(

ε′′

ε′

)
(3)

where λ is the wavelength of the microwave in free space, ε′ is the dielectric constant, ε” is
the dielectric loss factor, and tanδ is the loss tangent.

The conductive heat transfer was described by Equation (4):

ρCp
∂T
∂t

= ∇(k∇T) + q (4)

where ρ is the density, and Cp is the thermal capacity, k is the thermal conductivity, t is time,
and T is temperature.

This 1-D model was solved by the finite difference method (FDM) and predicted the
heating profile along one line. The model results showed good agreement with experimen-
tal point temperatures in the sphere center and on the surface of the beef sample, with a
relative error of −2.46%, after 48 s microwave heating under 2.45 GHz.

Another 1-D model developed by Kopyt and Celuch-Marcysiak [35] simulated the
microwave heating process. Instead of using Lambert’s law, this model described the
electromagnetic power by Maxwell’s equations and solved the model by FDM. Maxwell’s
equations in the differential form are as Equations (5)–(8):

∇× E = −∂B
∂t

(5)

∇×H = J +
∂D
∂t

(6)

∇·D = ρe (7)

∇·B = 0 (8)

where E is the electric field, B is the magnetic induction, H is the magnetic field, J is the
current flux, D is the electric displacement, and ρe is the charge density. And with the
solved electric field, the power source for the heat transfer along the 1-D line direction was
calculated following Equation (9):

q(x, t) =
1
2

ωε0ε′′ |E(x, t)|2 (9)

where ε0 is the permittivity of free space,ω is the angular frequency of the microwave and
E(x, t) follows:

E(x, t) = E0e−α0(t)x (10)

where E0 is an arbitrarily assumed initial amplitude of the electric field, α0(t) is the real
part of the time-dependent propagation constant of the microwave. This model was solved
based on a steady-state electromagnetic field, and the obtained electric field E(x, t) was
used as the power source to solve the source function q(x, t) by Equation (9). Through the
simulation process, the dielectric properties of the materials were assumed to be constant.
The time-dependent process was simulated until the end of the heating time. The results of
this model could predict the dynamic microwave heating temperature with various total
heating times.
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Zhong et al. [36] improved these 1-D models by comprising temperature-dependent
physical properties of density, specific heat capacity, and thermal conductivity in the heat
transfer equation (based on Equation (4)), which could predict the temperature profiles
that reflect more details. Another 1-D analytical model further incorporated more details
by including the electromagnetic wave reflection to simulate the microwave heating inside
an oven cavity [37]. This model assumed that the food product was placed on a glass
turntable inside an oven cavity and three material layers of food, glass turntable, and air
gap between glass and metal oven bottom. The planar waves were assumed to propagate
vertically from the top surface of the food to the oven bottom and reflected back to the
food product. The superimposed forward and reflected electromagnetic waves were used
to calculate the total microwave power absorption and the average heating rate of food
products. The established 1-D model was applied to determine the optimal thicknesses
of two compartments of a food product for better heating uniformity. The model was
validated by heating three model food systems consisting of two compartments (water-
butter, pasta-sauce, and sauce-butter systems), and the validation results demonstrated the
usefulness of the model.

2.2. Two-Dimensional Models for Simulation over Planes

Since in 1-D simulation, the power only propagates along one direction, and the 2-D
spatial heating performance cannot be expressed. In order to estimate the non-uniform
distribution of temperature in both vertical and horizontal directions, 2-D models were
developed to predict the power distribution over selected planes. Expanding on the 1-D
models, several studies used 2-D models to understand the interactions between electro-
magnetic waves and food products and evaluated the spatial temperature distributions.
Pandit and Prasad [38] developed 2-D models to predict the transient temperature of both
the cylinder- and slab-shaped potato samples by coupling Lambert’s law and conductive
heat transfer. For the slab-shaped sample, a plane slice (x-y) was used to represent the
product, and the electric field was assumed to attenuate exponentially in the x and y
directions within the food product. For the cylinder-shaped product, the radical coordinate
of radius-length (r-z) was used to represent the product, and the electric field was assumed
to attenuate exponentially in the r and z directions within the food product. The models
were validated and used to evaluate the effect of sample size on microwave heating per-
formance. The results identified high microwave power distribution at the corner of the
slab-shaped sample, which was due to the net absorption of microwave power from two
adjacent surfaces forming the corner, and a high concentration of absorbed power along
the central line of the cylinder, which was attributed to the rapid increase of power density
near the center.

Similarly, Liang et al. [39] developed a transient 2-D model to evaluate uneven mi-
crowave heating. In this study, a slice (x-y) of deionized water was fully filled in a rectangu-
lar resonant cavity, and uniform microwave power was perpendicularly applied from one
side (y) and propagated along the x-direction. Both the forward and backward traveling
waves were incorporated in the model based on Lambert’s law to calculate the microwave
power dissipation. Transient conductive heat transfer was used to simulate the temperature
distribution. Moreover, the wave reflected from the oven walls and generated standing
wave patterns, where the oven geometry was partially considered in the simulation. The
transverse electric fields of the resonant cavity were expressed with sinusoidal:

Et = A+ sin
(π

b
x−ωt

)
+ A− sin

(π

b
x + ωt

)
(11)

where A+ and A− are arbitrary amplitudes of the forward and backward traveling waves,
b is the width of the oven cavity and x is the variable for longitudinal position along the
wave propagation direction.
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The spatial heat distribution function was developed based on Equation (4), and was
defined as:

ρ(T)Cp(T) ∂T
∂t − k(T)

(
∂2T
∂x2 + ∂2T

∂y2

)
= q(x, y, t)

= qmax

[
e
− x

Dp sin
(

π
a x−ωt

)
+ e
− 2l−x

Dp sin
(

π
a x + ωt

)
sin
(

π
a y
)]2 (12)

where Dp is penetration depth, l is longitudinal distance.
The dynamic power distribution within the sample plane could be simulated by this

2-D model. The model results showed that uniform distribution of temperature in the early
stages of the heating, but the temperature difference increased with time, and hot spots
appeared inside the sample. With the capability of predicting time-dependent regional
temperature, especially the hot and cold areas, this model was also proposed to serve as
part of the optimization algorithm to improve the microwave heating performance.

Microwave oven with mode stirrers, usually in the form of mobile metabolic sheets,
was simulated with a 2-D model by Plaza-González et al. [7]. The simulated plane was
vertical to the bottom wall and included the power input through a top waveguide, two
laminated mode stirrers on the two sides of the port on top, and a layered sample placed in
the center of the bottom. The electric field was calculated as:

Emean(x, y) =

√
∑N

i E2
i (x, y)
N

(13)

where Emean is the average electric field, Ei(x, y) is the instantaneous spatial field distri-
bution within the sample for position i of the mode stirrers, and N is the total number of
different simulated stirrer positions. With the oven cavity considered in this 2-D model,
the interactions among waves, oven geometry, and the mode stirrers could be analyzed.
The dynamic distribution of the electric field due to the rotation of stirrers simulated by
this model showed good agreement with experimental results but was different from the
models that only used Lambert’s law. While when the oven was equipped with mobile
parts that lead to nonstationary waves, the model based on average electric fields has better
prediction performance.

2.3. Three-Dimensional Models for Comprehensive Simulation and Analysis

With the advancement of computational powers (e.g., high power computational
workstations and commercial simulation packages, etc.), more comprehensive 3-D models
are now widely used and endowed with the power to incorporate more physics/kinetics,
which allows more accurate simulation and prediction for scientific research. Given the
enhanced computational power, the detailed geometric information of the food materials,
packages, oven cavity, and the relative locations of these elements can be incorporated in
the 3-D models. The simulation of dynamic changes of power and temperature in 3-D
space by these models could provide more visual clues for the interactions during mi-
crowave heating, making the modeling tools easily accessible to both scientific researchers
and food manufacturers. To study the interactions among all potentially contributing
physics/kinetics, the precise selection of the physics/kinetics and proper simplification are
equally critical for the model establishment.

2.3.1. Electromagnetic Heating

Similar to the lower-dimensional models, the basic physics that are needed in the 3-D
multiphysics models are electromagnetics and heat transfer. A fundamental electromag-
netic heating model implemented by Geedipalli et al. [17] coupled electromagnetic and
heat transfer physics to simulate a 35-second heating process in a domestic microwave
oven to evaluate the effect of rotating turntable on the heating uniformity. The microwave
propagated from a four-prism-shaped waveguide which is assembled to the sidewall of
the oven cavity. The input power was determined experimentally by measuring the power
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absorption in heating a container of water. The measured power was directly applied to
the assumed rectangular port, which was the side face of the waveguide. This model used
only constant material properties due to slight temperature change within the short heating
process. In order to mimic the rotation of the turntable, the rotational circle was taken as
24 discrete locations, and each one was solved individually. The spatial temperature pro-
files were updated after each discrete step. Based on the model results, a better uniformity
was achieved by the use of the turntable, where the overall improvement was around 40%.

The two-physics model was further enhanced by incorporating temperature-dependent
dielectric properties by Liu et al. [40]. Even though with only electromagnetic and heat
transfer physics considered, the models would be capable of predicting the temperature dis-
tribution within the oven cavity and the food loads. The simulated results showed slightly
higher temperatures than the experimental ones, which might be due to the neglection of
the moisture evaporation in a short-time heating process.

Even though the models that only couple electromagnetic field and heat transfer
physics cannot predict the heating results with very high accuracy, they can still be used to
guide the further improvement of the heating process. Two of the most widely accepted
strategies applied for better heating uniformity, turntable, and mode stirrers, are vastly
simulated with 3-D models for a better understanding of the interactions between the
nonstationary electric field and the target food products [17,22,24,41,55,57]. The models
were also developed and used to explore the potential advantages of different improvement
approaches, such as using multiple microwave ports [42], optimization of the waveguide
geometry design [43], and mode stirrer made of multiple materials [23].

In addition to modeling microwave heating in commercial domestic microwave ovens,
simulation of electromagnetic heating was also performed for the solid-state microwave
systems that are not commercially available but still under development. The models aimed
to reveal the relationship between microwave parameters (frequency, power, and relative
phase) and the heating performance to better design the solid-state microwave systems.
The solid-state microwave system has the advantage of precise and flexible control over
microwave parameters, including frequency, power, and relative phases (for multiple ports
system). The electromagnetic heating modeling work by Tang et al. [44] demonstrated a
frequency-selection method to improve the microwave heating uniformity. By simulating
the heating process under different frequencies, the frequencies that generated high power
efficiency and low reflection were determined to improve the heating uniformity and the
power efficiency. Asides from frequency selection strategies, the frequency-shifting rate was
also investigated. Through the 3-D electromagnetic heating models, Du et al. [13] further
explored the key factors that affected the shifting-frequency approach. The simulation
results showed that both the frequency shifting step and rate would influence the heating
performance significantly, and therefore, careful design of the shifting strategy is critical
for improving microwave heating performance. Moreover, a novel cavity structure with a
movable oven wall that can change the phase of the input microwaves by shifting the wall
was also simulated with this type of mechanical model by Liao et al. [45]. By simulation and
experiments, a phase-shifting strategy was developed to improve the heating uniformity
by up to 58%.

2.3.2. Electromagnetic Heating and Mass Transfer

Although the electromagnetic heating models that coupled electromagnetics and heat
transfer had shown their usefulness in enhancing the understanding of interactions between
microwave and food products, the model predictions accuracy need to be improved,
especially for a longer time heating process, where the evaporation and transport of
moisture play important roles in energy balance and heat transport inside the food products.
Therefore, several comprehensive modes that incorporate electromagnetics, heat transfer,
moisture evaporation, and mass transport were developed.

Gulati et al. [46] and Zhu et al. [47] developed multiphysics-based mechanistic models
that simulated the microwave drying of spherical potato samples where the moisture loss
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in food cannot be ignored. Different from the electromagnetic heating models where foods
are considered as single-phase material (solid or liquid), the potato samples were taken as
porous media products that consisted of solid (skeleton), liquid (water), and gas (water
vapor and air) phases, which can be mathematically described as following equations:

∆V = ∆Vs + ∆Vf (14)

φ =
∆Vf

∆V
=

∆Vw + ∆Vg

∆V
(15)

where s and f are the solid and fluid phases, respectively, V is the total volume of the
material, and φ is the porosity.

In the comprehensive models, Darcy’s law was used to solve the momentum conserva-
tion of different phases, which describes the flows of different phases due to the gradients
in gas pressure within the material:

v̂i = −
kin,ikr,i

µi
∇P (16)

where i = w, g, denoting the liquid water and gas phase, respectively, kin,i and kr,i are the
intrinsic and relative permeability, respectively, µ is the dynamic viscosity, P is the gas
pressure.

The mass conservation of phases was calculated as:

∂cw

∂t
+∇n̂w = −

.
I (17)

∂cg

∂t
+∇n̂g =

.
I (18)

∂cv

∂t
+∇n̂v =

.
I (19)

where
.
I denotes the volumetric source term due to phase change and c is the concentration

of each phase, and n̂ is the unit normal of each phase. The mass flux for each phase can be
expressed as follow:

n̂w = ρwv̂w − Dw,cap∇cw (20)

n̂g = ρgv̂g (21)

n̂v = ρvv̂g −
(

C2
g

ρg

)
Mv MaDbin∇χv (22)

where Dw,cap is the capillary diffusivity, Dbin is the vapor diffusivity, Mv and Ma are
molecular weight for vapor and air, Cg is the molar density, χv denotes the mole fraction of
vapor in gas phase.

With the phase change and movement of phases along with microwave power absorp-
tion, the thermal energy balance of the heating process was calculated as:

ρe f f CP,e f f
∂T
∂t

+ ∑
i=w,v,a

(
n̂i∇

(
Cp,iT

))
= ∇

(
Ke f f∇T

)
− L

.
I + q (23)

where ρe f f , CP,e f f , and Ke f f are obtained by averaging the values of solid, liquid, and gas
phases, weighted by either mass or volume fractions. In the equation, a denotes the air
domain, and L is the latent heat.

The comprehensively developed model was able to predict the time-dependent spatial
power, temperature, evaporation, pressure, and moisture distribution within the sample,
which allowed the users to understand the microwave heating process more comprehen-
sively than the electromagnetic heating models. For example, by comparing microwave
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drying of samples at different sizes, the simulation results demonstrated the importance of
mass transfer in a small sample when heated with microwave power.

However, the previously mentioned model did not include the rotational turntable
that is already widely used in domestic microwave ovens. Chen et al. [48] built the heat
and mass transfer model with the rotational process included. Homogenous mashed
potato samples were used for simulation and validation. Since many parameters (e.g.,
evaporation constant, intrinsic permeability diffusivity, etc.) cannot be obtained from
literature or measurement, a sensitivity analysis was performed on the input parameters,
and the modeling results implied that intrinsic gas permeability and the water diffusion
coefficient had little influence on the simulation results. The conclusion could help properly
determine the most significant parameters for a reliable model. Another porous material
heating model by Pitchai et al. [49] that simulated the rotational microwave heating of a
heterogeneous sample (lasagna) was developed and validated. The heterogeneous lasagna
sample with 6 layers, composed of meat sauce, pasta, ricotta cheese, pasta, meat sauce, and
pasta from top to bottom layer, was used as a model food. Furthermore, the heating scenario
was started from frozen temperature (−10 ◦C), making the model more realistic since most
ready-to-eat microwavable meals are available as frozen products. The good agreement,
in terms of transient temperature and total moisture loss, between the simulation and
experiment results made it a useful tool for further exploration of the potential strategies
to improve the heating performance that cannot be simply done with experiments alone,
such as the package shape, layout, food geometry or ingredients for each layer.

2.3.3. Electromagnetic Heating and Structure Deformation

When foods with high porosity whose structure change significantly due to both the
high internal pressure and the moisture loss are heated in a microwave oven, the material
deformation of the sample should be coupled in the model as it alters the interaction with
microwaves, and as a consequence, modifies the heating results [58]. The internal heating at
a fast rate by microwave generates evaporation and pressure, causing volumetric shrinkage
induced by moisture loss and puffing induced by increased internal pressure. The final
structure change is determined by the main contributor from these two elements. In a
general meal heating process, considering the relatively large food volume, the moisture
loss contributed primarily to the volume change, and hence usually, the drying results in a
reduced volume [50]. A 3-D mechanistic model by Gulati et al. [50] coupled electromagnetic
physics, heat and mass transfer physics, and solid deformation physics to simulate the
microwave drying of potato samples. The solid domain of the material was treated as
hyperelastic and included in the model using the Arbitrary-Lagrangian-Eulerian (ALE)
framework, a powerful tool to handle the Fluid-Structure-Interaction problems in FEM
models [59,60]. The ALE framework considered the mesh movement of the fluid domain,
such as air, caused by structure change of the solid domain, the skeleton of the dry material.
In order to control the degrees of freedom in the model, the ALE framework was only
applied within the food domain to make the problem solvable. In the drying of a small
sample (e.g., potato cube in 10 cm × 10 cm × 10 cm), over 20% volume loss was observed,
which can barely be ignored. In order to describe the deformation of the material structure,
two driving forces were considered: (1). moisture loss; (2). gradients in gas pressure arising
due to internal evaporation. The volume change due to moisture loss, JM, is obtained by
the change of the liquid water within the material as:

∆V(1− φw) = ∆V0(1− φw,0) (24)

∆V
∆V0

= JM =
1− φw,0

1− φw
(25)

where 0 in subscript denotes the initial value for the parameter. The deformation gradient
due to moisture loss, FM, is:

FM = IMI (26)
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I is the identity tensor.
To calculate the gas pressure-induced deformation:

∇X ·
(

S′′FT
el

)
= ∇P (27)

S′′ = IelF
−1
el σ′′F−T

el (28)

where S′′ is the second Piola-Kirchhoff stress tensor, σ′′ is the Cauchy stress tensor.
The corresponding volume change Iel is:

Iel = det(Fel) (29)

And with the above, the overall deformation gradient F follows:

F = FelFM (30)

Then, the combined, time-dependent volume loss ratio can be expressed as

I = det(F) (31)

And the time-dependent porosity φ(t) follows:

φ(t) = 1− (1− φ0)
∆V0

∆V
= 1− 1− φ0

I (32)

The validation experiment results showed that with the shrinkage included, compared
to the model without deformation considered, the prediction accuracy for both temperature
profile and moisture change was improved. By sensitivity analysis by the validated model,
the elastic modulus value of the material was critical to the moisture loss and volumetric
shrinkage of the samples, implying a necessity to precisely measure the elastic modulus
value as model input if the material shrinkage contributes a lot in the process.

2.3.4. Electromagnetic Heating with Chemical and Microbiological Kinetics

Aside from the physical dimension change during microwave heating, the chemical
compositions of the food product, especially the heat-sensitive ones (e.g., antioxidants,
vitamins), also degrade with heating time and temperature, and thus the chemical kinetics
can be incorporated into the mechanistic models to understand the chemical degradation
process. Theoretically, any kinetics that can be quantitively described can be coupled to the
mechanistic models, and the accumulative effects of temperature and heating time can be
obtained. The kinetics in food processing usually follows zero-order (e.g., decomposition,
Equation (33)), first-order (e.g., degradation, Equation (34)), or second-order (e.g., change
of amino acids involved in Maillard reaction, Equation (35)) reaction models [61].

− dc
dt

= K (33)

− dc
dt

= Kc (34)

− dc
dt

= Kc2 (35)

where c is the concentration of the objective compound, K is a rate constant.
To induce temperature-dependent variables, Arrhenius’ law also can be integrated as

Equation (36):

kK = Ae−
Ea
RT (36)

where A is the pre-exponential factor, Ea is the activation energy, and R is the gas constant.
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The coupled kinetics models are then coupled with the established multiphysics-
based models to simulate thermal-activated dynamic kinetics, such as color change [51,52],
vitamin degradation [53] and polyphenol decomposition [52].

Microbiological kinetics also have been coupled to the mechanistic models to predict
thermal inactivation efficacy. To assess the volumetric microbial inactivation effect, a 3-D
model developed by Roohi and Hashemi [54] evaluated the average volumetric tempera-
ture of carrot slices by microwave heating simulation at different power levels (200, 400,
and 600 W) and determined the corresponding inactivation effects on different types of
microorganisms. The assessments, based on temperature profiles and processing time,
were conducted in three phases: heating process, holding temperature, and microwave
power-off phase. The simulation results showed that, at 600 W, most inactivation occurred
in the first two phases; and at 200 W, the temperature was not high enough to product
inactivation after the last phase. And for 400 W heating, the highest inactivation occurred
during the last phase. Besides, compared to the conventional pasteurization method using
steam, the energy consumption by microwave was reduced by 52.3%.

Because of the thermal runaway phenomena in frozen foods, the temperature of the
cold spots of the foods can be too low to kill the microbes, and these undercooked areas
tend to leave the microbes to flourish [62,63]. Hence, it is also necessary to evaluate the
pasteurization/sterilization effects over different regions within the food. The model by
Pitchai et al. [55] evaluated the processing time needed to achieve desired 7 log reduction
of Salmonella at centers of chicken nuggets placed at different locations in the oven cavity.
The results implied that a typical 90 s heating of the frozen chicken nuggets from −5 ◦C
was not enough to completely achieve the sterilization results at all locations; and among
all chicken nuggets, the one placed in the center only reached 35 ◦C and could never
reduce the microorganisms by 7-log. The simulated spatial change of microbiological
compounds inside the sample through 3-D mechanistic models can better describe the
dynamic alteration and regional difference of the objective compounds and can be applied
to optimize the layout of the food system for better inactivation.

2.4. Model Implementation Considerations

Within these mechanistic models for modeling the physical, chemical, and biological
processes during microwave heating, geometric dimensions and physics/kinetics are
the two major factors that influence their development and applications, as shown in
Figure 1. The simple model with 1-D geometry and basic physics of electromagnetics
can help the users briefly understand the microwave heating process; and these models
only need little computational resources (computation time and computation system) for
simulation and are easy to be implemented. In contrast, the comprehensive models that
incorporate both detailed 3-D geometries of oven and food and comprehensive physics and
kinetics are more powerful for the users to fully understand the complicated interactions
among microwaves, foods, and packages. Meanwhile, these models also need more
model inputs (model parameters, material properties, etc.) and more computational
resources to generate meaningful results. When oven and food developers develop and
implement the mechanistic models in their product design, it is better to balance the
inputs (computational resources, expertise in model development, model parameters
and properties) and outputs (model accuracy, efficiency, and usefulness) and select the
proper combination of dimensions and physics/kinetics. The strategy for physics/kinetics
coupling also influences the model accuracy and efficiency, which needs to be considered
during the model development.



Foods 2021, 10, 2029 15 of 27

Figure 1. Development of mechanistic models with combinations of dimension and physics/kinetics.

2.4.1. Dimensions

The simple 1-D models were instructive in understanding the microwave heating
process. The relatively simple implementation allows fast computation, which is more
intuitively meaningful when only a rough result is needed, such as total heat absorption
or overall power absorption efficiency that can be obtained based on the whole domain.
While compared to the comprehensive models that incorporate detailed 3-D geometries,
the low dimensional models have apparent drawbacks. The 1-D model can hardly be
validated through experiments, which causes doubt on the robustness of such models; and
quite many assumptions are made in the calculations, such as homogeneous parameters
without region-wise analysis. Therefore, the 1-D models can barely be used to understand
the spatial uniformity problems.

Furthermore, the 2-D models are more meaningful than the 1-D models since the 2-D
geometries can convey spatial information over a layer and have been used to analyze the
temperature or power distribution. However, similar to 1-D models, the simulation results
from 2-D models cannot reflect the microwave heating phenomenon in real life since the
electric field and microwave power are distributed non-uniformly both vertically and hori-
zontally. With the benefits and limitations, the 2-D models are suitable for simulating some
simplified problems where the thickness of the sample is thin enough [7] and scenarios
that symmetric conditions can be applied (e.g., cylindrical sample) [16,38,64,65].

Along with the development and application of more powerful computational re-
sources, 3-D models are able to simulate and visualize 3-D spatial results, which reflects
the real microwave heating process. Compared to the 1-D and 2-D models, the detailed 3-D
geometries of the oven cavity and food product are usually incorporated in the model and
have been proved critical for accurate prediction of the results. However, these geometry
details require fine meshing elements and cause significantly expensive computational
resources. The capability of predicting 3-D spatial results also challenges the validity of the
model results. In the 3-D model validation, the accurate prediction of spatial values is ex-
pected to be achieved. For example, the transient point temperatures were often measured
by fiber optic sensors to validate the temperature change during the whole heating process.
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However, accurate prediction is difficult because it is not only important to incorporate
accurate geometry details in the models but also critical to use proper governing equations
(physics and kinetics) to accurately describe the microwave heating processes.

2.4.2. Physics/Kinetics

The other key factor that needs to be considered in model development is the physics/
kinetics to be incorporated. On the one hand, more physics/kinetics could enable food de-
velopers to understand the microwave heating process more thoroughly. On the other hand,
more physics/kinetics also need more model inputs of material properties, parameters,
and computational resources (time and system). The selection of physics/kinetics should
be decided based on the specific applications and balance between inputs and outputs. For
example, in a short microwave heating process where the physical process does not change
much (e.g., no apparent evaporation), the simple electromagnetic heating models might be
sufficient to understand the microwave-food interactions [17,55,66]. These models could
provide useful information on how the microwave power is spatially distributed at hot
and cold spots and how heat transfers within the food product. However, in a long heating
process where moisture evaporation is significant, the neglection of moisture evaporation
and mass transfer could lead to increased simulation errors [40]. Moreover, comprehensive
physics may be necessary for other applications where a significant non-linear process oc-
curs. For example, in microwave-assisted drying, puffing, and frying, the moisture content
and structure of the product domain change significantly with time, the electromagnetic
heating with mass transfer and structure deformation models are essential to understand
these processes.

2.4.3. Coupling Strategy

Microwave heating is a non-linear process that involves the rotation of food products,
properties change with temperature, and the coupling of multiple physics/kinetics (elec-
tromagnetic field and other physics/kinetics). The incorporation of these non-linearities
into the model influences the model efficiency and accuracy significantly. In a rotational
microwave heating model, the rotation of food products was often considered as discrete
rotational steps due to the limitation of simulation capability in dealing with Maxwell’s
Equations. The material properties are changing continuously with time and temperature
that need to be updated simultaneously with the rotations. The electromagnetic field
simulation is also separated from other physics/kinetics simulations. There are three types
of coupling strategies used for modeling the microwave heating of foods with location
rotation, properties update, and physics/kinetic coupling, as shown in Figure 2, namely
rotational step coupling, rotational cycle coupling, and decoupling.

The rotational step coupling strategy (Figure 2a) was the commonly used approach
that simulated the electromagnetic field, updated the temperature-dependent dielectric
properties, and simulated other physics/kinetics at each rotational step during the whole
microwave heating process [53]. The frequent properties-update requires to switch the
solvers between electromagnetic field simulation the other physics/kinetics simulation
back and force, which increases the computation time.

Several studies proposed strategies to evaluate and improve the computational ef-
ficiency of the microwave heating models. Considering the fact that the dielectric prop-
erties may not change much during a short heating time (e.g., one rotational cycle),
Chen et al. [67] evaluated the approach of updating dielectric properties for one rotational
cycle (Figure 2b) instead of traditionally used updating for one rotational step. In this rota-
tional cycle coupling, the electromagnetic fields at multiple locations during one rotational
cycle were simulated using the same dielectric properties first; then, the averaged electro-
magnetic field of the multiple locations was calculated and used for the simulation of other
physics/kinetics (e.g., heat transfer, mass transfer, etc.) for one rotational cycle; after that,
the dielectric properties were updated for next rotational cycle simulation. The simulation
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results found that the rotation cycle coupling strategy could reduce the computational time
by 83% without considerably influence the model accuracy.

Figure 2. Physics coupling strategies for multiphysics mechanistic models. (a) rotational step coupling; (b) rotational cycle
coupling; (c) and decoupling strategies.

Chen et al. [68] further demonstrated a decoupled multiphysics modeling strategy to
reduce the computation time, as shown in Figure 2c. Instead of updating the dielectric prop-
erties either at each step or each cycle during the microwave heating process, the decoupled
strategy demonstrated that the electric field could be simulated using room-temperature di-
electric properties throughout the whole modeling process without influencing the model
accuracy much. The comparison between the coupled (rotational cycle coupling) and
decoupled models implied that the decoupling methods would reduce the computation
time by about 90% while sacrificing very little of the simulation accuracy. However, the de-
coupling strategy is only suitable for the high moisture and low salt content food products,
where the dielectric properties do not change significantly [69].

In general, each type of model with various geometric dimensions and physics/kinetics
has its advantages/disadvantages for specific research purposes. The key is to properly
select dimensions, physics/kinetics, and coupling strategies to solve specific problems.

2.5. Model Validation Strategy

In order to assess the performance of the model prototypes before using them for
further research/product development, validation experiments need to be performed to
confirm the model accuracy. Usually, a well-developed model needs to be validated through
more than one validation method since each method suffers from unique systematic errors.

The top surface temperature comparison is one of the most commonly used ap-
proaches, where electromagnetic heating, moisture evaporation, and conductive and con-
vective heat transfer can all influence the heat pattern. In short-time microwave heating
scenarios, where the temperature of the hot spot is much lower than the boiling point of
water, the basic model with electromagnetics and heat transfer physics can have a good
validation result if properly established [17]. While in longer heating scenarios, where
the moisture movement takes place, the simulated top surface temperature tends to be
higher than the experimentally measured ones [13,40,53,67,68]. The potential systematic
error of this approach of comparing top surface temperature that results in the temperature
difference between simulation and experiment comes from the operational delay, which
denotes the time-lapse between the end of the heating and thermal image capture [70].

Internal temperature profiles of the sample can also be captured by a thermal camera
after heating for validation. Due to the unique heating principle of microwaves, the inner
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heat distribution differs from the surface and can be used for model validation [9,38,70,71].
The general problem with the inside layer thermal image validation is that due to the time-
lapse, the non-uniformity of the pattern distribution declines. But whether the locations of
the hot and cold spots are properly predicted is one of the critical evaluation criteria for the
model performance.

In order to complement the validation with only the final temperature, transient point
temperatures recorded with several optical fibers through the whole heating process are
used to compare the temperature at critical locations, such as the corners and center of the
sample, which are more likely to suffer from overheating and underheating in microwave
heating. This validation strategy collects more information and suffers less from the time
delay issue. However, the potential problem of this method is the unexpected movement
of the fibers during heating [40,67,70]. Due to the mass transfer within the sample and the
shape change at the corners or near the edges of the sample, the fibers can hardly be fixed
during heating, which can lead to failure in transient temperature validation. While since
the movement is usually slight, the temperatures measured at different locations can still
be used to validate the relative locations of hot and cold spots for illustrative purposes.

In addition to thermal profiles, in models that simulate the heating process of foods
with high moisture or in small volume size, where the mass transfer can make a great
difference to the final results, the moisture change due to the microwave power should also
be validated. The total moisture loss [3,46,49,50,67,72,73] and/or transient point moisture
content [74] have been measured for validation. Besides, the pressure generated due to
moisture evaporation was also measured for validation [46]. In microbial kinetic coupled
models, the validation can also be conducted by cell culture to assess the prediction of the
sterilization effects [55,75–77].

2.6. Other Mechanistic Models Applied in the Non-Domestic Oven and/or Non-Food Research

Aside from the application in domestic ovens, the microwave is used in customized
lab-scale or industrial-scale microwave systems for pasteurizing foodborne pathogens.
Mechanistic models have been developed to simulate and understand the microbial in-
activation processes. Several 3-D mechanistic models coupled with inactivation kinetics
were developed by Hamoud-Agha et al. [75,76] to assess the microwave inactivation on
E. coli in calcium alginate gel using a customized lab-scale microwave system. The models
investigated the influence of different holding times during the heating process and found
that the holding pause (regular on-off the power) did not help improve the temperature
uniformity within the sample and hence could not assist in improving the microbial in-
activation performance. Another mechanistic model based on a customized lab-scale
microwave system by Albuquerque et al. [77] simulated the microwave pasteurization of
in-package ground beef products and showed that with a lower microwave heating rate,
the inactivation performance was better. There was a negative correlation between heating
rate and pasteurization result, which could be attributed to better temperature uniformity
generated by the slower heating process.

As a high-efficiency thermal treatment technique, microwave heating is also widely
used in many other fields, such as material processing and chemical treatment. Similar
mechanistic models were developed to simulate the microwave heating of these non-food
products. Several mechanistic 1-D models by Monzó-Cabrera et al. [78,79] that coupled
electromagnetic, heat and mass transfer physics simulated the microwave drying of leather
material where the moisture loss was critical in the process and could not be ignored. Simi-
lar models of the microwave drying process, while on laminar materials, were proposed by
Monzó-Cabrera et al. [80–82] to estimate the moisture content and heating efficiency of the
drying process. A 2-D model by Funawatashi and Suzuki [83] simulated the microwave
heating of ceramic material in an oven cavity, with electromagnetic and heat transfer
physics included, and revealed the heat distribution over a horizontal plane. Another 2-D
model by Ciacci et al. [84] was implemented with electromagnetic, and heat and mass
transfer physics to simulate the microwave drying of woodblocks. Holmes et al. [85] im-
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plemented a 3-D mechanistic model to study the thermal change by microwave during a
chemical reaction.

Sharing similar principles, the microwave heating models applied in either food-
related research or non-food fields are employed to reflect the complicated microwave-
material interactions. As an important means of heating, on both lab and industrial scales,
microwave heating keeps gaining popularity. The mechanistic models based on physical,
chemical, and biological processes are playing critical roles in assisting the development
and application of microwave techniques.

3. Machine Learning Models

In addition to the mechanistic models that were developed based on well-established
physics and kinetics, machine learning is an emerging technique in modeling the mi-
crowave heating process. There are two approaches that machine learning can be used:
one is to couple machine learning with the mechanistic model as a hybrid model; the other
approach is to develop a data-based pure machine learning model.

3.1. Hybrid Model That Couples Machine Learning with Mechanistic Models

The machine learning technique has been used as a powerful tool for big data analy-
sis [86]. Since the multiphysics-based mechanistic models have the ability to extensively
simulate various conditions, a well-implemented and validated model could generate a
large amount of data, making the data analysis also vital to the modeling process. There
is an increasing trend to use the hybrid modeling strategy that integrated machine learn-
ing models with the multiphysics models to better analyze and understand the results
generated from simulation scenarios, as well as to optimize the microwave heating pro-
cess. With the multiphysics-based simulation model serving as a data generator and the
machine learning model functioning as an analyzer, the simulation model provides more
informative data to the learning model than the manual experiment does, and in turn, the
learning model enhances the utilization of the large dataset than the manual analysis does.

There are two types of hybrid models depending on how the machine learning and
mechanistic models are coupled, namely off-line and on-line, as shown in Figure 3. The
key difference between these two types of models is the training dataset. In the off-line
model, the training dataset only inputs one group of mechanistic model results without
updating, while the on-line model updates the training dataset by inputting more data
during the learning process and formed a loop with the mechanistic model [87]. The
on-line hybrid model loop starts with providing limited simulated results (x~f(x)) from
the mechanistic model to the machine learning model. The machine learning model uses
these initial data as a training dataset, analyzes the data, and also guides the mechanistic
model for further simulation. After that, the newly simulated results can be used to
expand the training dataset for further training, analysis, and guidance. The loop between
mechanistic modeling and machine learning will end when the optimization process
converges after meeting the predefined stopping criteria (e.g., upper limits for the number
of the optimization steps, lower limits for result improvement).

3.1.1. Off-Line Coupled Hybrid Model

An off-line hybrid model, namely gradient descent, was developed and applied to
optimize the rotation step of a cutoff part over the waveguide of the microwave oven
by He et al. [88]. The spatial temperature profiles at different discrete rotational angles
were simulated by the multiphysics model and fitted to a linear regression model. The
gradient descent algorithm was used to optimize the time step for each angle to achieve the
best heating uniformity. The optimized rotation strategy developed based on integrated
multiphysics modeling and machine learning approach was validated by experiments on
samples in different materials, shapes, sizes, and locations inside the oven. A better heating
uniformity was obtained with the optimized heating algorithm, and the experiment results
confirmed the feasibility of this gradient dissent optimization strategy.
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Figure 3. The on-line and off-line strategies that integrate machine learning with mechanistic models.

A more complicated hybrid model that integrated multiphysics-based mechanistic
models and single-layer artificial neural network (ANN) by Yan et al. [89] explored the
influence on the power reflection (S-parameter) by modifying the geometry design of
the microwave passive components. In this hybrid model, all the collected data from
model simulation were divided into training, validation, and test datasets. The trained
ANN model showed high accuracy in electromagnetic behavior prediction with respect
to the geometry parameter inputs. The CPU time for predicting a test sample by using
a trained machine learning model, compared to the multiphysics model, was reduced
by 98%. Given the characteristic of automatic hyperparameter selection and updating,
the hybrid model could be used without users’ understanding of the model structure or
predefined parameters [90].

Another off-line hybrid model was developed based on the coupling of multiphysics
models and convolution neural network (CNN). Lähivaara et al. [91] implemented the
hybrid model to predict the moisture distribution in samples treated with microwave
heating. By simulating the microwave heating process through multiphysics modeling,
the S-parameters were recorded as inputs for the CNN model. The trained model showed
good performance in prediction, with a fast calculation speed due to its pattern recognition
ability. And in this research, the CNN model also demonstrated its advantage in handling
high-dimensional parameters, where both input and output values can be multi-element
vectors, making it feasible to directly predict spatial results.

3.1.2. On-Line Coupled Hybrid Model

The on-line hybrid model is the other approach that uses a two-way coupling strat-
egy to integrate the mechanistic model and machine learning model in a loop to achieve
optimization of the microwave heating process. Yang et al. [69] developed and used an
on-line hybrid model to optimize the thickness of frozen microwavable food by assum-
ing the non-linear relationship between the food geometry and the heating results. The
hybrid model that coupled mechanistic simulation and non-parametric Gaussian Process
regression with the hyperparameters optimized by the Bayesian optimization algorithm
was developed. Comparing to the traditional trial-and-error simulation strategies, the
proposed hybrid model could reduce the number of simulation models by around 60%
with the on-line learning strategy. The optimized thickness could have even better heating
results compared to the one obtained from trial-and-error methods.
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3.2. Pure Machine Learning Models

Besides the hybrid models, there is also a tendency to use machine learning models
alone to analyze the relationship between experimental parameters and the microwave
heating results, which does not require any mechanistic models but only experimental data.
As long as a specific objective is known, it is possible to develop such numerical models
for prediction or classification purposes. The most used model is the deep learning model,
where the relationship is taken as a black box, and no specific parametric models need
to be nailed down. Dash and Das [92] implemented an ANN-based model to predict the
microwave puffing performance. Four parameters (microwave power, processing time,
and concentrations of two key ingredients) were used as inputs, and the expansion ratio
and the percentage of puffed samples were used as outputs. The finalized bias and weight
parameters from the well-trained ANN model were extracted and used as input to a genetic
algorithm (GA) for predicting puffing parameters and optimizing the combination of the
four input parameters. The integrated ANN-GA model had very high prediction accuracy
and was able to provide very detailed precondition parameters for the sample preparation.

Another deep learning model by Wang et al. [93] applied a high-dimensional input
dataset collected by measurement to training a CNN model for feature extraction and then
an unsupervised learning method, named isolation forest algorithm (IFA), to detect the
presence of local overheating from the features. In this study, the input dataset for each
sample point included some initial conditional parameters, such as initial temperature and
input power level, and some dynamic parameters obtained by real-time measurements,
such as transient temperature and reflected power. The output that indicated the location
of the overheated spots from the deep learning model with CNN was more accurate than
that from the model without CNN. The prediction accuracy expressed as AUC in this
study could be improved from 0.53~0.76 to 0.78~0.84 by integrating CNN. Thus, the deep
learning model could be applied to better discover the overheating and assist in developing
an immediate problem-solving strategy.

Both the hybrid model and the pure machine learning model can largely save the
model simulation time compared to the approach with only mechanistic models. However,
since the machine learning models are trained with only selected parameters, they are
not compatible with extra parameters, which makes the established model less flexible
to other add-on parameters, if any. The models must be re-trained if new parameters are
considered, which makes this strategy less applicable than the mechanistic simulations.

3.3. Other Machine Learning Models Applied in Microwave Heating of Non-Foods Research

The integrated mechanistic and machine learning modeling strategy is also applied
to microwave treatment of non-food materials. The integrated model that simulated the
heating process of clay samples by Domínguez-Tortajada et al. [94] used GA to optimize
the multi-layered dielectric material structure over the clay sample for optimal heating
uniformity. Another model with marble block as sample by Domínguez-Tortajada et al. [95],
which was also optimized by GA, proposed the design of an oven cavity with four waveg-
uides with optimal locations. The distribution of the electric field within the proposed oven
was significantly more uniform compared to the traditional one with only one waveguide.
Another integrated model by Guan et al. [96] utilized deep neural networks (DNNs) to
discover the non-linear relationship between the mechanistic model inputs (geometrical
parameters) and outputs (S parameters). The machine learning technique is also power-
ful in terms of design optimization. Mahouti [97] implemented a multi-layer perceptron
(MLP) model that was coupled with an electromagnetic mechanistic model to optimize the
antenna design for achieving optimal S parameters. The proposed method could largely
improve the simulation efficiency.
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4. Summary and Future Prospects

In order to address the non-uniform heating issue in the domestic microwave heating
process, extensive mechanistic, machine learning, and hybrid modeling works have been
done. In this paper, different types of models, including models with different dimen-
sions and physics/kinetics, that simulated the microwave heating process were reviewed.
Various strategies aiming to improve the heating performance were proposed and demon-
strated. Although the models showed great usefulness in understanding the complicated
interactions among microwaves, foods, and packages, few of these approaches are really
applied to the development of domestic microwave ovens or the design of microwavable
food products on an industrial scale. The limitation on the industrial implementation was
mainly attributed to the model accuracy, efficiency, and ease of use.

Further work is needed to address the limitation and bridge the gap between scientific
research and practical application, which asks for more precise, efficient, and easy-to-use
models. First, there is still room to improve the simulation accuracy of the mechanistic
models. Even though the predicted results can illustrate the dynamic patterns and visualize
the interactions during microwave heating, the model results still cannot be used for precise
prediction. The accurate model inputs (e.g., geometry, material properties), physics/kinetics
setup, and coupling strategies are needed for models with better performance.

Furthermore, given the data production advantage of mechanistic models, it is now
possible to explore different potentially effective but currently unachievable approaches to
improving the microwave performance, such as the new design of the heating strategies or
oven and food designs, in a more efficient way. Also, the spatial output data, the quantified
results can be more robust for performance assessment. By now, based on simulation results,
various strategies have been proposed, some of which have been experimentally validated.
Additionally, with the developed models, the hybrid models that couple mechanistic
simulation and machine learning analysis are gaining popularity, where the established
mechanistic models serve to generate numerical data, and the machine learning model
can efficiently analyze the model outputs. Depending on the size of the output dataset,
the integration strategy can be either off-line or on-line, and the type of the machine
learning model is to be decided based on the complexity of the dataset. The promising
integration modeling strategy has shown its advantage while still grossly underused,
calling for more work in the future to further reveal the power of machine learning for
microwave-related research.

Another approach to promote the industrial implementation of the models is to de-
velop them as easy-to-use applications. Since the model development needs significant
expertise, the complexity in model development is a bottleneck for the food and oven
developers to use in their product designs. The ready-to-use applications based on mech-
anistic modeling and machine learning models can unlock their potentials and enable
industrial implementations.
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Nomenclature

a Air phase
A Arbitrary amplitude of microwaves
b Width of the oven cavity
B Magnetic induction
c Concentration
Cg Molar density
Cp Thermal capacity
CP,e f f Effective thermal capacity
d Maximum distance measured from the sample surface
D Electric displacement
Dbin Vapor diffusivity
Dp Penetration depth
Dw,cap Capillary diffusivity
e Euler’s constant
E Electric fields
Ea Activation energy
Eel Green–Lagrange strain tensor
f Fluid phase
F Deformation gradient
Fel Elastic deformation gradient tensor
FM Deformation gradient due to moisture effects
H Magnetic field
I Identity tensor
J Current flux
k Thermal conductivity
kin,i Intrinsic permeability
kr,i Relative permeability
Ke f f Effective thermal conductivity
l Longitudinal distance
L Latent heat
M Molecular weight
n̂ Unit normal
P Gas pressure
q Dissipated power
q0 Surface power
R Gas constant
s Solid phase
S′′ Second Piola-Kirchhoff stress tensor
T Temperature
v Vapor phase
V Sample volume
Script Symbols
A Pre-exponential factor
J Total volume change
Jel Ratio of total volum change and volum change due to moisture effects
JM Volume change due to moisture loss
K Rate constant
Greek Letters
α Attenuation factor
λ Wavelength of microwave
ε′ Dielectric constant
ε′′ Dielectric loss factor
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ε0 Permittivity of free space
δ Loss tangent
ρ Density
ρe Charge density
ρe f f Effective density
ω Angular frequency
µ Dynamic viscosity
σ′′ Cauchy stress tensor
χ Mole fraction in gas phase
φ Sample porosity
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