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Abstract: Chia oil is a valuable source of omega-3-fatty acids and other nutritional components.
However, it is expensive to produce and can therefore be easily adulterated with cheaper oils to
improve the profit margins. Spectroscopic methods are becoming more and more common in food
fraud detection. The aim of this study was to answer following questions: Is it possible to detect
chia oil adulteration by spectroscopic analysis of the oils? Is it possible to identify the adulteration
oil? Is it possible to determine the amount of adulteration? Two chia oils from local markets were
adulterated with three common food oils, including sunflower, rapeseed and corn oil. Subsequently,
six chia oils obtained from different sites in Kenya were adulterated with sunflower oil to check the
results. Raman, NIR and fluorescence spectroscopy were applied for the analysis. It was possible to
detect the amount of adulterated oils by spectroscopic analysis, with a minimum R2 of 0.95 for the
used partial least square regression with a maximum RMSEPrange of 10%. The adulterations of chia
oils by rapeseed, sunflower and corn oil were identified by classification with a median true positive
rate of 90%. The training accuracies, sensitivity and specificity of the classifications were over 90%.
Chia oil B was easier to detect. The adulterated samples were identified with a precision of 97%. All
of the classification methods show good results, however SVM were the best. The identification of
the adulteration oil was possible; less than 5% of the adulteration oils were difficult to detect. In
summary, spectroscopic analysis of chia oils might be a useful tool to identify adulterations.

Keywords: chia oil; adulteration; spectroscopy; NIR; Raman; fluorescence

1. Introduction

Chia, Salvia hispanica L., a member of the Labiatae family, is cultivated in environments
ranging from tropical to subtropical conditions and used as a food ingredient. Native from
southern Mexico and northern Guatemala, chia has been cultivated on a commercial basis
in Australia, Colombia, Argentina, Peru, Ecuador, Bolivia and Paraguay [1]. Research
has proved that chia seeds are a good source of oil, protein, dietary fiber, minerals and
polyphenolic compounds [2]. Quantitatively, chia seeds contain 91–93 g/100 g dry matter,
26–41 g/100 g carbohydrates, 32–39 g/100 g oil, 22–24 g/100 g protein, 18–30 g/100 g
dietary fiber, and 4–6 g/100 g ash, vitamins, antioxidants, minerals contents [3].

Chia oil is known to lower the risks of cardiovascular disease, inflammation, hep-
atoprotective effect and also to prevent the likelihood of obesity-related disorders [4].
According to research carried out by Gazem et al. [5], investigating in vitro the cancer
cytotoxic properties of chia seeds oil and its blends, chia seed oil was found to significantly
inhibit anti-lipoxygenase activity, and demonstrated potent and differential anticancer
activity. The team concluded that supplementation of a modern diet with chia seeds oil
may delay or prevent the incidence of degenerative disorders. Additionally, according
to research carried out by Albert et al. [6], it was observed that supplementation of a
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diet with long-chain omega-3 polyunsaturated fatty acids can prevent cardiovascular and
inflammatory diseases. Current research has not shown any adverse effects of chia seed
consumption, but toxicological data on controlled human trials on the safety and efficacy
of chia seed oils are still limited. With the emerging concepts around the combination of
chemotherapy and nutritional therapy, there is need to increase data on fatty acid compo-
sition in various foods that can be applied in chemotherapeutic subjects. Chia seed oil is
becoming an appealing and preferred choice for healthy food and cosmetic applications
due to its lower content of saturated fatty acids (palmitic and stearic acids) and adequate
concentration of linolenic fatty acids (55–60%) and linoleic acids (18–20%) [3]. Both chia
seeds and chia seed oil have been safely applied in animal feeds to decrease the cholesterol
levels and increase the polyunsaturated fatty acids and in egg and meat products [7]

Extraction of chia oils apply different methods with diverse oil yields including cold-
pressing followed by centrifugation to remove physical matter, hot-pressing, solvent extrac-
tion and supercritical fluid. Chia oil yield and quality in terms of fatty acids composition
are affected by several factors including agroecological zones of growth, seed variety, seed
storage conditions, pre-treatment method, size reduction practices and the aforementioned
extraction procedures [8]. Due to the high value of chia oil, some unscrupulous sellers may
adulterate with cheaper oils in order to increase profit. This adulteration will also make the
long-chain polyunsaturated fatty acids highly susceptible to lipid hydrolysis and oxidation,
thus loosing shelf-life, consumer acceptability, nutritional value, functionality and safety.

Vegetable oils are valuable component of human nutrition. Adulteration of valuable
expensive oils with cheaper oils is very common practice. Applying spectroscopic meth-
ods provides an opportunity quickly detect these adulterations. There are several works
available on olive oil adulteration detection by fluorescence spectroscopy [9–11]. Sikorska
et al. [12] were able to distinguish between different edible oils using fluorescence spec-
troscopy. Near Infrared spectroscopy (NIR) is also well established for food analysis [13].
With data obtained from NIR, UV-Vis and GC, the ComDim chemometrics method was
able to distinguish 32 vegetable oil samples by their characteristics and compositions [14].
Rodríguez et al. [15] showed that it is possible to detect adulteration of sesame and chia
oils by Fourier transform infrared spectroscopy with prediction errors between 1% and
5%. Studies on oil adulteration detection with spectroscopic methods have been published
by several authors. For example, La Mata et al. [16] used ATR-FTIR spectroscopy and
were able to differentiate between blends with olive oil content higher than 50% (w/w) and
those below 50% (w/w). More examples for the application of FTIR on olive oil adulteration
can be found in literature [17–20]. (FT- or M-) IR spectroscopy was also successfully used
for sesame oil adulteration [21–25]. Extra virgin olive oil adulteration with hazelnut oil
was evaluated using mid-infrared and Raman spectroscopic data [26]. The application
of Raman spectroscopy on olive oil adulteration [27] or the combination of Raman and
NIR spectroscopy [28] is another way of combining the spectroscopic methods. Adulter-
ation detection by FT-Raman and NIR spectroscopy, combined with data fusion and Soft
Independent Modelling of Class Analogy, was performed on a case study to determine
the adulteration of hazelnut paste with almonds or chickpeas [29]. Other examples of
combinations of NIR and fluorescence were given by Hu et al. [30], who worked on the
fraud detection of Chinese tea oil or by Li et al. [31], who applied these spectroscopic
methods to detect adulteration and authenticity of walnut oil.

This study focuses on the adulteration of chia oils with cheaper oils that are available
in European and African markets. The more expensive chia oils are currently paid a great
deal of attention in African countries, and therefore it is necessary to prevent the valuable
oil from adulteration. Adulteration detection is mostly dependent on discriminant analysis,
where the spectrum of the test sample is compared to a reference library. The establishment
of the reference library usually takes a long time due to the amount of data that has to
be covered, e.g., known adulterated samples. Important questions must be answered
throughout the process, such as whether a test sample belongs to the native samples or the
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adulterated samples and whether the adulteration can actually be identified. The last but
most difficult question is to which amount the test sample has been adulterated.

2. Materials and Methods
2.1. Sample Preparation

Two different samples of chia oil were purchased, A: Bio Chia Öl (Ölmühle Fandler
GmbH, Pöllau, Austria with best before dates of 21 January 2020 and 28 February 2020,
origin: Mexico) and B: Chiaöl (Ölmühle Solling GmbH, Boffzen, Germany with best
before dates of 7 September 2019 and 26 December 2019, origin: Mexico). For adulteration,
common food preparation oils were purchased at the local markets: rapeseed oil (R): Reines
Rapsöl, raffiniert (Bökelmann + Co. Ölmühle GmbH & Co. KG, Hamm, Germany, with
best before date 24 April 2020), sunflower oil (S): Reines Sonnenblumenöl, raffiniert (Walter
Rau Lebensmittelwerke GmbH, Hilter, Germany, with best before date 17 May 2020), and
corn oil (C): Mazola, reines Maiskeimöl (Peter Kölln GmbH & Co. KG, Elmsholm, Germany,
with best before date 27 May 2020). The nutritional values of the oil samples are presented
in Table 1.

Table 1. T Nutritional values of the oil samples, for A and B (chia oils) per 100 g, for R, S and C per 100 mL.

Sample
Name Energy [kJ] Energy

[kcal] Fat [g]
Saturated

Fatty Acids
[g]

Single Unsat.
Fatty Acids

[g]

Multiple
Unsat. Fatty

Acids [g]

Vitamin E
[mg]

A (chia oil) 3700 900 100 10.1 7.8 82.1 -
B (chia oil) 3700 900 100 10.6 7.2 82.2 -

R (rapeseed) 3404 828 92 6.5 60 25.5 46
S (sunflower) 3404 828 92 10 28 54 30

C (corn) 3404 828 92 13 28 51 37

In Table 2, the sample preparation and its labelling for the Mexican chia oils is pre-
sented. Every sample was prepared three times, and 114 samples were collected. The
sample volume remained constant at 3.5 mL.

Table 2. Sample preparation and labelling for the spectroscopic analysis. A and B are the two Mexican
chia oils, S is sunflower oil, R is rapeseed oil and C is corn oil. All values are mass percentages.

Samples
Materials

A B S R C

native oils

A100 100%
B100 100%
S100 100%
R100 100%
C100 100%

samples with A

AS90 90% 10%
AS95 95% 5%
AS98 98% 2%
AS99 99% 1%
AR90 90% 10%
AR95 95% 5%
AR98 98% 2%
AR99 99% 1%
AC90 90% 10%
AC95 95% 5%
AC98 98% 2%
AC99 99% 1%
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Table 2. Cont.

Samples
Materials

A B S R C

samples with B

BS90 90% 10%
BS95 95% 5%
BS98 98% 2%
BS99 99% 1%
BR90 90% 10%
BR95 95% 5%
BR98 98% 2%
BR99 99% 1%
BC90 90% 10%
BC95 95% 5%
BC98 98% 2%
BC99 99% 1%

additional
combinations

RS50 50% 50%
RC50 50% 50%
SC50 50% 50%
AS50 50% 50%
AR50 50% 50%
AC50 50% 50%
BS50 50% 50%
BR50 50% 50%
BC50 50% 50%

For Kenyan chia oil samples, named oil U, V, W, X, Y, Z (from chia seeds obtained
from different growth sites in Kenya) a smaller sample volume (2 mL) was chosen because
of the small number of samples available. Its samples were prepared, according to Table 3,
two times with exceptions (indicated with *), which were prepared once. Therefore, 28
different samples were obtained from Kenyan chia oil. All samples were directly prepared
in a quartz glass cuvette and mixed by gently shaking. Then the cuvettes were placed in
the respective spectrometer.

Table 3. Sample preparation for the additional Kenyan chia oil samples (U–Z) that were adulterated with sunflower oil (S).
Samples indicated with * were prepared only once, the others were prepared two times.

Samples Materials

U V W X Y Z S

U100 * 100%
V100 100%
W100 100%
X100 * 100%
Y100 100%
Z100 100%

US90 * 90% 10%
US50 * 50% 50%
VS90 90% 10%
VS50 50% 50%

WS50 * 50% 50%
XS90 * 90% 10%
XS50 50% 50%
YS90 90% 10%
YS50 50% 50%
ZS90 90% 10%
ZS50 50% 50%

* All together 142 samples are used for spectroscopic measurement.
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2.2. Spectroscopic Measurements

Three spectrometers were used to obtain near infrared (NIR), Raman and fluorescence
spectra of the oil samples. NIR spectroscopy measurements were performed in the Multi-
Purpose NIR Analyzer (Bruker Optik GmbH, Ettlingen, Germany), varying wavelengths
from 800 nm to 2800 nm, in absorbance, with a resolution of 15 nm and 8 scans per
measurement.

Raman spectroscopy was performed with a FT-Raman785 spectrometer (Inno-spec
GmbH, Model 11-0130005-119, Nürnberg, Germany), equipped with a 784.98 nm Laser
applying a measurement range from 350 cm−1 to 3200 cm−1. The integration time was 1 s
and 3 scans were performed for each measurement. The background was measured with
an empty cuvette.

3D-fluorescence spectra were obtained with FluoroMax4 Spectrofluorometer (HORIBA
JOBIN YVON Technology, Edison, NY, USA). Spectra were analysed in a range between
300 nm and 550 nm of excitation and 350 nm and 700 nm emission with 10 nm distance
steps and a slit width of 1 nm. In total, the resulting spectra contained 936 measured
intensities of wavenumber and wavelength combinations.

Every prepared sample was measured 5 times. In total, 142 samples were measured.
Every single spectrum was used for the analysis, in total 710 spectra were obtained for
each spectroscopic method. The resulting combined spectra contained 2751 points.

2.3. Spectra Evaluation: Preprocessing

The evaluation of the spectra was performed with Matlab R2020a (version 9.8). The
spectra were pre-processed with different methods to extract the desired information. A
baseline correction and a standard normal variate (SNV) transformation was applied to
Raman and NIR spectra. For the baseline correction, the following Matlab code, presented
in Equation (1), was applied in a loop using the intensity values of all wavenumbers k in a
spectrum.

IBC(k) = I(k)− cumsum[smooth(di f f {I(k)}, 20)] (1)

IBC(k) is the baseline corrected intensity value, I(k) the raw intensity, cumsum, smooth
and diff are Matlab functions. To harmonize the spectra further, a standard normal variate
transformation, presented in Equation (2), was applied as follows

ISNV(k) =
IBC(k)− IBC

SDBC
(2)

ISNV(k) is the transformed intensity, IBC and SDBC are the mean value and stan-
dard deviation of the base line corrected spectrum. For the fluorescence spectra, no
pre-processing was applied. The spectra were then evaluated separately for each spectrom-
eter typ. For further evaluations NIR, fluorescence and Raman spectra were combined. The
intensities of the fluorescence spectra were therefore scaled down with a SNV transforma-
tion, subsequently the NIR and Raman spectra were appended to the fluorescence spectra
to produce combined spectra.

2.4. Spectra Evaluation: Classification

The classification was performed by using the Classification Learner App, which is
implemented in Matlab. The following classification algorithms were tested: decision tree
(DT), linear discriminant analysis (LD), k nearest neighbour classification (KNN), support
vector machine linear (SVMl) and cubic (SVMc). The classification was performed with
5 classes: 1. A, 2. Adult A, 3. B, 4. Adult B, 5. Adult. The classification was performed to
check if A and B samples of the native oils could be distinguished and if an adulteration
was present. For Adult A and Adult B, the 12 samples with A and B were complemented
by 3 corresponding samples of the additional combinations presented in Table 2. Therefore,
225 spectra were in both classes. To obtain equal number of spectra in every class some
simulation spectra were calculated, so that every class was enlarged to 225 spectra.
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The number of pure oil samples of class A and B resulted just in 15 spectra each,
therefore new spectra were simulated out of them. First, the means m and the standard
deviations SD of intensity values for all wavenumbers (Raman and NIR) or wavelength
combination (fluorescence) for both classes were individually calculated. 150 spectra for
each pure oil sample were simulated by adding to each value in the mean (75) or the
original (75) spectrum the corresponding standard deviation times a standard normal
distributed random number, which has a cero mean and a standard deviation of one, as
shown in Equation (3).

Ĩ(k) = I(k) + SD(k)× ran(k) (3)

Here Ĩ(k) is the simulated intensity value, k is either the wavenumber (for Raman and
NIR) or an index for the wavelength combinations (fluorescence), I(k) is the correspond-
ing mean or original value and SD(k) the corresponding standard deviation, ran(k) is a
standard normal distributed random number, which is calculated for each k. To complete
the class A and B data sets to 225 spectra, the original spectra were used five times.

For the “Adult” class, the 100% pure samples of S, R and C as well as the correspond-
ing additional combinations (RS50, RC50, SC50), which were 90 spectra together, were
complemented by 90 simulated spectra obtained in the same manner as discussed before
(Equation (3)) from the samples S, R and C. To complete the data set of class “Adult”,
45 replication spectra from S, R and C samples were added. In total 1125 spectra were
obtained, where each class consisted of 225 spectra.

The quality of the classification is assessed with the amount of correct detected samples,
which is calculated as % of samples in the validation dataset and is presented as True
Positive Rate (TPR). The sensitivity (Equation (4)), specificity (Equation (5)), accuracy
(Equation (6)) and precision (Equation (7)) are calculated with the values of true positive
(TP), true negative (TN), false negative (FN) and false positive (FP) identified samples [32].

Sensitivity (%) = TP/(TP+FN)·100%, (4)

Specificity (%) = TN/(TN+FP)·100%, (5)

Accuracy (%) = (TP+TN)/(TP+TN+FP+FN)·100%, (6)

Precision (%) = TP/(TP+FP) 100%, (7)

2.5. Spectra Evaluation: Partial Least Squares Regression

Partial Least Squares Regression (PLSR) models are calculated for each oil to predict
the adulteration levels. For the Mexican chia oil samples, A and B, 1 up to 32 principal
components (3–10 for Kenyan samples, depending on the number of measured samples)
are tested for the PLSR model. A leave-one-out-cross-validation (CV) is performed for each
dataset. The coefficient of determination R2 and the root mean square error of prediction
RMSEPrange are calculated.

The detection limit dl for the PLSR was calculated from the blank sample (100% pure
chia oil) with Equation (8), where m is the mean and SD is the standard deviation.

dl = m100% chia oil + 3 SD100% chia oil (8)

3. Results and Discussion

The native oils could easily be distinguished by their fluorescence spectra (Figure 1).
All of the oils differ in intensities and slight intensity regions. It was assumed that the best
results would be obtained through fluorescence spectra evaluation. The visible peaks can
be assigned to pigments of groups belonging to NADH, tocopherols, riboflavin (emission
524 nm), oxidation products of oil ingredients e.g., vitamin E derivates at 525 nm emission
and chlorophyll at excitation 405 nm and emission 670 nm [10–12,33–35]. However, the oils
were not prepared in a special way or measured in a solvent; therefore, the ranges might
have shifted and/or the intensities might be lower. Since we work with raw materials that
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are subject to natural variations, it is definitely possible that the spectra of two oils are not
one in the same. The fluorescence spectra of the chia oils show the same intensity regions.
Overall, all of the oils examined show higher intensities in the regions of carotenoids,
tocopherols, polyphenols and chlorophylls. Lower intensities in the regions of 350 nm
excitation and 400 nm to 450 nm emission indicate the presence of oxidation products
formed during oil ageing. Observing Figure 1 in-depth, it is obvious that the intensities of
the oils used for adulteration (sunflower, rape seed and corn) have higher intensities in the
respective regions.
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For NIR and Raman spectra, the native oil spectra are presented in Figures 2 and 3.
The left side shows the raw spectra, whereas the right side shows the pre-processed spectra.
For the combined evaluation, the fluorescence spectra were also pre-processed by SNV,
and therefore the intensities are comparable. For NIR spectra, no big differences between
the samples are obvious, but in the Raman spectra different intensities for the samples are
visible. In Figure 4, the combined spectra of all native oils are presented. The spectra of A
and B show differences compared to the other oils.
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Mean values and standard deviations for the ten classification runs can be found in
Tables 4 and 5. The best results for the classification were obtained with a TPR of 99.7% for
the classification with SVMc and the combination of all of the spectra together (Table 5).
The combination of fluorescence and NIR spectra were classified with a TPR of 99.5%
with SVMc, and SVMc is also the best classification method for all single spectra. The
medians for the TPR, sensitivity, specificity and accuracy of the classification are presented
in Figure 5. The median TPR is over 90% for most of the calculations. As usual, the training
accuracies are, with exceptions, all over 90%, higher than the validation accuracies which
were between 71% and 79.9%. The sensitivity as well as the specificity were over 90% for all
of the samples. However, B was better detected. The precision was around 100% for pure
B samples whereas for A, the precision was poor with 54.2 ± 3% for the Raman spectra
classification by KNN. The precision for adulterated samples was over 90%. It is obvious
that KNN results in the poorest classification results for A and B as well as for all measured
spectra and their combinations. Adulterations for A were incorrectly classified.

Table 4. Results of the classification of samples with single spectra; Means and standard deviations of 10 classification runs.

Fluorescence 1 Tree 2 LD 3 KNN 4 SVMl 5 SVMc

TPR 94.9 ± 1.6 94.9 ± 1.6 93.2 ± 1.4 92.8 ± 1 98.1 ± 2
Accuracy training 95 ± 0.7 97.1 ± 0.5 92.9 ± 0.4 92.9 ± 0.4 97.5 ± 0.7

Accuracy validation 78 ± 0.6 78 ± 0.6 77.3 ± 0.6 77.1 ± 0.4 79.3 ± 0.8
Sensitivity A 94.6 ± 2.9 94.6 ± 2.9 100 ± 0 100 ± 0 100 ± 0
Sensitivity B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
Specificity A 97.9 ± 1.1 97.9 ± 1.1 93.3 ± 1.8 99.6 ± 0.5 99.8 ± 0.3
Specificity B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
Precision A 91.2 ± 4.9 91.2 ± 4.9 78.1 ± 6.3 98.1 ± 2.7 99.3 ± 1.2
Precision B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

NIR 6 tree 7 LD 8 KNN 9 SVMl 10 SVMc

TPR 95.8 ± 2.2 95.8 ± 2.2 90.2 ± 1.8 97.2 ± 1.3 98.4 ± 0.7
Accuracy training 95.3 ± 0.5 95.5 ± 0.8 90.7 ± 0.3 97.6 ± 0.4 98.5 ± 0.3

Accuracy validation 78.3 ± 0.9 78.3 ± 0.9 76.1 ± 0.7 78.9 ± 0.5 79.4 ± 0.3
Sensitivity A 95.5 ± 2.9 95.5 ± 2.9 100 ± 0 100 ± 0 100 ± 0
Sensitivity B 99.5 ± 1.1 99.5 ± 1.1 100 ± 0 100 ± 0 100 ± 0
Specificity A 98.7 ± 0.9 98.7 ± 0.9 90.2 ± 1.7 98.6 ± 0.9 99 ± 0.6
Specificity B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
Precision A 94.7 ± 3.1 94.7 ± 3.1 71 ± 5.4 94.4 ± 3.2 96.1 ± 2.2
Precision B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Raman 11 tree 12 LD 13 KNN 14 SVMl 15 SVMc

TPR 92.2 ± 2.5 92.2 ± 2.5 79.6 ± 2.6 96.4 ± 0.7 98 ± 0.4
Accuracy training 92.3 ± 1.2 97 ± 0.3 79 ± 0.6 97.3 ± 0.3 98.4 ± 0.2

Accuracy validation 76.9 ± 1 76.9 ± 1 71.8 ± 1 78.6 ± 0.3 79.2 ± 0.2
Sensitivity A 96 ± 3.6 96 ± 3.6 100 ± 0 100 ± 0 100 ± 0
Sensitivity B 98.5 ± 2 98.5 ± 2 100 ± 0 100 ± 0 100 ± 0
Specificity A 96.5 ± 2.1 96.5 ± 2.1 81.5 ± 2.9 99.5 ± 0.5 99.7 ± 0.3
Specificity B 99.9 ± 0.2 99.9 ± 0.2 100 ± 0 100 ± 0 100 ± 0
Precision A 87.1 ± 7.1 87.1 ± 7.1 56.7 ± 5.8 97.9 ± 2.4 98.8 ± 1.3
Precision B 99.8 ± 0.8 99.8 ± 0.8 100 ± 0 100 ± 0 100 ± 0
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Table 5. Results of the classification of samples with combinations of spectra; means and standard deviations of 10 classifi-
cation runs.

Fluo + NIR + Raman 16 Tree 17 LD 18 KNN 19 SVMl 20 SVMc

TPR 98.1 ± 0.6 98.1 ± 0.6 91.2 ± 2 99.2 ± 0.4 99.7 ± 0.3
Accuracy training 97.5 ± 0.6 99.4 ± 0.1 90.7 ± 0.3 99.2 ± 0.2 99.6 ± 0.2

Accuracy validation 79.2 ± 0.3 79.2 ± 0.3 76.5 ± 0.8 79.7 ± 0.2 79.9 ± 0.1
Sensitivity A 98.3 ± 2 98.3 ± 2 100 ± 0 100 ± 0 100 ± 0
Sensitivity B 99.7 ± 0.9 99.7 ± 0.9 100 ± 0 100 ± 0 100 ± 0
Specificity A 98.8 ± 0.5 98.8 ± 0.5 89.7 ± 1.9 99.5 ± 0.6 99.8 ± 0.3
Specificity B 99.9 ± 0.4 99.9 ± 0.4 100 ± 0 100 ± 0 100 ± 0
Precision A 95.2 ± 2.2 95.2 ± 2.2 70 ± 5.4 97.9 ± 2.9 99.3 ± 1.2
Precision B 99.7 ± 1 99.7 ± 1 100 ± 0 100 ± 0 100 ± 0

Fluo + NIR 21 tree 22 LD 23 KNN 24 SVMl 25 SVMc

TPR 97.1 ± 1 97.1 ± 1 94.5 ± 1.1 98.4 ± 1.1 99.5 ± 0.5
Accuracy training 97.1 ± 0.7 99.5 ± 0.2 94.5 ± 0.3 98 ± 0.3 99.5 ± 0.1

Accuracy validation 78.8 ± 0.4 78.8 ± 0.4 77.8 ± 0.4 79.3 ± 0.4 79.8 ± 0.2
Sensitivity A 94.6 ± 3.8 94.6 ± 3.8 100 ± 0 100 ± 0 100 ± 0
Sensitivity B 99.7 ± 0.9 99.7 ± 0.9 100 ± 0 100 ± 0 100 ± 0
Specificity A 99 ± 0.7 99 ± 0.7 93.6 ± 1.4 99 ± 0.8 99.3 ± 0.5
Specificity B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
Precision A 95.7 ± 3.2 95.7 ± 3.2 78.8 ± 5.1 95.7 ± 3.5 97.2 ± 2.6
Precision B 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
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For Raman spectra evaluation, KNN resulted in a false classification of 64.3% for Adult
A and a false classification of 33.3% for Adult B for one out of ten classifications (Figure 6).
The same classification method leads to the combined evaluation of fluorescence and NIR
spectra (Figure 7) to only a false classification of 35.7% of Adult A, which indicated that
somehow the adulteration samples of chia oil A are more difficult to detect in general. The
best results were obtained for the combined evaluation of fluorescence and NIR spectra, the
confusion matrix of one classification run is presented in Figure 8. The wrong classifications
are more or less equally distributed over all samples and remain below 10%. A successful
classification is hence possible for 5 classes. KNN does not seem to be sufficient for these
classification processes.
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The presented method was capable of identifying most of the samples in the validation
trial. It is a fast method which is easy to use after a calibration. The quantification of other
compounds in the oil might also be possible with this method but this was not the focus of
this study. The time-saving after the calibration of a spectroscopic method is around 2 to
3 times faster [36]. This underlines the necessity of the validation, which was successfully
performed in this study.

The best results of the PLSR are presented in Table 6. The coefficients of determination
are above 0.95 for all samples. Given the fact that the extreme points (the native oils) could
be distinguished quite easily, this is not surprising.
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Table 6. Results of the best PLSR predictions for the single oils A and B with single evaluations of the adulteration oils R, S,
and C and the combination of all adulterations with the samples all separately for all methods and the combination of all
methods.

Oil R2 RMSEPrange Detection Limit [%]

Fluorescence with
Preprocessing

AC 0.994 2.7 8.3
AR 0.988 3.8 8.6
AS 0.993 2.9 7.2

A all 0.991 3.4 8.7
BC 0.992 3.2 6.1
BR 0.992 3.1 17.9
BS 0.983 4.7 18.6

B all 0.990 3.6 15.4

Fluorescence without
Preprocessing

AC 0.994 2.7 10.0
AR 0.988 3.9 9.4
AS 0.993 2.9 7.4

A all 0.991 3.4 7.8
BC 0.991 3.3 7.6
BR 0.992 3.1 17.9
BS 0.981 4.8 23.5

B all 0.991 3.5 10.5

NIR

AC 0.997 2.1 6.0
AR 0.995 2.4 7.4
AS 0.997 2.1 4.5

A all 0.995 2.5 6.3
BC 0.997 2.0 6.6
BR 0.997 1.9 5.8
BS 0.997 2.0 4.4

B all 0.996 2.3 6.2



Foods 2021, 10, 1798 13 of 16

Table 6. Cont.

Oil R2 RMSEPrange Detection Limit [%]

Raman

AC 0.992 3.2 5.5
AR 0.993 3.0 9.0
AS 0.994 2.7 5.3

A all 0.984 4.6 11.2
BC 0.920 10.0 18.1
BR 0.986 4.1 11.6
BS 0.932 9.2 7.0

B all 0.938 8.9 12.0

Combined

AC 0.998 1.7 3.9
AR 0.996 2.3 7.4
AS 0.999 1.3 3.0

A all 0.997 2.1 5.8
BC 0.997 1.9 6.9
BR 0.998 1.6 6.8
BS 0.998 1.5 4.1

B all 0.997 1.8 4.3

The RMSEPrange values are more interesting; they were, with one exception, all below
5%. For the regression of samples with chia oil A, the best results were obtained with NIR
spectra. For B, the best results were obtained with combined spectra. The highest error,
corrected to the range of the considered samples (A, B, R, S, C), was RMSEPrange = 10%
for the evaluated Raman spectra alone, the lowest 1.3% for the combined evaluation of
the spectra. The determination of the detection limit was not suitable for fluorescence
spectra, as the smallest is 6.1%. However, for NIR (4.4%) and Raman, lower detection limits
were obtained. It was found to be best with 3% of the spectra obtained with chia oil A
adulterated with sunflower oil S for the combined spectra evaluation. The best result for
combined spectra evaluation for chia oil B was also obtained with S as adulteration oil with
a detection limit of 4.1%.

As can be seen in Table 7, for the Kenyan chia oils the RMSEPrange was between
0.6% and 16.7%. The detection limit varied according to the adulteration oil and it was
better for the combined evaluations of the spectra. The measurements are regarded as
unrepresentative because only a limited amount of sample was present. The detection
limits were low (0.7/0.8 for Raman of U and Y), but the models had high RMSEPranges, so
the reliability of these results is questionable.

For this study, two Mexican chia oils and six Kenyan chia oils were evaluated. There-
fore, the range within this study is higher than in the study presented by Rodríguez
et al. [15]. The comparison is difficult as the methods and the study designs were different
and it is not clear how they calculated their RMSEP. Here, six different classification meth-
ods were evaluated and a PLSR regression was performed to get an idea of the amount of
adulteration and, furthermore the RMSEPranges were quite low in this study. The combina-
tion of all of the spectra was beneficial for the RMSEPrange and the PLSR as the range is here
between 1.3% and 2.3%. This is better as presented by Rodríguez et al. [15] for the FT-IR
analysis by SIMCA and OC-P-PLS. The comparison of the RMSEPs for the adulterated
samples with A and B shows that, with one exception, the presented PLSR method is
better than the other method, because the range of the RMSEPrange was between 1.3% and
4.8%. The classification sensitivity and specificity depended on the classification method
which was sometimes lower, but mostly higher or at the same level. Oil B was easier to
detect. However, it is difficult to compare the methods point by point, as the calculation of
the RMSEP might be different as our RMSEP is standardized to the measurement range.
For the Kenyan samples, the sample size was limited and the results might therefore be
unrepresentative, but it proves the method working.
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Table 7. Results of the best PLSR predictions for the single chia oils U, V, W, X, Y and Z with single evaluations of the
adulteration oil S separately for all methods and the combination of all methods.

Oil R2 RMSEPrange Detection Limit [%]

Fluorescence with
Preprocessing

U 0.999 1.5 3.8
V 0.995 3.0 5.3
W 0.999 1.5 3.1
X 0.994 3.1 2.5
Y 0.993 3.5 4.7
Z 0.997 2.3 6.7

Fluorescence without
Preprocessing

U 0.999 1.3 3.5
V 0.995 3.1 5.0
W 0.999 1.6 2.9
X 0.994 3.1 2.6
Y 0.993 3.5 4.6
Z 0.997 2.1 7.8

NIR

U 1.000 0.6 1.6
V 0.995 3.1 11.3
W 0.998 1.9 5.6
X 0.999 1.0 2.6
Y 0.999 1.3 2.2
Z 0.999 1.1 3.0

Raman

U 0.910 12.8 0.7
V 0.838 16.7 52.0
W 0.872 16.1 57.8
X 0.889 13.2 2.2
Y 0.865 14.9 0.8
Z 0.838 16.7 52.0

Combined

U 1.000 0.6 1.6
V 0.996 2.7 8.0
W 0.999 1.4 2.7
X 1.000 0.6 1.7
Y 0.999 1.3 3.3
Z 0.999 1.1 3.8

4. Conclusions

The aim of the study was to answer following questions. Is it possible to detect chia oil
adulteration by spectroscopic analysis of the oils? Is it possible to identify the adulteration
oil? Is it possible to determine the amount of adulteration? The presented results suggest
that it is possible to distinguish between different oils by fluorescence, NIR and Raman
spectroscopy. It is possible to detect adulterations of chia oils and to distinguish between
different adulterations. Here, adulterations of chia oils by rapeseed, sunflower and corn oil
were identified with a median of 90% for the TPR. The training accuracies were over 90%,
the sensitivity and specificity of the classifications were over 90% too. B was easier to detect,
so the precision was around 100% and the adulterated samples were identified with a
precision of 97%. All classification methods show good results, however SVM were the best.
However, the classification by KNN is not suitable for this situation. The PLSR of A + B
showed R2 over 0.95 for all models. The best RMSEPrange of chia oil A was obtained by NIR
spectra evaluation whereas it was best for oil B by combined evaluation of all spectra. The
worst RMSEPrange was obtained for Raman prediction of BC (10%), the best for combined
spectra predicting AS (1.3%). For the Kenyan chia oils, the RMSEPrange was between 0.6%
and 16.7%. However, only a small number of samples were measured. Detection limits
varied according to the adulteration oil and were better for the combined evaluations of
the spectra. It is also possible to identify the amount of adulteration, though less than 5%
adulteration is difficult to identify. Further evaluations might lead to even better results, as
there was not enough sample provided from the Kenyan oils. In conclusion, it is possible
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to identify adulterations from native samples by spectral analysis of the oils, depending on
the adulteration oil. It is also better to combine all methods because a lower RMSEPrange
can be obtained. The best results might be obtained with a classification by SVM, to identify
if an adulteration took place, with a following PLSR of all combined spectra to quantify it.
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