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Abstract: A probiotic powder of poor flowability with high dust content, prepared by spray dry-
ing reconstituted skim milk fermented with Lactobacillus rhamnosus GG (LGG), was granulated by
fluidized-bed granulation (FBG). The effects of the addition of skim milk powder (SMP) as a fluidizing
aid, and of simple moisture-activation with or without dehydration, were investigated with respect
to the performance of the FBG process. A fine, poorly fluidizable LGG powder (Geldart Group C)
could be fluidized and granulated, with a 4- to 5-fold increase in particle size (d4,3 = 96–141 µm), by
mixing with SMP (30–50%), which has larger, fluidizable particles belonging to Geldart Group A.
Moisture-activation after the mixing, followed by fluidized-bed dehydration with hot air to remove
excess moisture, further improved the FBG; the yield of the granules increased from 42% to 61% and
the particle size distribution became much narrower, although the average particle size remained al-
most the same (d4,3 = 142 µm). These granules showed a popcorn-type structure in scanning electron
microscopy images and encapsulated a sufficient level of viable LGG cells (1.6 × 108 CFU g−1). These
granules also exhibited much better flowability and dispersibility than the spray-dried LGG powder.

Keywords: fluidized-bed granulation; Lactobacillus rhamnosus GG; spray drying; moisture-
activation; flowability

1. Introduction

Spray drying often produces fine powders (<50 µm) that are difficult to handle,
process, and store due to their poor flowability and reconstitution behavior, as well as
their dust-like nature [1–4]. An effective way to minimize these issues is to enlarge the
size of the powder particles using a four-step granulation process: wetting and nucleation,
coalescence or growth, consolidation, and attrition or breakage [5]. Wet granulation, a
process involving the displacement of air on the particle surface with binding liquid, is
one of the most popular granulation techniques used in industry [3–6]. The two most
popular wet granulation processes are high-shear wet granulation (HSWG) and fluidized-
bed granulation (FBG). HSWG is strongly influenced by the mechanical redispersion of
the binding liquid by impellers and choppers, whereas FBG is primarily influenced by the
wetting of particles with binding liquid [7].

During FBG, fine particles exist in a fluid-like state due to the stream of inlet gas. The
fine particles bind together via liquid bridges formed by the sprayed binding liquid, and
the excess liquid is removed by simultaneous drying, resulting in the formation of large
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granules [8–11]. The granules obtained by FBG are porous and have a narrower particle
size distribution than the fine particles before FBG.

The fluidization behavior of particles is the primary factor in the success of FBG.
Geldart [12] provided a standard classification for predicting particle fluidization behav-
ior based on the surface area-weighted mean diameter (d3,2) and particle true density
(ρtrue). According to this standard, particles are classified into four groups: A, B, C, and D
(Supplementary Materials Table S1). Particles belonging to Group A (d3,2 = 30–100 µm,
ρtrue < 1400 kg m−3) are aeratable and well fluidize, showing significant bed expansion
without bubbling [11,12]. In contrast, particles belonging to Group C (d3,2 < 20 µm,
ρtrue < 1400 kg m−3) show very poor fluidization behavior with significant formation
of bubble channels [11,12]. These fine particles have strong interparticle cohesive forces
and behave like clusters of particles, rather than independent particles, during fluidization.
An effective approach to enhance the fluidization of Group C particles is to mix them with
a fluidizing aid, such as well-fluidizing larger particles (e.g., Group A particles) [13,14].
Another promising way to improve the fluidization of fine particles is to perform pre-
granulation, such as moisture-activated dry granulation, before FBG [15,16]. However,
little information is currently available on the development of FBG process for fine, poorly
fluidizable dairy powders belonging to Geldart Group C.

In this study, a fine probiotic powder (Geldart Group C particles) with poor flowability
and high dust, prepared by directly spray drying the reconstituted skim milk (RSM)
fermented with Lactobacillus rhamnosus GG (LGG), was granulated using FBG to improve
the applicability of the probiotic powder. The effects of the addition of skim milk powder
(SMP, Geldart Group A particles) as a fluidizing aid, and of moisture-activation with or
without dehydration, were investigated with respect to the performance of the FBG process.
Water was used as a binder, and hot-air fluidization was used for dehydration instead
of using chemical moisture absorbent, to minimize the alteration of physicochemical
properties of original powder and also possible adverse effect on probiotics activity.

2. Materials and Methods
2.1. Materials

LGG (ATCC 53103) was purchased from the American Type Culture Collection (Man-
assas, VA, USA). SMP (carbohydrate 52% w/w, sugars 49% w/w, protein 37% w/w, lipid
0.5% w/w, sodium 0.54% w/w, calcium 1% w/w), de Man, Rogosa, and Sharpe (MRS) broth,
yeast extract, and glucose were obtained from Seoul Milk Co., Ltd. (Seoul, Korea), Difco
Laboratories Inc. (Detroit, MI, USA), Thermo Fisher Scientific (Erembodegem, Belgium),
and Ducksan Pure Chemicals Co., Ltd. (Asan, Korea), respectively.

2.2. Preparation of LGG-Fermented RSM

The LGG was subcultured sequentially for 24 and 18 h at 37 ◦C in 20 mL of MRS broth.
The RSM medium (190 mL) was prepared with 10% (w/w) SMP, 2% (w/w) glucose, and 1%
(w/w) yeast extract in distilled water and heat-treated at 90 ◦C for 30 min in a water bath.
The subculture was inoculated (5%, w/w) into the heat-treated RSM medium, followed by
incubation at 42 ◦C in a water bath with stirring at 100 rpm until the pH decreased from
6.6 to 3.9 (~9.2 log CFU g−1).

2.3. Spray Drying of LGG-Fermented RSM

The feed suspension for spray drying was prepared by adding SMP to the LGG-
fermented RSM to a final concentration of 30% (w/w) with stirring for 30 min. Spray
drying of the feed suspension was conducted using a laboratory-scale spray dryer (Eyela
SD-1000; Tokyo Co. Ltd., Tokyo, Japan), having a single nozzle of 0.7 mm diameter and a
current airflow system. Spray drying was conducted under the following conditions: inlet
temperature = 160 ± 1 ◦C, outlet temperature = 80 ± 1 ◦C, feed flow rate = 300 mL h−1,
atomization pressure = 100 kPa, and hot air flow rate = 0.20–0.24 m3 min−1. The resulting
powder was cooled to room temperature in the dryer and designated as LRP.
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2.4. Fluidized-Bed Granulation of Spray-Dried Powders

FBG of LRP-based powders (Figure 1) was performed using a laboratory-scale fluidized-
bed (3 L chamber volume; BD-600S; IREA Tech Co. Ltd., Daejeon, Korea). The powders
(50 g) were fluidized at an inlet temperature of 50 ◦C with an air flow rate of 0.15 m3 min−1.
Distilled water was used as a binding liquid and top-sprayed (0.7 mm nozzle diameter) at
100 kPa during the fluidization with a flow rate of 0.8 mL min−1.

Figure 1. Experimental scheme. RSM, reconstituted skim milk; SMP, skim milk powder; FBG,
fluidized bed granulation; LRP, LGG-fermented RSM powder; LRP-G1, granules obtained by FBG
of LRP-SMP mixture (50:50); LRP-G2, granules obtained by FBG of moisture-activated LRP-SMP
mixture (50:50); LRP-G3, granules obtained by FBG of moisture-activated, dehydrated LRP-SMP
mixture (50:50).

The effects of a fluidizing aid on FBG were examined by mixing SMP, as a fluidizing
aid, with LRP at an LRP:SMP ratio of 70:30 or 50:50 (w/w). The mixtures of LRP and SMP
underwent FBG for 8 min under the conditions described above. The granules obtained by
FBG of the LRP-SMP mixture (50:50) were designated as LRP-G1.

The effects of moisture-activation on FBG were investigated with and without de-
hydration. The LRP-SMP mixture (50:50) was sprayed with distilled water (2.5%, w/w)
using a hand sprayer during a 5-min mixing process conducted at room temperature with
an impeller speed of 500 rpm. This water-sprayed mixture was sieved through a 1-mm
mesh screen to remove excessively large agglomerates, and then allowed to flow via FBG
for 8 min under the conditions described above. The granules obtained by this process
were designated as LRP-G2. Meanwhile, the sieved water-sprayed LRP-SMP mixture was
further dehydrated for 20 min in the fluidized-bed system with an inlet temperature of
50 ◦C and air flow rate of 0.15 m3 min−1. During dehydration, the mixture was sampled
(about 1 g) at 5-min intervals, and the changes in viable cells, moisture content, and water
activity were measured to determine the proper dehydration time. The mixture dehydrated
for 5 min was granulated by FBG for 8 or 15 min under the conditions described above.
The granules obtained with 15-min FBG were designated as LRP-G3.

2.5. Microstructure and Particle Size Analyses

The particle microstructure was examined using scanning electron microscopy (SEM;
Tabletop Microscope TM3030 Plus; Hitachi, Tokyo, Japan). The micrograph (1000×) was
acquired at a voltage of 5 kV. The volume-weighted mean diameter (d4,3, µm) of particles,
and the particle size distribution, were determined using a laser diffraction particle size
analyzer (1190LD; CILAS, Orleans, France). The number, size, and volume of peaks in
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the particle size distribution were analyzed. The surface area weighted-mean diameter
(d3,2, µm) was also determined for Geldart classification of LRP and SMP.

2.6. Density Measurement

The particles were equilibrated at 25 ◦C and zero aw in a desiccator saturated with
phosphate pentoxide before measuring the density. The true density (ρtrue, kg m−3) of
SMP and LRP was measured using a gas pycnometer (Ultrapyc 1200e; Quantachrome
Instruments, Boynton Beach, FL, USA), and used together with d3,2 for Geldart classification
of the particles. The loose bulk density (ρlb, kg m−3) and tapped bulk density (ρtb, kg m−3)
were determined for SMP, LRP, and LRP-G3. The particles (10 g) equilibrated were loaded
into a 50-mL graduated cylinder. The ρlb values were then determined based on the particle
volume without tapping. The cylinder was tapped up and down manually until the particle
volume no longer changed, and the ρtb values were obtained based on the particle volume
after tapping [17,18].

2.7. Moisture Content and Water Activity Measurements

The moisture content (X, % dry basis) of the particles was determined by drying at
105 ◦C for 24 h in a drying oven [19]. The water activity (aw) of the particles was determined
at 25 ◦C using a digital water activity meter (Series 3 TE; Aqualab, Decagon, WA, USA).

2.8. Determination of Flowability

The Carr compressibility index (CI) and Hausner ratio (HR) were calculated using
the following equations, with ρlb and ρtb values measured as described above [17,18]. The
flowability of particles was determined according to the criteria in Table S2 [20].

CI =
(ρtb − ρlb)

ρtb
× 100 (1)

HR =
ρtb
ρlb

(2)

2.9. Dispersibility Measurement

The dispersibility of LRP, SMP, and LRP-G3 was determined according to Balde and
Aïder [21] and Schuck et al. [22], with slight modifications. The particles were equilibrated
at 25 ◦C and zero aw in a desiccator saturated with phosphate pentoxide. One gram of each
particle was poured into a 50-mL beaker containing 10 mL of distilled water at 20 ◦C, followed
by vigorous shaking (25 times for 15 s). The dispersion was filtered through a 200-µm sieve,
and 1 mL of the filtrate was taken and dried at 105 ◦C for 24 h in a drying oven to obtain a
dry solid mass. The dispersibility (%) was calculated using the following equation:

Dispersibility =
(p + w)× TS

p
(

100
100+X

) (3)

where p is the amount of particles used (g), w is the amount of water used (g), TS is the total
solid content of the filtrate (%, TS =

dry solid mass of filtrate
total mass of filtrate × 100), and X is the moisture

content of the particles (% dry-basis). A dairy powder having a dispersibility higher than
95% is considered dispersible [22].

2.10. Survivability Measurement

The particles (1 g) were dispersed in 9 mL of sterile saline solution (0.85% NaCl)
and decimally diluted. Aliquots of the dilutions were spread on the sterile MRS agar
plates and incubated at 37 ◦C for 48 h. The viable cell count was expressed as log CFU



Foods 2021, 10, 1600 5 of 12

g−1. The survivability (%) of LGG after the formation of LRP-G3 was calculated using the
following equation [23].

Survivability =
(viable cell count of LRP − G3)× 2

viable cell count of LRP
× 100 (4)

2.11. Statistical Analysis

All experiments were conducted at least in triplicate. Data were expressed as mean
± standard deviation. Statistical differences between data were determined by Student’s
t-test, performed using SigmaPlot (version 10.0; Systat Software, Inc., San Jose, CA, USA),
at a confidence level of 0.05.

3. Results and Discussion
3.1. Geldart Classification of Spray-Dried Probiotic Powder

Our preliminary experiments indicated that the LRP (spray-dried RSM-based powder
encapsulating LGG) was poorly fluidized and not suitable for FBG. On the other hand,
SMP showed good fluidizing behavior (data not shown). The LRP had an X value of 5.68%,
d3,2 value of 9 µm, and ρtrue value of 1330 kg m−3. According to the Geldart classification
(Table S1) [11–14], the LRP is classified as a Group C powder, specifically, a fine, very poorly
fluidized powder with significant channel formation, which shows particle-cluster behavior
rather than individual particle behavior. Compared to the LRP, SMP (X = 3.95%) was much
larger (d3,2 = 35 µm) and had a significantly lower density (ρtrue = 1180 kg m−3); as such, it
is classified as a Group A powder, showing aeratable and good fluidizing behavior. In this
study, therefore, SMP was mixed as a fluidizing aid to improve the flowability of LRP and,
consequently, the performance of FBG.

3.2. Effect of SMP on Fluidized-Bed Granulation of LRP

Figure 2a shows the particle size distribution obtained after the addition of SMP
to LRP at different ratios (30% or 50% SMP). Three major peaks were observed for
both LRP-SMP mixtures: Peak 1 (d4,3 ≈ 2–7 µm), Peak 2 (d4,3 ≈ 27 µm), and Peak 3
(d4,3 ≈ 80–112 µm) (Figure 2a; Table S3). The mixture of 30% SMP showed peak volume
fractions of about 25%, 60%, and 5% for Peaks 1–3, respectively; however, the volume
fraction of Peak 1 decreased to about 7%, and that of Peak 3 increased to about 41%, when
the fraction of SMP in the mixture increased to 50% (Table S3).

Figure 2. Particle size distribution of (a) LRP-SMP mixtures and (b) their granules obtained by fluidized-bed granulation.
The granules obtained from the LRP-SMP mixture (50:50) were denoted as LRP-G1.
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Figure 2b shows the particle size distribution of the granules prepared by FBG of
the two LRP-SMP mixtures, in which the two types of granules also showed three major
peaks. The granules of 30% SMP had d4,3 values of about 2, 18 and 371 µm for Peaks 1–3,
respectively, in which Peaks 2 and 3 were predominant (36 and 60% peak volume fractions,
respectively; Table S3). The granules of 50% SMP (LRP-G1) showed much larger d4,3 values
for the three peaks (about 16, 209, and 488 µm, respectively, for Peaks 1–3), in which Peak 2
was the major peak (77% volume fraction). The overall d4,3 value increased from 19 to 96 µm
(about 5-fold), and from 34 to 141 µm (about 4-fold), after FBG of the LRP-SMP mixtures of
30% and 50% SMP, respectively (Table S3). Taken together, these results indicate that the
fine LRP, which was very poorly fluidized, could be fluidized and granulated by FBG when
SMP was used as a fluidizing aid, and the average particle size increased by about 4- to
5-fold after FBG. The addition of SMP (larger, lower-moisture particles belonging to Geldart
Group A) could significantly reduce the strong interparticle cohesive forces of LRP by
decreasing particle surface area [11,12] and surface moisture, thus allowing smooth particle
fluidization. Once fluidized, the particles underwent agglomeration by sprayed water. Both
LRP and SMP consist of carbohydrates, proteins, lipids, and minerals. The carbohydrates
on particle surface might undergo glass transition due to the plasticizing effect of sprayed
water, and thus the particle surface became sticky when the surface viscosity became
lower than 108 Pa s, forming either water-bridges or sinter-necks between particles [24,25].
Although the lipid content in LRP and SMP is small (<1% w/w), lipid is mostly located
on the outer layer of particle surface and thus can melt during FBG and cause particle
agglomeration [24]. Despite the particle enlargement by FBG, the granules obtained still
had a broad particle size distribution (span = 3.49–5.17; Table S3). In addition, the yield
of granules was only about 42%, due to the particle loss caused mainly by the elutriation
and entrainment of fine particles during FBG [26–28]. To improve the performance of FBG,
moisture-activation (with or without successive dehydration) was adopted prior to FBG.

3.3. Effect of Moisture-Activation (without Dehydration) on Fluidized-Bed Granulation of
LRP-SMP Mixture

Figure 3 shows the particle size distribution of LRP-SMP mixture (50:50) before and
after moisture-activation by water-spraying (2.5%, w/w), and the granules (LRP-G2) ob-
tained by FBG of the moisture-activated LRP-SMP mixture. Moisture-activation is the
process of activating particle agglomeration by facilitating the formation of either water-
bridges or sinter-necks between particles using a small amount of water [14–16,29]. The
small fraction of the finest particles in the LRP-SMP mixture (Peak 1) disappeared after
moisture-activation, indicating consolidation of the finest particles into larger agglom-
erates due to the formation of either water-bridges or sinter-necks. However, the other
two peaks remained almost unchanged in size and volume fraction (Table S4). The smaller
particles tended to form water-bridged or sinter-necked agglomerates more easily than
the larger particles, due to their higher affinity to water resulting from a higher surface
area-to-volume ratio [30].

The granules (LRP-G2) showed three major peaks in their size distribution; Peak 1
(d4,3 ≈ 33 µm), Peak 2 (d4,3 ≈ 65 µm), and Peak 3 (d4,3 ≈ 290 µm) (Figure 3; Table S4). The
particles of Peaks 1 and 3 accounted for most of the particle volume (51 and 41% volume
fractions, respectively; Table S4). Compared to LRP-G1, LRP-G2 had a larger fraction of
small particles and did not have big (about 500 µm) particles. This is probably because
the moisture-activation created more regions of excess moisture, and the particles in this
region were partially dissolved and dried without proper formation of water-bridges or
sinter-necks between particles during the FBG. Consequently, the overall d4,3 of LRP-G2
(about 75 µm) was 2.2-fold smaller than that of LRP-G1 (141 µm; Table S3). The span of
LRP-G2 (6.57) was also larger than that of LRP-G1 (3.49; Table S3). The results indicate that
the moisture-activation may not be effective for improving the FBG performance of the
LRP-SMP mixture. As in the general MADG process, the dehydration step may be required
after moisture-activation to enhance the efficiency of FBG by removing excess water from
the particles [31].
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Figure 3. Particle size distribution of LRP-SMP mixture (50:50), moisture-activated LRP-SMP mixture,
and the granules obtained by fluidized-bed granulation of moisture-activated LRP-SMP mixture.
These granules were denoted as LRP-G2.

3.4. Effect of Dehydration on the Properties of Moisture-Activated LRP-SMP Mixture

Dehydration of the moisture-activated LRP-SMP mixture (50:50) was performed using
the fluidized-bed system with hot air (50 ◦C), instead of using a moisture absorbent such
as microcrystalline cellulose (MCC) or colloidal silicon dioxide, to simplify the granulation
process and the mixing of other substances, as well as to minimize the alteration of physic-
ochemical properties of original powder and possible adverse effect of moisture absorbent
on probiotics activity.

Figure 4a shows that the moisture content (X) of the moisture-activated LRP-SMP
mixture decreased sharply, from 4.8 to 3.5%, during the initial 5-min dehydration and
remained almost unchanged during the next 15-min dehydration. The water activity
(aw) also decreased from 0.24 to 0.20 due to the dehydration. The viable cells remained
unchanged (about 2.0 × 108 CFU g−1) during the entire 20-min dehydration process.
This may be due to the protective effects of heat-denatured proteins and calcium ions
in RSM [32]. Additionally, the LGG cells may gain more heat-resistance, due to their
pre-exposure to heat stress during spray drying [33,34].

Figure 4b shows the particle size distribution of the moisture-activated LRP-SMP
mixture treated with 5- or 10-min dehydration. The two major size peaks of the mixture
were still observed after dehydration. The 5-min dehydration increased the d4,3 and volume
fraction of Peak 2 (larger size particle group), from 120 to 132 µm and from 43% to 50%,
respectively, resulting in a slight increase in the overall d4,3 from 39 to 43 µm (Table S5). The
10-min dehydration resulted in a sharp increase in the d4,3 of Peak 2 to 151 µm; however,
the volume fraction of Peak 2 decreased significantly to 36%, which is a much smaller value
than that of the 5-min dehydrated mixture (50%). For this reason, the 10-min dehydrated
mixture showed a smaller overall d4,3 value (36 µm) than the 5-min dehydrated mixture
(Table S5). The 10-min dehydration produced larger agglomerated particles; however, these
particles had more collisions with other particles and the wall due to the longer duration in
the fluidized-bed system, resulting in more breakage (or attrition) of particles. Considering
these results, the 5-min dehydrated mixture was further granulated by FBG.
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Figure 4. (a) Changes in the viable cells, moisture content (X), and water activity (aw) of moisture-activated LRP-SMP
mixture (50:50) during 20-min dehydration at 50 ◦C, and (b) the particle size distribution of the mixture treated with 5- or
10-min dehydration or without dehydration.

3.5. Effect of Moisture-Activation (with Dehydration) on Fluidized-Bed Granulation of
LRP-SMP Mixture

Figure 5 shows the particle size distribution of the moisture-activated LRP-SMP
mixture treated with 5-min dehydration before and after FBG. The two major size peaks
were still observed after FBG. However, the d4,3 of Peak 2 (larger size particle group)
increased significantly from 132 to 302–310 µm after FBG, and the volume fraction of Peak 2
reached 97% after the 15-min FBG (Table S6). The overall d4,3 increased 3.3-fold (from 43
to 142 µm) after the 15-min FBG, and the span was greatly reduced to 1.68. The 15-min
FBG (LRP-G3, X = 5.05%) showed a higher yield (61%) than the LRP-G1 (42%). The results
indicate that the LRP (Geldart Group C powder) was successfully granulated with greatly
reduced fine particle content by the following process; mixing with SMP (50%, Geldart
Group A powder), 5-min moisture-activation, 5-min dehydration, and 15-min FBG.

Figure 5. Particle size distribution of moisture-activated LRP-SMP mixture (50:50) treated with 5-min
dehydration and the granules obtained by 8- or 15-min fluidized-bed granulation of the mixture. The
granules from 15-min process were denoted as LRP-G3.

SEM revealed that the LRP-G3 granules had a popcorn-type structure, in which
agglomeration of small particles into granules was clearly visible (Figure 6). This structure
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is typically observed for granules obtained by FBG [6,7]. Table 1 shows that when the
LRP was granulated to LRP-G3, the loose bulk density (ρlb) and tabbed bulk density (ρtb)
decreased significantly, from 430 to 330 kg m−3 and from 750 to 460 kg m−3, respectively,
due to the increase in particle size. The CI and HR values of LRP were 42.9% and 1.75,
respectively (Table 1), indicating that the LRP has extremely poor flowability according to
the criteria in Table S2 [20]. On the other hand, the LRP-G3 granules showed a significant
reduction in CI and HR (27.4% and 1.38, respectively; Table 1), indicating that the flowability
of LRP was greatly improved by FBG. The increase in particle size via FBG decreased the
particle surface area, resulting in a reduction in friction between the particles, and in the
cohesion of particles induced by van der Waals attractions between particles [35]. However,
it should be noted that the flowability of LRP-G3 was still classified as poor according to
the criteria in Table S2. The dispersibility of LRP was only 49.7%, while LRP-G3 showed
a greatly increased dispersibility of 91.6%, slightly smaller than the value of SMP (95.6%)
(Table 1). The reconstitution of food powders in water occurs via several steps: the wetting
of particles by water, penetration of water by capillary rise, immersion of particles into
water, and dissolution of particles in water, which often occur simultaneously and influence
each other [36]. The significant increase in dispersibility after granulating LRP to LRP-G3
can be attributed primarily to the large increase in particle diameter, which can enlarge
the capillary diameter between particles, thus promoting water penetration into particle
packages according to Washburn’s capillary rise theory [36]. It should be noted that the
dispersibility of LRG-G3 is slightly below 95%, above which a dairy powder is considered
to be dispersible [22]. During FBG of LRP to LRP-G3, the amount of viable LGG cells only
decreased slightly, from 4.1 × 108 to 1.6 × 108 CFU g−1. Taking into account the mixing
of LRP with SMP (50:50), the survivability (Equation (4)) of LGG cells during FBG of LRP
to LRP-G3 was calculated to be 80.2%. The lactose contained in SMP in a high amount
(~49% w/w) is known to be an effective cell protecting agent, which can replace water
molecules hydrating on polar groups of membrane phospholipids and proteins, and thus
reduce damage to bacterial membranes and proteins [37,38]. Not only the stress via FBG,
but also particle entrainment, may be responsible for this small loss of LGG cells during
the process [39].

Figure 6. SEM images of (a) SMP, (b) LRP, and (c) LRP-G3.

Table 1. Loose bulk density (ρlb), tapped bulk density (ρtb), Carr Index (CI), Hausner ratio (HR), and dispersibility of LRP,
LRP-G3, and SMP 1.

Particles 2 ρlb (kg m−3) ρtb (kg m−3) CI HR Dispersibility (%)

LRP 430 ± 0 b 750 ± 0 a 42.9 ± 0.01 a 1.75 ± 0.00 a 49.7 ± 5.9 c

LRP-G3 330 ± 0 c 460 ± 20 c 27.4 ± 2.28 b 1.38 ± 0.04 b 91.6 ± 2.0 b

SMP 500 ± 10 a 640 ± 10 b 21.2 ± 0.64 c 1.27 ± 0.01 c 95.6 ± 1.4 a

1 Values with different letters in the same column are significantly different at p < 0.05 according to Student’s t-test. 2 LRP, LGG-fermented
RSM powder; RSM, reconstituted skim milk; SMP, skim milk powder; LRP-G3, granules obtained by the following steps: mixing LRP with
SMP (50%), 5-min moisture-activation, 5-min dehydration, and 15-min fluidized-bed granulation.
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4. Conclusions

This study demonstrated that LRP, consisting of fine and very poorly fluidizable
particles (Geldart Group C), was successfully granulated (LRP-G1) when fluidized together
with SMP, which consists of larger, lighter, and well-fluidizable Geldart Group A particles.
The LRP-G1 had an approximately 4–5-fold larger particle size than LRP, but still showed
a broad particle size distribution (span = 3.49) and a production yield of less than 50%
(42%). To improve FBG, the mixture of LRP and SMP was moisture-activated prior to
FBG, which eliminated the small fraction of the finest particles in the LRP-SMP mixture
via consolidation of the finest particles into larger agglomerates. However, the resulting
granules (LRP-G2) showed a smaller particle size and larger span value than LRP-G1,
probably because the excess moisture region was largely formed in the LRP-SMP mixture
due to moisture-activation, and the particles in this region were partially dissolved and did
not properly form water-bridges or sinter-necks between particles during FBG. Fluidized-
bed dehydration for 5 min with hot-air after moisture-activation greatly improved the
performance of FBG, without significant loss of viable cells. Finally, the LRP-G3 was ob-
tained using a granulation process consisting of the following steps: mixing LRP with SMP
(50%), 5-min moisture-activation, 5-min dehydration, and 15-min FBG. The LRP-G3 had an
average particle size (d4,3 = 142 µm) similar to LRP-G1 but showed a much-improved
particle size distribution and an increased yield (61%). The LRP-G3 had a popcorn-
type structure with a moisture content of 5.05% and sufficient level of viable LGG cells
(1.6 × 108 CFU g−1) and exhibited markedly enhanced flowability and dispersibility rela-
tive to LRP. The present study proposes a simple and effective FBG process consisting of
SMP addition, moisture-activation, dehydration, and fluidized-bed agglomeration for a
poorly fluidizable probiotic powder obtained by spray drying LGG-fermented RSM. This
process can be easily applied for FBG of other food powders that are difficult to fluidize.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10071600/s1, Table S1: Geldart classification for particle fluidization [1]. Table S2:
Classification of powder flowability according to Car compressibility index (CI) and Hausner ratio
(HR) [20]. Table S3: Particle size (d4,3) and volume fraction of peaks in particle size distribution
of LRP-SMP mixtures and their granules obtained by fluidized-bed granulation. The granules
obtained from the LRP:SMP mixture (50:50) were denoted as LRP-G1. Table S4: Particle size (d4,3) and
volume fraction of peaks in particle size distribution of LRP-SMP mixture (50:50), moisture-activated
LRP-SMP mixture, and the granules obtained by fluidized-bed granulation of moisture-activated
LRP-SMP mixture. The granules were denoted as LRP-G2. Table S5: Particle size (d4,3) and volume
fraction of peaks in particle size distribution of the moisture-activated LRP-SMP mixture (50:50)
treated with 5-min or 10-min dehydration at 50 ◦C or without dehydration.; Table S6: Particle size
(d4,3) and volume fraction of peaks in particle size distribution of the moisture-activated LRP-SMP
mixture (50:50) treated with 5-min dehydration before and after fluidized-bed granulation for 8 min
or 15 min. The granules from 15-min process were denoted as LRP-G3.
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