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Abstract: The multiple health benefits attributed to the bioactive compound γ-aminobutyric acid
(GABA) have prompted the food industry to investigate the development of functional GABA-rich
foods via the use of GABA-producing microorganisms. This study reports the isolation of six GABA-
producing Lactococcus lactis strains from camel’s milk; this is the first time that such microorganisms
have been isolated from milk. The sequencing and in silico analysis of their genomes, and the
characterisation of their technological and safety properties, confirmed their potential as starters.
Experimental cheeses made with all six strains (individually) accumulated GABA at concentrations
of up to 457 mg/kg. These GABA-producing L. lactis strains could be used as starter cultures for the
manufacture of functional GABA-enriched cheeses that provide health benefits to consumers.

Keywords: camel’s milk; Lactococcus lactis; GABA; starter cultures; functional cheese

1. Introduction

Lactococcus lactis is the lactic acid bacterium (LAB) most widely used as a primary
fermentation starter in the dairy industry. It is routinely employed in the production of
matured cheese, unripened cheeses (e.g., cream cheeses and cottage cheese), fermented
milk products, sour cream, and fermented butter. Based on its traditional usage in the
fermentation of food, this species has been granted Qualified Presumption of Safety (QPS)
status by the European Food Safety Authority (EFSA, [1]) and it enjoys Generally Regarded
as Safe (GRAS) status in the United States [2]. L. lactis plays a major role during the
early stages of cheesemaking, since it quickly acidifies milk by metabolizing the lactose
present into lactic acid [3]. This lactic acid inhibits the growth of spoilage and pathogenic
microorganisms, improving the shelf life and safety of the fermented end product. Some L.
lactis strains also improve product preservation via the release of antimicrobial substances
such as organic acids, H2O2, and bacteriocins, which inhibit the growth of undesirable (e.g.,
Clostridium and Bacillus) and pathogenic Gram-positive bacteria (e.g., Staphylococcus aureus
and Listeria monocytogenes) [4]. The species also plays a crucial role during cheese ripening
via its proteolytic action, which contributes to the formation of compounds involved in the
final product’s organoleptic properties (flavour, taste, and texture) [3].

Some strains of L. lactis also show interesting probiotic potential. Several studies
have shown that certain strains of L. lactis are beneficial to human health via their anti-
inflammatory [5], immunomodulatory [6], and antioxidant [7] activities. Some strains are
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known to produce γ-aminobutyric acid (GABA), which can protect against the neurode-
generation induced by injury and help prevent neurological disorders [8]. It also has blood
pressure-lowering and anti-diabetic properties, and it exerts an anti-cancer effect through
the induction of apoptosis and the inhibition of cancer cell proliferation and the production
of metastases. In addition, it is intestine-, hepato-, and cardio-protective, and it has positive
effects against anxiety and depression [8]. The fact that GABA has also been approved as a
food ingredient in the US and EU have led the pharmaceutical and food industries to show
interest in developing functional GABA-based supplements and GABA-enriched foods [8].

No GABA-producing L. lactis strains have ever been isolated from milk. However,
dairy products such as fermented milk [9], yoghurt [10], and cheese [11] have been made
with GABA-producing LAB isolated from other sources. These products are claimed to
have anti-hypertension [9,12] and anti-diabetic effects [10]. GABA-enriched cheeses have
been made using adjunct cultures of different GABA-producing LAB species, such as
Levilactobacillus brevis [13], Lacticaseibacillus casei [14], Lacticaseibacillus paracasei [15], Lacti-
plantibacillus plantarum [15], Lentilactobacillus buchneri [16], Streptococcus thermophilus [13],
and L. lactis [12,17,18].

GABA is produced by L. lactis via the enzymatic decarboxylation of glutamic acid.
The genes involved in this reaction are grouped into the GAD cluster, the transcriptional
organization of which was first described in L. lactis MG1363 by Sanders et al. [19]. The
GAD cluster of L. lactis consists of three genes: gadR, which codes for a positive transcrip-
tional regulator (GadR), gadC, which lies downstream and codes for the glutamate–GABA
antiporter (GadC), and finally gadB, which codes for glutamate decarboxylase (GadB; the
enzyme that catalyzes the decarboxylation of glutamate to GABA). The GAD pathway
contributes to the acid resistance shown by L. lactis in acidic environments [19], which is a
property seen in other LAB such as Limosilactobacillus reuteri [20] and indeed other types of
bacteria such as Escherichia coli and Listeria monocytogenes [21].

The concentration of GABA in camel’s milk is high, certainly far more so than in cow’s
and human milk [22], suggesting it could be a source of GABA-producing L. lactis strains
that might have applications in the dairy industry. The objectives of the present work
were to isolate GABA-producing L. lactis strains from raw camel’s milk and to perform
the characterization of their genomic, technological, and safety properties. Finally, the
potential of these strains as starter cultures for the production of functional GABA-enriched
cheeses was assessed.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

Table 1 lists the bacterial strains used in this study. L. lactis cultures were grown in
De Man, Rogosa and Sharpe (MRS) or M17 broth (Oxoid, Basingstoke, UK) supplemented
with 0.5% (w/v) glucose (GM17) at 30 ◦C without aeration. Streptococcus thermophilus
strains were grown in M17 broth supplemented with 0.5% (w/v) lactose and incubated at
42 ◦C without aeration. Latilacctobacillus sakei was grown in MRS at 30 ◦C without aeration.
Listeria innocua was grown in Tryptic Soy Broth (TSB) broth (Oxoid) at 37 ◦C without
aeration. Micrococcus luteus was grown in TSB broth at 37 ◦C with shaking.

2.2. Milk Sample Collection

Twelve milk samples were obtained directly from the udder of lactating camels that
came from eight different areas of Algeria (Abadla, Adrar, Bechar, Ghardaia, Mecheria,
Oran, Saida, and Tindouf) between October 2015 and October 2017. Samples were kept at
4 ◦C until processed.
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Table 1. Microorganisms used in this study.

Strains/Isolates Relevant Features Reference/Source

Bacterial strains
Latilactobacillus sakei CECT 906 T Microbial indicator for bacteriocin production CECT a

Lactococcus lactis subsp. cremoris MG1363 Microbial indicator for bacteriocin production [23]
Lactococcus lactis NCDO 604 T Positive control for proteolytic activity NCDO b

Lactococcus lactis SH4109 Positive control for proteolytic activity [23]
Listeria innocua CECT 910 T Microbial indicator for bacteriocin production CECT a

Micrococcus luteus NCIMB 8166 Microbial indicator for bacteriocin production NCIMB c

Streptococcus thermophilus CNRZ 1066 Microbial indicator for bacteriocin production CNRZ d

Streptococcus thermophilus LMD9 Microbial indicator for bacteriocin production NBCC e

Lactococcus lactis subsp. cremoris SK11 Non-GABA producer starter culture [24]

Mold strain
Penicillium roqueforti 1AM8 Proteolytic mold from Cabrales cheese [25]

Lactococcus lactis isolates
L. lactis subsp. lactis LEY6 GABA producer This work
L. lactis subsp. lactis LEY7 GABA producer This work
L. lactis subsp. lactis LEY8 GABA producer This work
L. lactis subsp. lactis LEY11 GABA producer This work
L. lactis subsp. lactis LEY12 GABA producer This work
L. lactis subsp. lactis LEY13 GABA producer This work

a CECT: Spanish Type Culture Collection, Spain. b NCDO: National Collection of Dairy Organisms, now part of the NCIMB. c NCIMB:
National Collection of Industrial, Food and Marine Bacteria, UK. d CNRZ: Centre National de Recherches Zootechniques, France. e NBCC:
National Bureau Collection Corporation NCCB, US. T Type strain.

2.3. Isolation of Lactic Acid Bacteria and Phenotypic Characterization

To first isolate LAB species, serial dilutions of camel’s milk were plated in duplicate
on GM17 agar and incubated at 30 ◦C. Then, those isolates were subjected to Gram staining
and catalase activity [26] and spore formation analyses [27]; those that met the appropriate
criteria were identified as LAB.

To identify Lactococcus species among these LAB, cell morphology was examined
by optical microscopy. Isolates were also grown in GM17 broth at 30 ◦C and 45 ◦C, in
the presence of 4% and 6.5% NaCl, adjusted to pH 9.6, with inverted Durham tubes to
determine CO2 production from glucose. Those ovococci able to grow at 45 ◦C, at pH 9.6,
and in the presence of 6.5% NaCl were assigned to Enterococcus, while those able to resist
pH 9.6, and/or a temperature of 45 ◦C, but not the presence of 6.5% NaCl, were assigned
to Lactococcus [28].

Then, Lactococcus isolates were grown in M16BCP medium (containing 2 mg/mL
lactose, 4 mg/mL arginine, with bromocresol purple as a pH indicator) to confirm their
capacity to hydrolyze arginine via the action of arginine dihydrolase (ADH) [also known
as arginine deiminase (ADI)].

2.4. Molecular Identification of Lactococcus Isolates

The Lactococcus isolates were identified at the species level by 16S rRNA gene sequenc-
ing following the protocol described in Saidi et al. [29].

2.5. Identification of GABA-Producing Lactococcus in Culture Media

GABA production was detected in supernatants obtained after 5 days of incubation in
1 mL of GM17 broth supplemented with 5 mM L-glutamic acid monosodium salt mono-
hydrate (monosodium glutamate) (Sigma-Aldrich, Madrid, Spain). Culture supernatants
were derivatized with diethyl ethoxymethylenemalonate (Sigma-Aldrich, Munich, Ger-
many) and subjected to ultra-high performance liquid chromatography (UHPLC) using
a Waters H-Class ACQUITY UPLC apparatus with a UV detector (Waters, Milford, MA,
USA), following the procedures described by Redruello et al. [30].
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2.6. Whole-Genome Sequencing and Bioinformatic Analyses

Total DNA from L. lactis isolates was isolated from 1.5 mL of an overnight culture.
Cell pellets were collected by centrifugation and washed with 1 mL of PBS. Then, the cells
were resuspended in a lysis buffer containing 20 mg/mL lysozyme (Merck, Madrid, Spain),
200 U mutanolysin (Sigma-Aldrich), 2 mg/mL RNase (AppliChem, Darmstadt, Germany),
20 mM Tris–HCl (pH 8.0), 2 mM EthyleneDiamineTetraAcetic acid (EDTA), and 1.2%
Triton X-100 (Merck). Then, this lysis suspension was incubated at 37 ◦C for 1 h and DNA
extracted using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. DNA was stored at 4 ◦C until analysis. A 0.5 kbp
genomic library was constructed and subjected to 150 bp paired-end sequencing (providing
approximately 25-fold coverage) using a HiSeq 1000 system sequencer (Illumina, San Diego,
CA, USA) (performed at GATC [Eurofins Genomics, Ebersberg bei München, Germany]).
Quality filtered reads were assembled using SPAdes software v.3.13.0. Annotation was
performed using the Prokaryotic Genomes Annotation Pipeline (PGAP) [31] on the NCBI
server, improving the results obtained in BLAST analyses [32]. Gene clusters involved in
technologically relevant features were identified by blast comparison. Bacteriocin clusters
were analyzed with BAGEL 4 software [33]. The genome sequences of six GABA-producing
L. lactis strains—here denominated LEY6, LEY7, LEY8, LEY11, LEY12, and LEY13—were
deposited with BioProject PRJNA596610 in the NCBI BioProject database (http://www.ncbi.
nlm.nih.gov/bioproject/596610, accessed on 27 January 2021) under the accession numbers
SAMN13634154, SAMN13634584, SAMN13634590, SAMN13634615, SAMN13634616, and
SAMN13634617 respectively. A comparative analysis of the genes present in the genomes
of these six strains (core and accessory genome) was performed using Roary v.3.11.2
software [34]. The generated cluster tree was visualized with Phandango v.1.3.0 [35].

2.7. Acidifying Capacity

Ultra-high temperature (UHT) skimmed cow’s milk were inoculated with overnight
cultures of the six GABA-producing L. lactis strains (1% (v/v), 107 cfu/mL) and incubated at
30 ◦C for 18 h. The pH values were recorded after 6 and 18 h of incubation, and milk clotting
was assessed at the end of fermentation. The experiment was performed in triplicate.

2.8. Proteolytic Activity

The proteolytic activity of the GABA-producing L. lactis strains was examined by
a qualitative method on Plate Count Agar (PCA) (Oxoid) supplemented with 2% UHT
skimmed cow’s milk as described by Saidi et al. [29]. In addition, proteolytic activity was
quantitatively determined using the O-phthaldialdehyde (OPA) method following the
protocol described by the same author. Positive controls involved L. lactis strains known
for their good proteolytic activity (i.e., L. lactis NCDO 604T and L. lactis SH4109 [Table 1]).
Negative controls (non-inoculated UHT skimmed milk samples incubated under the same
conditions) were run in parallel.

2.9. Dextran Production

Dextran production was determined using Mayeux, Sandine and Elliker (MSE) agar
medium rich in sucrose as described in Saidi et al. [29].

2.10. Production of Volatile Compounds

To determine the production of volatile compounds, UHT skimmed cow’s milk was
inoculated with individual overnight cultures of the GABA-producing L. lactis strains
at 1% (v/v) and incubated for 24 h at 30 ◦C. A head space gas chromatograph (Agilent
Technologies, Wilmington, DE, USA) connected to a mass spectrophotometer detector
(HS/GC/MS) was used to quantify volatile compounds [29]. They were quantified as the
normalized value of their chromatogram peak area using cyclohexanone (3.6 µg/mL) as an
internal standard, which was given a value of 100. Negative controls (non-inoculated UHT
skimmed cow’s milk samples) were performed in parallel.

http://www.ncbi.nlm.nih.gov/bioproject/596610
http://www.ncbi.nlm.nih.gov/bioproject/596610
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2.11. Production of Antimicrobial Substances

To determine the antimicrobial activity of the isolates, well-diffusion assays were
performed according to Saidi et al. [29]. The strains used as microbial indicators are listed
in Table 1. The antimicrobial activity of microbially secreted molecules was assessed by
measuring the zone of inhibition (including the well diameter) that appeared after 24 h of
incubation.

2.12. Production of Biogenic Amines

The production of the biogenic amines (BA) tyramine, histamine, putrescine, and
cadaverine from their respective precursor amino acids (tyrosine, histidine, agmatine,
ornithine, and lysine) was assessed as described by Saidi et al. [29] with minor modifications
(GM17 broth, instead of MRS, was supplemented with 1 mM of the corresponding amino
acid substrate). The accumulation of BA in the supernatant of cell cultures was quantified
as described in Section 2.5.

2.13. In Silico Prediction of Antimicrobial Resistance Genes

The draft genome sequences of the L. lactis strains were screened for the presence of
antimicrobial resistance genes using ResFinder v.3.2 software [36] and Resistance Gene
Identifier software (RGI v.5.1.0) [37]. The RGI criteria used in the analysis were perfect,
strict, complete genes only, and high quality/coverage.

2.14. Experimental Cabrales-Like Mini Cheeses

The six L. lactis strains described in Table 1 were used individually as starter strains to
produce experimental Cabrales-like mini cheeses. Overnight cultures of L. lactis isolates
(106 cfu/mL) were individually inoculated into sterilized bottles containing 200 mL of
commercial UHT cow’s milk; the mold Penicillium roqueforti 1AM8 (103 cfu/mL) and CaCl2
(0.02% w/v) was also added to the bottles. Then, the mixtures were left at 30 ◦C for 2 h
to initiate the growth of the cultures. After this time, liquid rennet extract of bovine and
ovine (lamb) origin (Nievi, Vizcaya, Spain) was added as indicated by the manufacturer.
The bottles were inverted three times and left to coagulate at 30 ◦C until the curd acquired
the appropriate consistency; then, it was cut, and the bottles were inverted for 20 min
to promote draining before centrifugation at 220× g for 10 min at room temperature to
remove all the whey. All steps were performed under sterile conditions. The mini-cheeses
produced were kept in closed, screw-capped sterile jars in a ripening chamber at 15 ◦C for
90 days. Then, one sample from each mini cheese was obtained, and their GABA, glutamic
acid, tyramine, histamine, putrescine, cadaverine, and agmatine contents were determined
by UHPLC as described by del Rio et al. [25].

2.15. Statistical Analysis

A Student t-test was performed for mean comparison between two groups. Mean
comparison among three or more groups was conducted via one-way analysis of variance
(ANOVA) test followed by a pairwise comparison Tukey post-hoc test. Significance was set
at p < 0.05. Statistical analysis was carried out using the open source R software (v. 3.5.3)
(https://www.r-project.org/, accessed on 27 January 2021).

3. Results
3.1. Phenotypic Characterization and Molecular Identification of LAB Isolates

Fourteen isolates that were Gram-positive, catalase negative, and non-spore-forming,
and thus considered to be LAB, were initially selected. The morphology of their cells, as
observed by optical microscopy, indicated 12 isolates (86%) to be ovococci and two (14%) to
be bacilli. The ovococci were phenotypically characterized (Table 2). All the isolates were
able to hydrolyze arginine; none produced CO2 and were therefore considered homofer-
mentative. Six of these ovococci were able to grow at 45 ◦C, pH 9.6, and in the presence of
6.5% NaCl, suggesting they belonged to the genus Enterococcus (data not shown).

https://www.r-project.org/
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Table 2. Phenotypic characterization of L. lactis isolates from Algerian camel’s milk.

Lactococcus Milk
Isolates

Geographic Location of
Milk Samples

Growth at

45 ◦C pH 9.6 4% NaCl 6.5% NaCl

LEY6 Saida + + + −
LEY7 Saida − + + −
LEY8 Saida − + + −

LEY11 Bechar + + + −
LEY12 Ghardaia + − + −
LEY13 Tindouf + − + −

− Negative; + Positive.

The other six were able to resist pH 9.6, and/or a temperature of 45 ◦C, but they did
not grow in the presence of 6.5% NaCl. These latter strains were assigned to the genus
Lactococcus, since it has been reported that some L. lactis strains isolated from camel’s milk
are thermotolerant (resist up to 50 ◦C) and/or are able to grow at pH 9.6 [28]. 16S rRNA
gene sequencing confirmed that all six to belong to Lactococcus lactis subsp. lactis; they
were named L. lactis LEY6, L. lactis LEY7, L. lactis LEY8, L. lactis LEY11, L. lactis LEY12, and
L. lactis LEY13 (Table 1) (hereafter LEY6, LEY7, LEY8, LEY11, LEY12, and LEY13). These
strains came from milk samples obtained from different geographical locations; LEY6,
LEY7, and LEY8 were in milk from the region of Saida, LEY11 was in milk from Bechar,
LEY12 was in milk from Ghardaia, and LEY13 was in milk from Tindouf (Table 2).

3.2. All six L. lactis Isolates Produced GABA in Culture Media

All six selected L. lactis isolates produced GABA (Figure 1). LEY6, LEY7, and LEY8
produced significantly greater amounts (from 1.74 ± 0.08 mM for LEY6, to 1.80 ± 0.10 mM
for LEY7) than did LEY11, LEY12, and LEY13 (ranging from 1.22 ± 0.05 mM for LEY13, to
1.32 ± 0.09 mM for LEY12). No significant differences were seen between the amount of
GABA produced by LEY6, LEY7, and LEY8, nor between LEY11, LEY12, and LEY13.
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Figure 1. Production of γ-aminobutyric acid (GABA) by L. lactis isolates grown in GM17 supple-
mented with 5 mM of monosodium glutamate for 5 days. Supernatants were analyzed by ultra-high
performance liquid chromatography (UHPLC) to determine the GABA concentration of the extracel-
lular medium. Bars with different letters indicate significant differences (p < 0.05).

3.3. Whole-Genome Sequencing and Comparison Confirmed the Six GABA-Producing L. lactis to
Be Different Strains

Table S1 shows the general genomic information obtained for the six GABA-producing
L. lactis isolates. Whole-genome assembly revealed draft genome sizes of between 2,513,704
and 2,872,551 bp. After pangenome analysis, a total of 3754 genes were identified. The
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core genome was composed of 1982 genes. The isolates showed a variable number of
unique genes ranging from 7 in LEY13 up to 98 in LEY6. The other 1772 genes were shared
between two or more isolates. These results indicate that the six GABA-producing L. lactis
isolates are different strains. A cluster tree based on the pangenome results was constructed
(Figure 2) and revealed the existence of two major groups, one including strains LEY6,
LEY7, and LEY8 and the other including LEY11, LEY12, and LEY13.
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3.4. In Silico Identification of the GAD Cluster and Other Technologically Relevant Genes in the
Genome of the GABA-Producing L. lactis Strains

The GAD gene cluster involved in GABA production was identified in all six strains
(Table S2). The genetic organization of this cluster was identical to that previously described in
the GABA non-producer L. lactis subsp. cremoris MG1363 [19]. All six GABA-producing strains
had gene clusters involved in the ability to grow in milk, e.g., the lactose phosphotransferase
operon (lacR-lacABCDFEGX), the genes encoding cell wall-associated proteases (prtP and
prtM), and those coding for the oligopeptide permease system (oppDFBCA) (Table S2). They
also had putative genes for a citrate/sodium symporter and a malolactic enzyme that might
be involved in citrate utilization (Table S2). LEY6, LEY7, and LEY8 had a putative locus for a
cluster coding for a bacteriocin similar to macedovicin (annotated as type A2 lantipeptide),
while LEY11, LEY12, and LEY13 had another two, one for a bacteriocin similar to carnolysin
(annotated as type 2 lantibiotic) and one for another similar to Nisin Z (annotated as a
gallidermin/nisin family lantibiotic) (Table S2).

3.5. Technological Characterization of the GABA-Producing L. lactis Strains
3.5.1. Acidifying Capacity

The six L. lactis strains were able to acidify the milk, with no differences among them,
either after 6 h or after 18 h of incubation (p < 0.05); all reduced the pH by more than 1 unit
(between 1.06 for LEY12 and 1.65 for LEY6) in the first 6 h. A significative reduction in
the pH value was found after 18 h for all the strains (p < 0.05), from 4.12 ± 0.03 for LEY13
to 4.32 ± 0.31 for LEY7 (Table 3). All the strains completely clotted the milk after 18 h of
incubation (Table 3).
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Table 3. Acidification kinetics of the L. lactis isolates.

L. lactis Isolates
Incubation in UHT Skimmed Milk *

pH after 6 h pH after 18 h Milk Clotting after 18 h

LEY6 5.12 ± 0.26 a,a 4.21 ± 0.13 a,b +
LEY7 5.33 ± 0.54 a,a 4.32 ± 0.31 a,b +
LEY8 5.14 ± 0.31 a,a 4.14 ± 0.07 a,b +

LEY11 5.63 ± 0.33 a,a 4.22 ± 0.12 a,b +
LEY12 5.71 ± 0.50 a,a 4.18 ± 0.09 a,b +
LEY13 5.42 ± 0.13 a,a 4.12 ± 0.03 a,b +

* pH of non-inoculated UHT skimmed milk: 6.77; Values represent the mean ± standard deviation from three
independent experiments; the first superscript letter indicates mean comparison among strains for each analyzed
time period, while the second superscript letter indicates mean comparison between time periods for each strain;
same letter indicates no significant differences (p < 0.05); + Total clotting of milk.

3.5.2. Proteolytic Activity

All six strains showed a similar proteolytic activity, producing 1.177 ± 0.05 mM Gly
for LEY8 to 1.364 ± 0.20 mM Gly for LEY12 (Figure 3).
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Figure 3. Proteolytic activity of the GABA-producing L. lactis strains as determined by the O-
phthaldialdehyde (OPA) assay. Proteolytic activity was recorded as millimoles of glycine released
after incubation in skimmed cow’s milk at 30 ◦C for 24 h, using a glycine calibration curve. The
strains used as positive control were L. lactis NCDO 604T and L. lactis SH4109. Bars with different
letters indicate significant differences (p < 0.05).

In addition, all six strains showed significantly stronger proteolytic activity than L.
lactis NCDO 604T and L. lactis SH4109 (p < 0.05) (positive controls). The slight differences
observed among the six L. lactis strains were not statistically significant.

3.5.3. Dextran Production

None of the L. lactis strains produced dextran.
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3.5.4. Production of Volatile Compounds

Table 4 shows the 12 major volatile compounds produce by the six GABA-producing
strains. All the strains produced acetaldehyde, 2-methyl propanal, 3-methyl butanal,
ethanol, 2-methyl-1-propanol, and 2 or 3-methyl-1-butanol. LEY6 and LEY7 produced
the highest amount of 2-methyl-1-propanol and (plus LEY8) of 2 or 3-methyl-1-butanol
(p < 0.05). No mean differences for the rest of the common compounds were found among
the strains. 2-Methyl-butanal was only found, in a similar amount, in LEY6, LEY7, and
LEY8 while methyl acetate and acetic acid were found only in LEY11, LEY12, and LEY13.
Four strains (LEY7, LEY8, LEY12, and LEY13) produced 2,2,4,6,6 PMH, while only two
(LEY11 and LEY12) produced methyl butanoate. Only LEY12 produced acetoin, although
in negligible amounts. Strains LEY11 and LEY12 produced the largest number of volatile
compounds (10 and 12 respectively).

Table 4. Volatile compounds produced by the L. lactis isolates during growth at 30 ◦C for 24 h in ultra-high temperature
(UHT) skimmed milk (HS/GC/MS analysis). Values represent the mean ± the standard deviation of three independent
experiments.

Strains

Volatile Compound † LEY6 LEY7 LEY8 LEY11 LEY12 LEY13

Acetaldehyde 76.9 ± 7.5 a 25.7 ± 44.5 a 57.7 ± 52.4 a 23.9 ± 4.3 a 21.9 ± 3.6 a 26.2 ± 8.6 a

2-Methyl propanal 179.1 ± 15.5 a 123.5 ± 43.2 a 180.0 ± 35.3 a 121.3 ± 22.3 a 99.8 ± 30.9 a 131.8 ± 21.9 a

Methyl acetate − b − b − b 26.1 ± 7.5 a 25.2 ± 9.4 a 26.9 ± 2.3 a

2-Methyl butanal 72.6 ± 12.9 a 80.1 ± 10.6 a 61.8 ± 16.9 a − b − b − b

3-Methyl butanal 877.7 ± 70.3 a 796.1 ± 197.7 a 797.0 ± 50.3 a 852.8 ± 244.5 a 588.8 ± 248.1 a 897.9 ± 154.6 a

Ethanol 396.5 ± 32.5 a 353.5 ± 107.6 a 340.5 ± 18.8 a 351.5 ± 59.8 a 315.3 ± 32.7 a 362.6 ± 58.5 a

2,2,4,6,6 PMH ‡ − b 95.0 ± 164.6 a 66.4 ± 115.1 a − b 51.1 ± 88.5 a 83.6 ± 144.9 a

Methyl butanoate − b − b − b 2.3 ± 4.0 a 9.1 ± 8.0 a − b

2-Methyl-1-propanol 55.6 ± 2.2 a 51.4 ± 48.6 a 41.4 ± 7.6 b 30.7 ± 1.8 b 35.7 ± 6.4 b 31.7 ± 7.6 b

Methyl hexanoate 23.9 ± 1.3 a − b − b 3.6 ± 6.3 a 2.8 ± 4.8 a 9.6 ± 8.3 a

2 or 3-Methyl-1-butanol 322.9 ± 8.5 a 367.6 ± 28.1 a 298.7 ± 22.8 a 198.4 ± 36.2 b 213.2 ± 42.2 b 205.0 ± 21.5 b

Acetoin − b − b − b − b 2.6 ± 4.6 a − b

Acetic acid − b − b − b 21.9 ± 5.7 a 22.1 ± 3.0 a 17.7 ± 2.0 a

† Concentration refers to the internal standard (cyclohexanone 3.6 µg/mL), to which a value of 100 was given; ‡ 2,2,4,6,6 Pentamethyl
heptane; − Not detected; different superscript letters indicate mean differences among strains, for each compound (p < 0.05).

3.5.5. Production of Antimicrobial Substances

Under the present test conditions, none of the strains produced antimicrobials that
inhibited the growth of the indicator strains shown in Table 1.

3.6. Safety of GABA-Producing L. lactis Strains
3.6.1. Biogenic Amine Production

None of the six GABA-producing strains produced tyramine, histamine, or cadaverine
(Table 5) nor were any corresponding gene clusters found in any of their genomes. However,
all the isolates produced putrescine via the agmatine deiminase route (AGDI), but not
through the ODC pathway (Table 5). No significant differences were seen among the mean
concentrations of putrescine produced by the six strains (p < 0.05).

As expected, the AGDI gene cluster involved in putrescine production in L. lactis,
which is composed of aguR (a positive regulatory gene) followed by the aguBDAC operon
(encoding the catabolic enzymes for the decarboxylation of agmatine to putrescine and the
agmatine/putrescine antiporter gene) [38], was identified in all the strains (Table S2).
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Table 5. Biogenic amine production (mM; mean ± standard deviation) in cultures of L. lactis isolates.

L. lactis Isolates Tyramine Histamine Putrescine
(AGDI 1)

Putrescine
(ODC 2) Cadaverine

LEY6 − − 0.785 ± 0.02 a − −
LEY7 − − 0.758 ± 0.02 a − −
LEY8 − − 0.763 ± 0.02 a − −

LEY11 − − 0.791 ± 0.02 a − −
LEY12 − − 0.776 ± 0.01 a − −
LEY13 − − 0.803 ± 0.01 a − −

1 AGDI: agmatine deiminase route; 2 ODC: ornithine decarboxylase route; − BA production not detected; a same
superscript letter indicates no significant differences among groups (p < 0.05).

3.6.2. Antimicrobial Resistance Genes

Neither the RGI nor ResFinder analysis detected any antimicrobial resistance genes in
any of the six GABA-producing L. lactis genomes.

3.7. All Six L. lactis Strains Produced GABA in a Cabrales-Like Mini Cheese Model; None
Produced BA

All six tested L. lactis strains were able to accumulate GABA at concentrations ranging
from 350 mg/kg (LEY6) to 457 mg/kg (LEY12) (Figure 4a) (no significant difference).
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As expected, significant differences in GABA production were recorded (p < 0.05)
compared to the control strain L. lactis SK11, which produced near-negligible amounts.
Apart from the glutamic acid they used in protein biosynthesis, the GABA-producing L.
lactis strains completely transformed the glutamic acid appearing as a consequence of
casein proteolysis into GABA (Figure 4b). In contrast, a mean glutamic acid concentration
of about 670 mg/kg remained in the cheeses made with the non-GABA producing L. lactis
SK11 strain (Figure 4b). None of the cheeses made with any of the six GABA-producing L.
lactis strains, or L. lactis SK11, accumulated any of the BA analyzed, not even putrescine.

4. Discussion

GABA, a compound with beneficial effects on human health, is naturally present in
many varieties of cheese, although the extent of its accumulation depends on multiple envi-
ronmental, technological, and metabolic factors [39]. There is much interest in developing
functional cheeses with high GABA contents, and the use of GABA-producing L. lactis
strains with good technological characteristics as starter cultures deserves investigation.
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In the present work, six L. lactis subsp. lactis strains that produced GABA in GM17 broth
supplemented with monosodium glutamate (Figure 1) were isolated from raw camel’s milk.
To our knowledge, this is the first report of the isolation of GABA-producing L. lactis strains
from milk. Some have been isolated from fermented dairy products such as yogurt [40]
and cheese [41–44], but none has been isolated from the raw milk of any mammal, which
has been the dairy source chosen in this work to look for GABA-producing lactococci. The
amounts of GABA produced by these L. lactis strains ranged from 1.21 mM for LEY13,
to 1.80 mM for LEY7, i.e., in the mid-high range reported for these other L. lactis strains
isolated from other dairy sources than milk [40,42,44].

The technological behavior of the strains agreed with their possession of genomic ele-
ments involved in their adaptation to the dairy environment, such as the lactose utilization
operon (lacR-ABCDFEGX), the proteolytic system (prtP-prtM), and the oligopeptide perme-
ase system (oppDFBCA) (Table S2). Indeed, all six GABA-producing strains showed high
acidification rates in milk, the capacity to clot milk (Table 3), and good proteolytic activity
(Figure 3). While the acid-producing capacity of a starter is important for milk coagulation,
it can also help prevent the growth of spoilage microorganisms and pathogens, and a good
proteolytic system contributes to the release of oligopeptides and amino acids during ripening.
The catabolism of the volatile compounds produced assists in the development of the final
organoleptic characteristics of the fermented product. All six GABA-producing L. lactis strains
produced different volatile compounds after 24 h of growth in milk (Table 4). Thus, all
six showed good technological traits, suggesting they might be of use as functional starter
cultures for the production of GABA-enriched fermented dairy products.

In silico analysis of the strains’ genomes revealed the absence of any antimicrobial resis-
tance gene or gene cluster involved in the biosynthesis of tyramine, histamine, putrescine
through the ODC pathway, or cadaverine. However, all possessed genes responsible for
the production of putrescine from agmatine via the AGDI pathway; this is considered
a specific trait of L. lactis, although many dairy strains have lost it [38]. Although all
six strains produced putrescine in culture media supplemented with agmatine (Table 5),
neither putrescine nor any other BA was accumulated in any of the experimental cheeses.
The absence of agmatine-producing microorganisms in the cheese microbiota would ex-
plain why putrescine did not accumulate. In fact, no agmatine production was detected
in the control cheeses. However, it cannot be ruled out that GABA-producing L. lactis
strains would not synthesize putrescine in cheeses that do contain agmatine-producing
microorganisms; this needs to be further explored. In this respect, it is worth noting that
the elimination of the genes involved in the production of putrescine in E. faecalis has no
effect on its fitness or the expression of other genes [45].

The only discrepancy between the genomic data and the experimental results was
the presence of different bacteriocin-producing loci in the genomes of the L. lactis strains
but a lack of inhibitory activity against the indicator strains tested. However, it should
be remembered that in silico predictions cannot guarantee that loci are complete and
functional. In addition, bacteriocin production in LAB is a highly regulated process
involving several factors, and certainly, bacteriocins are produced only under appropriate
conditions [46]. Moreover, even though the L. lactis strains might have had the capacity to
produce bacteriocins, the indicator strains selected might not have been sensitive to them.
More work is needed to determine the functionality of the bacteriocin loci identified, the
conditions for the production of bacteriocins, and their antibacterial spectrum.

From a technological viewpoint, the most interesting result is that the use of all
six GABA-producing L. lactis strains as starters led to the accumulation of GABA in the
experimental cheeses. The mean GABA concentration of the six cheeses was 384 mg/kg,
while the concentration of the cheese made with LEY12 reached 457 mg/kg. There are
very few reports on the production of GABA-rich cheeses made with GABA-producing L.
lactis starter cultures. One describes the use of L. lactis subsp. lactis biovar diacetylactis 01-7
(approximate inoculum size 2.7 × 108 cfu per mL of pasteurized milk), which is a strain
isolated from a cheese starter [17]. However, the mean GABA accumulation was lower
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(1722 nmol/g [178 mg/kg]) than that achieved in the present work. Another study reports
the production of Saint-Paulin experimental cheeses with high concentrations of GABA
(from 407–1979 mg/kg) [18] using the same 01-7 strain mentioned above and L. lactis subsp.
lactis biovar diacetylactis 01-1 as starter cultures. GABA accumulation in some of those
cheeses was about 4.5 times that of the greatest achieved in the present study (457 mg/kg
in cheeses made with LEY12). However, it should be noted that in this earlier work,
the cheeses were supplemented with monosodium glutamate (0.3% w/w fresh cheese),
which is a substrate for GABA biosynthesis. Similarly, high concentrations of GABA
(up to 766 mg/kg) were reported to accumulate in slurries simulating the composition
of Cheddar cheese when supplemented with 3 mg/g of glutamate and inoculated with
GABA-producing L. lactis subsp. lactis ULAAC-H13 and L. lactis subsp. lactis ULAAC-A23
(isolated from an old-style cheese starter) [47]. The cheeses made in the present study
were not similarly supplemented; all the GABA accumulated was synthesized from the
glutamate released by casein proteolysis (which was totally consumed and is therefore a
limiting factor in GABA production). Taking into account the amount of GABA produced
and the tendency of consumers to reject food additives, the six L. lactis strains isolated in the
present work could be a good technological option. Similar studies by Nomura et al. [18]
and Pouliot-Mathieu et al. [12] describe the production of GABA-enriched Cheddar cheeses
with no added glutamate but using other L. lactis starters. The proteolytic activity of these,
added to that of the lactobacilli present in the cheese microbiota, would release this amino
acid. In the present work, the GABA-producing L. lactis strains were the only starters
added, but the Cabrales cheese model used also carries the proteolytic mold P. roqueforti,
which would have likely caused the appearance of available glutamate.

The parameters used for cheese production in the present work were those routinely
used in making Cabrales cheese, but they might be optimized for GABA accumulation.
A study by Gardner-Fortier et al. [47] determined the optimal glutamate, pH, and salt-
to-moisture ratio conditions for GABA production by L. lactis subsp. lactis in ripening
Cheddar cheese. GABA accumulation increased with the concentration of glutamate
and with the lowest salt-to-moisture ratio tested (3%), but the critical factor was a pH
of 4.8; at pH 5.1 or pH 5.4, GABA production was very poor. These results might be
expected since chloride, glutamate, and low pH are known to regulate the expression of
the GAD operon in L. lactis, and therefore the biosynthesis of GABA [19,21]. Moreover,
the activity of glutamate decarboxylase is enhanced by glutamate and low pH (below
5.0) [18]; the presence of other compounds such as arginine and malate also improve GABA
production [48]. Together, these findings suggest that GABA accumulation in cheeses can
be increased via the optimization of different technological parameters and the use of
starter cultures made by combining the L. lactis strains presented in this study with others
of technological interest.

GABA-enriched cheeses made using the six investigated strains might be expected to
provide health benefits. Inoue et al. [9] showed that a daily intake of 10–12 mg of GABA
over 12 weeks via GABA-enriched fermented milk reduced blood pressure in human
subjects with mild hypertension. The same was observed when mildly hypertensive men
consumed GABA-enriched Cheddar cheese daily (16 mg GABA per day for 12 weeks) [12].
Taking the mean GABA accumulation of 384 mg/kg recorded in the present work, a daily
portion of 50 g of cheese (which would provide about 19 mg of GABA) would be enough
to have positive effects on human blood pressure; for cheeses accumulating the maximum
recorded (457 mg/kg), 23 mg of GABA would be available.

5. Conclusions

This work reports the isolation of six GABA-producing L. lactis subsp. lactis strains
from raw camel’s milk collected in Algeria. Genome sequencing revealed all to possess the
GAD gene cluster responsible for GABA production, plus genes involved in adaptation to
the dairy environment. In addition to showing good technological and safety characteristics,
these strains, when used individually as starter cultures, produced experimental Cabrales-
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like mini cheeses with high GABA concentrations. Therefore, raw Algerian camel’s milk
would appear to be an excellent source of GABA-producing L. lactis strains with good
technological and safety characteristics, which could be used as functional starter cultures
for the production of GABA-enriched cheeses beneficial to consumers’ health.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-8
158/10/3/633/s1, Table S1: Genome features of the GABA-producing L. lactis isolates; Table S2:
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safety properties in the genomes of the GABA-producing L. lactis isolates.
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