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Abstract: Background: The importance of polyphenols in human health is well known; these
compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine.
On the other hand, the different factors that modulate the biological activity of these compounds
are less well known. Conceptualization of the work: In this review we took into account about
200 relevant and recent papers on the following topics: “polyphenols bioavailability”, “polyphenols
matrix effect”, “food matrix effect”, “polyphenols-cytochromes interaction”, after having reviewed
and updated information on chemical classification and main biological properties of polyphenols,
such as the antioxidant, anti-radical and anti-inflammatory activity, together with the tricky link
between in vitro tests and clinical trials. Key findings: the issue of polyphenols bioavailability and
matrix effect should be better taken into account when health claims are referred to polyphenols, thus
considering the matrix effect, enzymatic interactions, reactions with other foods or genetic or gender
characteristics that could interfere. We also discovered that in vitro studies often underrate the role
of phytocomplexes and thus we provided practical hints to describe a clearer way to approach an
investigation on polyphenols for a more resounding transfer to their use in medicine.

Keywords: polyphenols; biological properties; antioxidant and antiviral activity; bioavailability;
preclinical data

1. Introduction

Polyphenols are natural compounds synthesized exclusively by plants, with chemical
features related to phenolic substances with reported bioactivities to modulate oxidative
and inflammatory stress, to alter macronutrient digestion and to exert prebiotic-like effects
on gut microbiota.

Polyphenols are almost ubiquitous in plants, being generally involved in the attraction
of pollinators, the execution of structural functions, the defense against ultraviolet radiation
and the protection of plants against microbial invasion and herbivores [1–3].

These compounds are also common in dietary, such as fruits, vegetables, nuts, seeds,
flowers and tree barks and common beverages such as wine, beer and tea and are, therefore,
an integral part of the human diet. They are partially responsible for the sensory and
nutritional qualities of plant foods, for example astringency, color and odor depending
on the content of polyphenolic compounds [4]. Furthermore, some can also bind and
precipitate macromolecules, such as dietary proteins, carbohydrates and digestive enzymes,
thereby reducing food digestibility [5].

Surely, these compounds attained the prominent position due to their wide distri-
bution in plant-based foods and significant evidence of negative correlation of their con-
sumption with cancers, diabetes and cardiovascular diseases. Both epidemiological and
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clinical evidence suggest that diets high in polyphenols can reduce risk of several age-
related chronic diseases [6]. In this context, there has been a significant increase in the
number of studies related to the application of components with functional properties
and compounds from natural sources in different types of foods, with a view to creating
differentiated products with high added value [4,7–9].

In this review we primarily aimed to focus some pivotal, but often underrated aspects
of polyphenols related with their role in health maintenance; in detail, we called into the
question bioavailability limits and metabolic interactions of this large class of secondary
metabolites. We also attempted to challenge the issue of scarce absorption of polyphenols
and the role of phytocomplexes in understanding strengths and limits of in vitro studies,
providing practical hints to better approach the investigation on the topic.

We took into account about 200 relevant and recent papers on specific topics such as
polyphenols bioavailability, polyphenols matrix effect, food matrix effect, polyphenols-
cytochromes interaction, whereas the most impacting and recent literature on chemical
and biological properties was comprehensively reviewed, by searching in vitro, in vivo
and clinical studies.

2. Polyphenols: Chemical Structure and Biosynthesis

The chemical structure of polyphenols is characterized by the presence of at least
one phenyl rings and one or more hydroxyl substituents. Phenolics range from simple
small single aromatic-ring structures to the complex and weighty condensed tannins.
Polyphenols originate in nature through two main pathways that can occur independently
or together [10].

One route involves the binding of two-carbon units, that is, activated acetate, to form
polyketides, which undergo subsequent cyclisation into polyphenols [5].

Another mechanism is the shikimic acid pathway, by which most phenolic compounds
are biosynthesized. Via this route, the derived carbohydrate precursors of the glycolysis and
pentose phosphate pathways are converted to aromatic aminoacids, such as phenylalanine,
tyrosine and tryptophan [11]. The enzyme phenylalanine ammonia lyase, via cinnamic acid,
gives rise to the formation of caffeic and ferulic acids, which are precursors of the largest
group of polyphenols, that is flavonoids. The structural diversity of flavonoid molecules
arises from variations in hydroxylation pattern and oxidation state of the central pyran
ring, resulting in a wide range of compounds: flavanols, anthocyanidins, anthocyanins,
isoflavones, flavones, flavonols, flavanones and flavanonols [10] (Figure 1).
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There are many ways to classify polyphenols. The simplest of which is the subdivision
into flavonoids and non-flavonoids, but they can also be subdivided into many subclasses
depending on the number of phenol units within their molecular structure, substituent
groups and/or the linkage type between phenol units.

3. Polyphenols: Not Only Conventional Antioxidants

Despite their wide distribution in plants, the antioxidant effects of polyphenols have
come to the attention of scientific community only rather recently. Research on antioxidant
properties of polyphenols truly began after 1995 (Figure 2), as the number of papers
published/year attests. Perhaps, the main factor that has delayed research on polyphenols
is the considerable diversity and complexity of their chemical structures.
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Analytical methods used for their quantification and biological data obtained for
polyphenols, are dispersed in a manifold of literature sources. This is complicated by the
fact that different polyphenol content in each food may vary greatly according to variety,
agricultural and storage conditions. Due to the complexity of this wide group of plant
metabolites, however, many polyphenols remain unidentified. As a result, information
in the literature on the content and composition of polyphenols in plant foods is not only
incomplete, but also contradictory and difficult to compare. Some efforts are spent to
organize this multitude of information in databases, such as Phenol-Explorer that provides
detailed information on the classes and distribution of polyphenols in foods [12].

The role of dietary polyphenols in maintaining health and in disease prevention is
unquestionable and has been attributed, in part, to the antioxidant properties and in part to
the free radical-scavenging capacity of these biomolecules. The total antioxidant activities
of fruits is mainly due to their polyphenols content, other than vitamin C [13] since they
suppress the generation of free radicals and have the role of chain-breakers in the direct
radical scavengers of the lipid peroxidation chain reactions [14].

Beyond to antioxidant and radical scavenging ability, polyphenols are also known as
metal chelators. In fact, the presence of aromatic rings in conjunction with the occurrence
of some functional groups (carboxyl, hydroxyl and carbonyl groups) making them able to
bind to different metals [15]. This ability is important for plants, because phenols enhance
nutrients uptake by forming chelates with metal ions. Moreover, chelation of transition
metals such as iron or copper, reduces the rate of Fenton reaction, thus preventing oxidation
caused by reactive hydroxyl radicals [16].

Furthermore, it has been found that polyphenol scan function as co-antioxidant and
are involved in the regeneration of essential vitamins. As an example, Zhou and co-
authors [17] reported a detailed study on the mechanism of the antioxidant synergism of
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α-tocopherol with green tea polyphenols. The α-tocopherol is the principal component
and the most active form of vitamin E and it is the major endogenous lipid-soluble chain-
breaking antioxidant in human plasma. The antioxidant efficiency of vitamin E could be
enhanced by another coexisting antioxidant (such as vitamin Cand green tea polyphenols)
if the latter could reduce the α-tocopheroxyl radical to regenerate vitamin E. Therefore,
the α-tocopherol regeneration reaction by coexisting antioxidants plays a crucial role
in enhancing the antioxidant efficiency of α-tocopherol and eliminating the so-called
tocopherol-mediated peroxidation.

Recently, there is a new point of view from which phytochemicals and particularly
flavonoids, do not act as strictly as conventional antioxidants, but also as modulator in cell
signaling [18,19]. The comprehension of the mechanism of action of these biomolecules
should be the focus of future research on polyphenols.

4. The Problem of Bioavailability of Polyphenols

In studies of polyphenols in food, particularly in fruit and vegetables, much effort
is put into their identification, but two fundamental characteristics are often overlooked:
their effective bioavailability and the fact that these compounds are part of a matrix, the
phytocomplex, with other molecules that can interact with each other in unpredictable
ways.

The bioavailability of natural molecules depends on several factors such as: interaction
with the herbal matrix, the chemical and physical characteristics of the compound, the
stability of the digestive process, their metabolization by intestinal enzymes, liver and
intestinal microbiota [20,21]. Regarding the bioaccessibility of polyphenols, it can be
influenced by the transformation and cooking processes that the food undergoes, the
interaction with components of the food matrix, as well as by the food bolus and the fluids
secreted by the gastrointestinal tract during the digestion process [20].

Studies conducted on anthocyanins (typical of red wine, red fruits and red onion)
have found their low bioavailability: in fact, only 1–2% of anthocyanins introduced with
food maintain their original molecular structure. This is due to various factors such as pH
variation in the gastrointestinal tract, hydrolytic reactions by enzymes in the small intestine,
phase II metabolization processes in the intestine and liver (glucuronidation, sulfation and
methylation) and the enzymatic and catabolic action of the intestinal microbiota [22].

In plant foods, the flavonoid family is the predominant one, the constituents of which
are mostly found in glycosidic form. Among these, quercetin represents the most abundant
constituent. In fact, its presence appears to be high in many foods such as red onions
(65 mg/100 g) and cranberry (149 mg/100 g) [23]. The binding with glucose or other
sugars confers higher bioavailability to quercetin and flavonols, but also to several other
polyphenols: indeed, glycosides can be transported into the enterocyte through the sodium-
dependent glucose transporter SGLT1 and subsequently hydrolyzed into cells by a cytosolic
β-glucosidase [24]. Some exceptions occur: the bioavailability of flavan-3-ols, typical of
cocoa and of green tea [25] is higher than that of other flavonoids; it ranges from 2% to
15% in green tea [26] and from 5% to 10% for cocoa catechins [27]. Dietary flavan-3-ols are
among the few flavonoids that are found mainly in an aglyconic form and they are almost
stable in the acidic environment of the stomach, while they are less stable in the alkaline
intestinal pH [26]. The bioavailability of flavan-3-ols is closely related to their chemical
structure, to pH change and strongly influenced by the intestinal microbiota [28,29].

Stilbenes belong to the group of non-flavonoid polyphenols: resveratrol is the most
investigated compound of this class, found in foods such as grapes, peanuts, berries and
red wine [30]. Resveratrol is characterized by a poor pharmacokinetic profile as it has low
water solubility, low chemical stability during the digestive process and consequently low
bioavailability, although it has been attributed important positive biological activities for
human health [31].

It seems that the reduced oral bioavailability of resveratrol is caused by its susceptibil-
ity to undergo sulfation and glucuronidation during phase II reactions in the gut and in the
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liver [32], as well as extensive metabolism by gut bacteria [33]. It was observed that after
oral consumption of 25 mg resveratrol, less than 10 ng/mL of plasmatic peak concentration
of resveratrol after 0.5 h was achieved [34–37].

Very recently, Kamiloglu and co-authors [38] reviewed the effect of food matrix on
flavonoids bioavailability and through a comprehensive analysis of in vitro, in vivo and
clinical studies showed that different classes of common dietary flavonoids are markedly in-
fluenced in their absorption by macro- and micronutrients. In particular, authors discussed
that flavonoids such as catechins, antocyanidins, oligomeric proanthocyanidins, tannins,
flavones, flavonols, in different measures, have higher bioavailability in particular in the
presence of oils, lipids and carotenoids, but also when combined with digestible carbohy-
drates, hydrophilic and lipophilic vitamins, alkaloids such as caffeine and P-glycoprotein
inhibitors such as piperine, curcumin. On the contrary, in vitro and in vivo findings sug-
gested that minerals and in a higher extent proteins and dietary fibers negatively affect
flavonoids absorption.

Drakou and co-authors [39] also investigated how iron and zinc absorption (dialyzabil-
ity) could be influenced by food matrix in an in vitro digestion model, taking into account
different varieties of selected foods, from conventional or organic farming, namely table
olives, tomatoes preparations and legumes containing different amounts of polyphenols.
Authors found that differences in iron and zinc dialyzability were observed among differ-
ent varieties of table olives, tomatoes and legumes tested and not from farming conditions
or polyphenols content.

Little is known about the interactions between different polyphenols at pharmacoki-
netic level. In [38] variable interactions, positive and negative, were reported, dependent on
the used experimental model. In humans, findings suggest a positive effect of the polyphe-
nols matrix: for examples, when administered together, quercetin positively modulates
resveratrol pharmacokinetic features; indeed, quercetin inhibits liver glucoronidation and
sulphation of resveratrol, increasing its bioavailability [40,41]. Researches on extra virgin
olive oil (EVOO) helped to clarify, at least in part, the intricate interactions, synergies, or
interferences of polyphenols. The two most studied phenols in EVOO are tyrosol (TYR)
and hydroxytyrosol (HT), endowed with antioxidant, anti-inflammatory and cardiopro-
tective properties [42] that are bio-transformed by CYP2A6 and CYP2D6 both in animal
models [43] and in humans [42]; TYR is converted in HT and this may lead to a beneficial
effect as HT would appear to be more active than TYR. The same positive effect of TYR/HT
transformation can be obtained in red wine and dark beer [44]. CYP2A6 and CYP2D6 activ-
ity differ in male and female, thus indicating that not all individuals metabolize phenols in
the same way and also highlighting differences between the two sexes [44]. Other examples
worthy to be cited in terms of higher bioavailability of dietary polyphenolic complexes are
yet cited red wine for resveratrol absorption [35] and flavan-3-ols of green tea [26,45] and
cocoa [27].

When considering the phytocomplex, enzymatic interferences between different
polyphenols and between polyphenols and food or drugs should be carefully considered.

Cytochrome interactions are the best studied enzymatic metabolic interferences of
polyphenols. Interestingly, this has been recently reported for epigallocatechin-3-gallate
(EGCG), a polyphenol abundant in green tea [46]: EGCG’s modulates activity of cy-
tochromes P450 (CYP) 1A2, 2E1 and 3A4, showing anti-inflammatory and protective
activity against potentially hepatotoxic drugs.

Other biological health-protective activities resulting from the modulation of cy-
tochromes by polyphenols could also be mentioned: resveratrol (CYP1A1-CYPB1) as a
potential chemopreventive against dioxin induced human mammary carcinogenesis [47],
ε-viniferin (grape-wine) as an inhibitor of CYP1A1, CYP1B1 and CYP1E1, cytochromes
involved in the activation of carcinogenic compounds [48] and even red wine (CYP2E1) in
the mitigation of ethanol damage in the kidney [49].

However, potentially undesirable effects of modulation of cytochromes that may lead
to their partial inhibition or inactivation should not be neglected: for example, 6′-7′ of
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hydroxybergamottin and bergamottin (CYP2C19) in grapefruit juice [50] and resveratrol
(CYP1B1-CYP1A1-CYP1A2) [51], effects also confirmed in humans [52].

Littlewood and co-authors [53] reported the activity of red wine extracts on phe-
nolsulfotransferases and showed, probably due to the action of phenolic flavonoids, an
inhibition on human platelet P- and M-phenolsulfotrnasferases of 99% and 12%, respec-
tively. Inhibition of these two enzymes, involved in the metabolism of many phenols and
also drugs, could have important clinical consequences. Maier-Salamon and co. [54] also
studied biotransformation provided by uridine 5′-diphospho-glucuronosyltransferases
(UDP-glucuronosyltransferases) on grape polyphenol piceatannol reporting that glucoro-
nidation strongly influences its bioavailability, resulting to be crucial in the elimination of
orally taken dietary piceatannol [55]. Even when it comes to EVOO, research continues
with the discovery of new phenols such as oleocanthal [56–58] or oleacein (oleuropeina-
glycone) [59].

Table 1 summarizes aspects of bioavailability of main different class of dietary polyphe-
nols, cytochrome interactions and the matrix effect.

Table 1. Oral bioavailability of the most common dietary polyphenols, their interactions with different CYP450 isoforms
and the effect in terms of modulation of bioavailability of polyphenols exerted by carbohydrates, lipid, proteins, minerals
and other nutrients and food minor constituents.

Polyphenol or
Polyphenol Class

Oral
Bioavailability

Main Cytochrome
Interactions

Polyphenol-Polyphenol
Interaction Nutrients Interaction

Anthocyanidins 1–2% [22] Weak CYP450
inhibitors [60] Not known

Lipids, carotenoids,
digestible carbohydrates,

hydrophilic and lipophilic
vitamins, alkaloids,

P-glycoprotein inhibitors
improve flavonoids and
curcumin bioavailability

Minerals, proteins and
dietary fibers decrease

flavonoids
bioavailability [38]

Curcumin <1% [61] CYP3A4
(inhibition) [38] Not known

Flavan-3-ols
2–15% in green tea;

5–10% in cocoa
beans [26,27]

EGCG: inhibition of the
activity of CYP1A2

CYP3A4
CYP2E1 [46]

Green, black and oolong
tea phenolic complex

improve EGCG
bioavailability [45]

Hydroxytyrosol High [62] Plausible interaction
with CYP450 [62]

In olive oil tyrosol is
converted in

hydroxytyrosol by
CYP2A6 and

CYP2D6 [42,43]

Isoflavones High [63]
Genistein: CYP450
ω-hydroxylase

subfamily inhibitor [60]
Not known

Quercetin
<1% (up to 17%

when ingested as
glycoside) [64]

CYP1A2
CYP2A6

(inhibition) [65]
Not known

Resveratrol <1% [37]

CYP3A4
CYP1B1
CYP1A1
CYP1A2

(inhibition) [31,37,51]

Red wine phenolic
complex improves

resveratrol
bioavailability [35,37]

Quercetin improves
resveratrol

bioavailability [40,41]
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One should therefore wonder how a consumer could be sure to get a beneficial effect
from dietary polyphenols without considering that, enzymatic interactions, reactions with
other foods or genetic or gender characteristics could interfere. Therefore, the study of the
biological activities of polyphenols still remains a challenge, because if it is true that: “In the
foodomics era, considering a complex foodome including over 25,000 substances that make
up the human diet, it appears to be outdated to pursue the hunt for biological activities
of one function/compound at the time” [66], it is equally true that: “Studies that identify
the active components of foods along with the mechanisms by which they exert their
effects, may not only overshadow speculation, but should improve our understanding of
the importance of diet and may also accelerate the identification of new anticancer agents”
(http://oncology.thelancet.com, last accessed on 20 September 2021).

Time will tell which of these two research conceptions is the more effective.

5. Bioavailability of Polyphenols: What In Vitro Tests Do Not Tell Us

Important concerns related to the poor bioavailability of polyphenols and matrix
effect are often underrated aspects and in vitro studies, that count over than 90% of overall
studies on polyphenols, may lead to unplausible perspectives in the context of the role of
polyphenols for human health.

Studies on antioxidant and anti-inflammatory properties of polyphenols clearly depict
the difference between in vitro data and the clinically observed effects of polyphenols.

Many different polyphenols, both considered as dietary products and active principles
of medicinal plants used in prevention and in treatment of diseases, have been claimed to
display a strong antioxidant activity. The importance of counteracting oxidative stress is
pivotal in many conditions characterized by a red/ox unbalance, such as aging, chronic
inflammatory diseases, but also cancer and degenerative conditions [67]. In vitro studies
have highlighted the high biological potential of many polyphenols and attempted to
assess different mechanism of action, focusing on scavenging activity and modulation of
intracellular antioxidant enzymes. IC50 of different polyphenols in DPPH (2,2-diphenyl-
1-picrylhydrazyl) or ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid) essays
have been collocated in the range of 5–25 µg/mL, as in the case of tyrosol [68], hypero-
side [69], EGCG [70], cyanidin [71] and higher for resveratrol [72]. These concentrations
are higher than those achievable in vivo when the same polyphenols have been tested and
it could be postulated that in vivo direct scavenger activity and indirect interaction with
antioxidant intracellular pathways participate at the same time in the biological effect of
polyphenols.

As recently reviewed by Abdel-Tawab in 2021 [73] about the anti-inflammatory
effect of well-known natural products—among those polyphenols such as curcumin,
quercetin and resveratrol—many questions should be better discussed and in vitro data
should be accurately interpreted. Curcumin is a well-known anti-inflammatory molecule
with a elucidated mechanism of action that takes into account the upstream and down-
stream interaction with several pathways such as lipo- and cyclo-oxygenase modula-
tion (LOX and COX), mitogen activated protein kinases (MAPKs) and NF-κB signal-
ing (https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-
curcuma-longa-l-rhizoma-revision-1_en.pdf, last accessed on 20 September 2021); nev-
ertheless, in cell models the effectiveness of curcumin has been only recorded at high
concentration and IC50 in COX-2 and NF-κB inhibition are >50 µM and 10–20 µM, re-
spectively [73], concentrations unreachable after oral administration even of improved
liposomial formulations containing all the pool of curcuminoids, i.e., curcumin, demethoxy-
curcumin and bisdemethoxycurcumin, that could provide 200 ng/mL ca. as maximum
plasmatic concentration of total curcuminoids [74]. For these reasons, even if different spe-
cific targets have been proposed to explain anti-inflammatory effect of curcumin, clinically
observed effects of this polyphenol have unclear mechanism.

http://oncology.thelancet.com
https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-curcuma-longa-l-rhizoma-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-curcuma-longa-l-rhizoma-revision-1_en.pdf
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Similarly, in vitro quercetin showed marked inhibitory effects on different inflamma-
tory targets such as ERK and p38 MAPKs, NF-κB and it showed to reduce pro-inflammatory
IL-1β, IL-6, IFN-γ and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated immune
cells; effective concentrations of quercetin in targeting inflammatory targets in in vitro
studies ranged from 1 to 25 µM [64–75]. Despite this, again, the poor oral bioavailability of
this flavonoid, not more than 2% in the aglycone form [68], lead us to consider that only
repeated administration of high dosage of quercetin could exert some effects related to the
interaction with inflammatory targets.

Indeed, recently Dehghani and co-authors [76] showed that 500 mg/day of quercetin
for 8 weeks modulated antioxidant markers, but failed in reducing inflammatory ones
in post-myocardial infarction patients, whereas a previous clinical trial [77] reported that
the same dosage of 500 mg/day of quercetin for 8 weeks in women with rheumatoid
arthritis significantly reduced TNF-α level in comparison to placebo. It is known that
dietary quercetin, in glycoside form, is more bioavailable than aglycone (up to 17%) [64],
but the amount of this flavonoid in food is low. Red onion is the main conventional dietary
source of quercetin glycosides (0.65 mg/g) [23], but clinical trials failed to address any
evident beneficial role of onions and concentrated extracts in men [64,78].

As regards resveratrol, this stilbene has been extensively investigated both in vitro and
in clinical trials. Inflammatory targets targeted by resveratrol and effective concentrations
found in vitro cell models were similar to those depicted for quercetin [73] but also for
resveratrol, bioavailability is not more than 1% of oral dosage administered [34] and many
mechanisms elucidated in vitro are not unequivocally connected with plausible in vivo
biological effects. As seen for quercetin, and similar for resveratrol, a long period of
administration (4–12 weeks) with 500–1000 mg/day is required to produce a marked
modulation of inflammatory markers, in case of patients with ulcerative colitis [79], in
patients with polycystic ovary syndrome [80] and in the management of rheumatoid
arthritis [81].

Evidence have claimed that plausibly quercetin and resveratrol metabolites, such as
sulfonated and glucuronidated derivatives in vivo may have a major role, higher than the
unmodified bioavailable fraction [82].

If in vitro assays may lead to improper understanding of mechanism of action of
polyphenols, in some cases, because the poor bioavailability of these natural products, also
they could propose unplausible biological effects. It is the current state of the research
on antiviral activity of polyphenols [83], with particular regard on the activity against
SARS-CoV-2. To date, more than 110 papers have been published in only 2 years to
describe the potential of polyphenols as agents against the new SARS-CoV-2 in vitro and a
similar number of computational studies were performed; again, resveratrol, curcumin,
EGCG and quercetin emerged as promising molecules. These dietary polyphenols have
clearly showed specific inhibitory activity on the angiotensin converting enzyme 2 receptor
(ACE2r)–viral spike protein binding [84–86], and/or on viral proteases [87,88], but in any
cases IC50 was below 1 mM. One of the lowest virucidal effect against SARS-CoV-2 as
regards dietary polyphenols was reported for curcumin (IC50 0.448 mM), mainly exerted
through a non-specific virucidal mechanism [87]. These data once more suggest that if a
beneficial role for dietary polyphenols could be postulated in pre- or post-viral entry, it
should be proved through clinical trials that currently are missing since pharmacokinetic
aspects and matrix interferences have been very rarely considered and in vitro studies are
inadequate to draw any conclusion.
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6. From the Bench to Pre-Clinical and Clinical Studies on Polyphenols: Practical
Instructions for Use

Cell models and other in vitro studies represent a pivotal step to study natural com-
pounds and other active principles; ethical, versatile and cost effective, they are a step
necessary to move forward in every field of pharmacology. Thus, is it possible to treasure
what animal models and clinical trials taught as regards polyphenols to plan more sound-
ing in vitro preliminary studies? Definitively yes. Some simple suggestions, very often
underrated, should be considered.

6.1. Single Polyphenols or Phytocomplex: The Importance of the Sample under Investigation

The study of a polyphenolic compound should start from the knowledge of its nat-
ural occurrence, market availability and, in case, matrix effect. Quercetin, curcumin or
resveratrol could be purified from dietary sources and they are easily available as extracts
with a content >95–98%, whereas ECGC and other catechins, anthocyanidins, the most part
of other flavonoids or phloroglucinols are only available, in variable amounts, in herbal
extracts or in other concentrated forms. In these cases, if a molecule is investigated as a
pure compound in in vitro tests, its actual content in extracts or preparations as well as
the matrix effect should be always considered. Practically, the study of compounds such
as EGCG or malvidin or hyperforin, just to cite well known and investigated molecules,
in cell models and cell-free tests should be compared to actual available sources, in these
cases, green tea, red fruits and Hypericum perforatum L. extracts, in order to better interpret
plausible biological effects.

6.2. Pharmacokinetic Aspects

The knowledge of the pharmacokinetic of polyphenols is fundamental not only to
plan in vitro experiments testing plausible concentrations, but also to avoid upstream
methodological errors: for example, many papers have been published on several biological
effects exerted by high concentrations of hyperoside and genistin in cell models, despite
these two glycosylated polyphenols undergo a rapid and extensive metabolism produced
by gut flora, their absorption is even lower than aglycone forms [89,90] and they are
converted in quercetin and genistein that should have been tested as well.

The use of computational tools such as ADMET predictors provides a simple and modern
approach in preclinical studies [91], which is particularly useful for the study of natural
compounds and for setting the correct concentrations and set of molecules to be tested.

6.3. Study of the Mechanism of Action

This is a point yet discussed in this paper, but worthy to be highlighted: in vitro studies
performed at concentrations achievable after oral administration provide fundamental
understanding of mechanism underlying observed biological effects of polyphenols and
other active principles, but the opposite, i.e., transferring in vitro results to assume a
biological effect is very often a confounding factor as seen in many papers on curcumin,
resveratrol and other polyphenols.

Moreover, even practical experimental elements result in an in vitro investigation
on mechanism of action plausible or unrealistic. An example that could be cited is the
duration of treatment used: upstream binding on surface receptors, transduction factors
phosphorylation and activation and many antiradical and antioxidant effects should be
studied only for a very short time, in terms of minutes, whereas the downstream release of
cytokines or other cell mediators could be investigated after a longer time of treatment.

Table 2 summarizes the main concerns related to in vitro studies of common dietary
polyphenols with poor bioavailability studied as inflammatory modulators and practical
suggestions to overcome them.
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Table 2. In vitro anti-inflammatory activity of quercetin, curcumin and resveratrol: concerns and suggestions for a proper
study of these poor available polyphenols.

Polyphenol Studied Effects Models Findings Main Concerns Possible
Suggestions

Quercetin

Pro-inflammatory
cytokines release

inhibition

Cyclooxygenase and
lipoxygenase

inhibition

Inhibition of Src- and
Syk-mediated

PI3K-(p85)

Inhibition of
intracellular calcium

influx and PKC
signaling

Human umbilical
cord blood-derived
cultured mast cells

(hCBMCs)

Human normal
peripheral blood

mononuclear cells
(PBMC)

Human monocytes
(THP-1)

RAW 264.7
macrophages

T lymphocytes

Mast cells

Microglial cells
BV-2

Anti-inflammatory
activity only

exerted at
concentrations

>1 µM, more often
in the range

10–100 µM [73,75]

Effective
concentrations are

high if compared with
those normally

achievable in vivo [73]

Quercetin is
considered one of the

most impacting
dietary flavonoids, but

it mostly occurs in
food as glycoside [23]

In vitro demonstrated
effects could only be
referred to repeated

administration of high
dosesof

quercetin [76,77]

Quercetin should
be tested in vitro at

nanomolar level

Quercetin should
be investigated
both as single

compound and in
matrix when its
dietary role is

taken into account

Investigation on
quercetin should

consider simulated
digestion in order

to evaluate the role
of metabolites

Curcumin

Upstream signaling
and modulation of
transduction and

transcription factors

Downstream level of
pro-inflammaotry

markers

Different human
immune cell lines

Human umbilical
vein endothelial
cells (HUVEC)

Tracheal smooth
muscle cells

Head and neck
cancer cells

RAW 264.7
macrophages

Oesophageal
epithelial cells

Microglial cells

Strong
anti-inflammatory
activity exerted at

concentrations
>10 µM
[73,92]

Effective
concentrations are

high if compared with
those normally

achievable in vivoand
in vitro tests hardly

could explain clinical
findings [73]

Curcumin occurs in
food and food

supplements in
complex with other
curcuminoids [23]

Curcumin and
curcuminoids

should be tested
in vitroat

nanomolar level

Curcumin should
be investigated
both as single

compound and in
matrix together

with other
curcuminoids
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Table 2. Cont.

Polyphenol Studied Effects Models Findings Main Concerns Possible
Suggestions

Resveratrol

Arachidonic acid
pathways

MAPKs pathways

NF-κB signaling

AP-1 pathways

Pro-inflammatory
cytokines release

inhibition

A549
adenocarcinomic
human alveolar
basal epithelial

cells

Human
keratinocytes

Human mammary
epithelial cells

Human T
lymphocytes

THP-1

HUVEC

RAW 264.7
macrophages

Myeloid leukemia
cells

Cardiomyocytes

Chondrocytes

Mesangial cells

Osteoblasts

Pancreatic cancer
cells

Benign prostatic
hyperplasia

epithelial cell line
(BPH-1)

Anti-inflammatory
activityexerted at

concentrations
>1 µM
[73,93]

Effective
concentrations are

high if compared with
those normally

achievable in vivoand
in vitro tests hardly

could explain clinical
findings [73]

In vitro effects could
be not referred to

dietary resveratrol
contained in grape,

wine or in other
source, given its poor

content [37,93]

Resveratrol should
be tested in vitro at

nanomolar level

Investigation on
resveratrol should
consider simulated
digestion in order

to evaluate the role
of metabolites

7. Conclusions
Polyphenols: A Lesson from Pharmacokinetics to Transfer Theory to Practice

The research on polyphenols covers a wide space within the scientific community,
ranging from agriculture to applied botany, from nutrition to evidence-based medicine.
It is unambiguous that polyphenols consumption, both from dietary and from concen-
trated extracts, is related to many positive effects on human health, starting from the
modulation of oxidative stress and inflammation. Paradoxically, positive epidemiologic
data and clinical outcomes have often led to an uncritical acceptance of mechanisms and
classical pharmacological activities attributed to polyphenols, but actually several com-
plicating elements have to be taken into account. In this review, some of these factors
have beenfocused on. Pharmacokinetic aspects of polyphenols and metabolic interactions
are called into question; indeed, it could be always questioned if and in what extent a
beneficial effect from polyphenols could be obtained without considering the matrix effect,
enzymatic interactions, reactions with other foods or genetic or gender characteristics that
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could interfere. It is true that, particularly with food, pursuing the biological activities
of only one compound is still not convincing. Underrating the role of phytocomplexes
and bioavailability in studying polyphenols is a common feature of many in vitro studies,
the most of those published on the topic, but it is an actual confounding factor for the
understanding of polyphenols biological effects. Here, we attempt to give practical hints
and to describe a clearer way to study polyphenols on the bench for a more resounding
transfer to clinical trial and use in medicine.
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