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Abstract: The aim of the study was to evaluate the effect of various silane coupling agents on the
micro-push-out bond strength between a hydrogen peroxide-etched epoxy-based fiber-reinforced post
and composite resin core. Seventy-five cross-linked epoxy-based fiber-reinforced posts were etched
with 24% hydrogen peroxide for 10 min. Then they were divided into five groups according to various
silane coupling agents and bonded to a composite core. A Universal Testing Machine was utilized to
evaluate the push-out bond strength. In addition, all groups’ modes of failure were assessed. The
push-out bond strength data in MPa were analyzed using ANOVA and a Tukey HSD post hoc test
to reveal any difference between the groups. Results revealed that the application of a two-bottle
silane coupling agent exhibited the highest bond strength, while the application of a one-bottle silane
coupling agent demonstrated the lowest bond strength for a hydrogen peroxide-etched fiber post
bonded to a composite core material, which was statistically significant (p < 0.05). The strongest
association with the highest bond strength was found with the two-bottle silane coupling agent when
compared to the one-bottle. The study highlighted that the application of a silane-coupling agent
may affect the bond strength between composite and epoxy-based fiber-reinforced posts.

Keywords: fiber post; silane; dental adhesive; root canal treatment; bond strength

1. Introduction

Endodontically treated teeth commonly present with large amounts of missing tooth
structure due to caries or existing restorations, contributing to high fracture rates [1,2]. This
incidence can mainly be attributed to the loss of structural integrity associated with access
cavity preparation, caries, and the inevitable flaring of the canal in the cervical area [3,4].

Thorough assessment of such teeth, including the efficacy of endodontic treatment,
the quantity of dentine thickness, and post-endodontic direct restoration, which should be
of high strength and acceptable clinical performance, all affect how long endodontically
treated teeth will survive [3]. The clinician must take into consideration how challenging
it is to provide core restoration to the remaining tooth structure, which depends on the
remaining tooth structure, the core material, and the use of different adhesive cements.

There is increased interest in the use of resin composite material to restore endodonti-
cally treated teeth. This is attributed to the characteristics of the resin composite’s ability to
bond to tooth structure as well as the advanced development of the physical properties of
such materials. Despite the ability of resin composite materials to bond to remaining tooth
structure, using fiber-reinforced posts is mandatory to retain the core in some endodonti-
cally treated teeth that have lost a significant amount of their structure. Fiber posts have
an elastic modulus close to that of dentin, have adequate aesthetic properties when used
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under ceramic restorations, have the ability to bond to resin composite core material, have
biocompatibility and resistance to corrosion, and require a shorter treatment time [5].

The retention and stability of the post system and core buildup are pivotal deter-
minants for an effective and successful restoration. It has been reported that a coronal
restoration improves the outcome of endodontically treated teeth [6], thus supporting the
crucial nature of the bond between fiber posts and a resin composite core, as it enables the
interface to transmit stresses under functional loading.

Factors influencing the retention of resin composite cores to the prefabricated post
include post-surface treatment and post-head design, as well as the compositions of the
post and resin composite core material [7].

To enhance the bonding of composite resin cores to posts, multiple surface treatments
have been proposed. One of these treatments is the application of silane to the post surface.
Silane is applied to the post surface before cementation and after roughening the post
surface with sandblasting or the application of hydrogen peroxide. Numerous studies
have evaluated the effects of silane agents on bond strength between resin composite cores
and fiber-reinforced posts, including the effect of salinization on different matrix types of
fiber-based posts [8], the influence of different surface treatments on the bond strength
of silanted fiber posts to resin composite cores [9,10], and the impact of temperature on
various silane coupling agents [11].

In a prior study, the bond strength of a composite resin to a glass fiber post treated
with phosphoric acid, a silane coupling agent, and unfilled resin was assessed. The findings
suggested that silane and unfilled resin applications could enhance the bond strength
between glass fiber posts and resin composites [12].

The effect of silane coupling agents on the bond strength between a fiber-reinforced
post and a composite resin core is controversial. Daneshkazemi et al. compared the effect
of surface treatment on the bond strength of a composite core bonded to an epoxy-based
fiber-reinforced post. The study reported that the application of the silane coupling agent
had a significant effect on the bond strength of the glass fiber posts to composite resin when
compared to the application of 30% hydrogen peroxide or 35% phosphoric acid to the fiber
post [13]. On the other hand, Wrbas et al. showed that silane application did not increase
the bond strength of a composite core to an epoxy-based fiber post [11].

The bond strength between glass fiber posts and composite resin cores was examined
by Novais et al. in 2011 [14] in relation to the effects of air drying temperature and various
silane coupling agents. Warm air drying following silane application did not result in an
increase in the bond strength between the fiber-reinforced composite post and the composite
core. However, when utilized with air drying at room temperature, the two-component
silane produced stronger bond strength than all prehydrolyzed silanes [14].

The aim of this study is to evaluate the impact of various silane coupling agents on
the bond strength between a hydrogen peroxide-surface-etched epoxy-based fiber post and
a composite resin core.

The null hypothesis tested was that different types of silane coupling agents would
have no effect on the bond strength between a hydrogen peroxide-surface-etched epoxy-
based fiber post and a composite resin core.

2. Materials and Methods
2.1. Fabrication of the Experimental Models

We used 75 size 2 fiber-reinforced posts (Rely X fiber post, 3M ESPE, St. Paul, MN,
USA). RelyX fiber posts have a tapered shape, with a diameter at the coronal end of 1.6 mm
and 0.8 mm at the apical end. Moreover, these posts have no mechanical retentive features.
The selected posts were etched using 24% H2O2 for 10 min. The posts were placed in a
bur holder and then immersed in a container filled with 24% H2O2 for 10 min. Posts were
then washed in an ultrasonic cleaner filled with deionized water for 10 min and then dried
with oil-free air (an air-water syringe). The H2O2-etched fiber-reinforced posts were then
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randomly allocated to five different groups; each group consisted of 15 posts based on the
type of silane used, then bonded to a resin composite core.

For control Group 1 (G1 = C), composite core material (Luxacore Z Dual, DMG) was
applied to H2O2-treated Rely X fiber posts without silane coupling agent. For Group 2
(G2 = HV), a two-bottle silane coupling agent (Vitique; DMG) was applied to Rely X fiber
posts. One drop of Vitique silane adhesive and one drop of Vitique silane activator were
placed in a mixing palette (at a ratio of 1:1) and mixed with a micro-brush for 15 s. The
mixed silane agent was applied to the surface of each post using a micro-brush and let set
for 10 s. Then air was gently blown over the surface of the post. For Group 3 (G3 = H3M), a
pre-hydrolyzed (one-bottle) silane coupling agent, RelyX Ceramic Primer (3M ESPE), was
applied to Rely X fiber posts using a disposable micro-brush and let set for 60 s. Then air
was gently blown over the surface of the post. For Group 4 (G4 = HMP), a pre-hydrolyzed
(one-bottle) silane coupling agent, Monobond Plus (Ivoclar-Vivadent), was applied to Rely
X fiber posts using a disposable micro-brush and let set for 60 s. Then air was gently blown
over the surface of the post.

For Group 5 (G5 = HMN), a pre-hydrolyzed (one-bottle) silane coupling agent,
Monobond N (Ivoclar-Vivadent), was applied to Rely X fiber posts using a disposable
micro-brush and let set for 60 s. Then air was gently blown over the surface of the post.

To standardize the size of the composite core around each fiber post, a special type of
conical transparent celluloid crown (TOR VM Ltd.) was used as a matrix for core buildup.
Each matrix has a dimension of 10.0 mm height, 10.0 mm diameter at the cervical end, and
8.0 mm diameter at the coronal end. The study design is illustrated in Figure 1.
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A custom-made metal mold was fabricated (Figure 2) to standardize the position of
each fiber post within the composite core and the method of application of the composite
core material. The mold consisted of two parts that were 15.0 mm wide, 30.0 mm long,
and 30.0 mm high. When the two parts are assembled together, the post is held in the
center of the celluloid crown form, which can sit over the upper part of the stainless-steel
mold. Furthermore, a tunnel was made in the stainless-steel mold to allow the placement
of the nozzle (Nanoceram-Bright, Nanohybrid light curing composite kit, DMP), which is
used for injecting the composite core material around each post (Figure 3). To ascertain the
centricity of each fiber post within the composite core material, a 1.6 mm hole was made in
the coronal end of each celluloid crown form using a hot metal instrument (Figure 4). The
position of each fiber post was, therefore, stabilized by the hole made in the customized
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stainless-steel jig at the cervical end and the hole made in the celluloid crown form at the
coronal end. Each post protruded 2.0 mm through the hole made in the celluloid crown
form following its placement in the stainless-steel base to ensure the stability of the fiber
post’s position during the application of the composite core material. To standardize the
position of the hole in the coronal end of each crown form, a template with the same
diameter for the coronal end of the crown form was made with the aid of Adobe Photoshop
CS6 computer software (Adobe Photoshop CS6, version 13.0 X 64, Macintosh version). In
each template, a circle of 1.6 mm in diameter was drawn in the center, superimposed on
the coronal end of the crown form, and a hole in the crown form was made using a hot
instrument of 1.6 mm in diameter.
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After silanization of the post surface, each post was positioned upright in the center of
the custom metal mold and conical transparent celluloid crowns (TOR VM Ltd., Moscow,
Russia). Then, the matrix was injected with composite resin using Luxacore Z Dual (DMG)
until the excess protruded from the hole that had been made coronally. A sample was then
cured using a light-emitting diode (LED) curing machine (LITEX 696 Cordless LED Curing
Light, Dent America), in which each surface of the specimen was cured for 40 s.

Then, the celluloid crown form was cut out with a number 15 scalpel blade and
removed (Figure 5). Each composite core was further light cured for 20 s before being
stored at 37 ◦C in 100% humidity in an incubator for 1 week.
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2.2. Sectioning of the Samples

Another custom-made metal mold was designed with a specific dimension to hold
the specimen (Figure 6). Vaseline was placed in the inner wall of the mold as a separating
medium, and the mold was filled with self-cured acrylic resin (GC UNIFAST TRAD, GC
International, Lucerne, Switzerland). The post was placed perpendicular to and at the
center of the self-cured acrylic resin until the apical 1–2 mm of the core material was covered
by the acrylic resin (Figure 7).
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Each specimen was placed in the saw machine (IsoMetTM 1000, 713-IPS-04427) per-
pendicular to the long axis of the saw disc, and the sample was cut into 2 mm sections
(Figure 8) with a cutting blade thickness of 0.3 mm. The blade was calibrated to zero at the
coronal end of the core to allow cutting at a distance of 0.7 mm with a speed of 275 rpm
and a load of 100 g (Figure 8).

The thickness of each slice was measured using a digital caliper (Insize digital caliper,
Standard Model). The coronal surface of each section was identified by placing a mark.
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2.3. Measurement of the Lateral Surface Area of the Post

A stereomicroscope was used to take photographs of both the coronal and apical
sides of each section in order to calculate the lateral surface area of each section using the
following formula:

LSA = π (R + r)[(h2 + (R − r))2]0.5

where LSA is the lateral surface area, R is the largest radius, r is the smallest radius, and h
is the slice thickness (Figure 9).

The method of measuring the lateral surface area of the post evolved from a previously
published in vitro study [15], where it was comprehensively defined and outlined.

2.4. Measurement of Push-Out Bond Strength

A custom-made stainless-steel base was used to hold the slices. The slice was placed
with the apical side facing upwards under the Universal Testing Machine (Universal
Testing Machine M350-5CT, Testometric, UK) (Figure 10) and an LED light under the hole
of the base (Figure 11). Then, the base and slice were positioned within the Universal
Testing Machine.

A stainless-steel rod with a 1 mm rounded pin at its end is attached to the loading cell
and positioned in the center of the specimen. A continuous load at a cross-head speed of
0.5 mm/min until bond failure was determined and the value was recorded in newtons
(N). Bond strength was calculated in megapascals (MPa). This was determined by dividing
the force (N) by the lateral surface area (mm2) of each section.
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2.5. Failure Mode Analysis

The analysis methodology evolved from a previously published research study [15],
whereby it was comprehensively defined and outlined. Accordingly, the failure mode
was checked under a stereomicroscope. A classification of the types of failure modes is
illustrated in Table 1.

Table 1. Types of failure modes.

Types of Failure Description

Type 1 Cohesive failure within the post

Type 2 Cohesive failure within the core

Type 3 Total adhesive failure (no core attached to post)

Type 4 Minimal adhesive failure (core material cover 75% of post surface)

Type 5 Moderate adhesive failure (core material cover 50% of post surface)

Type 6 Predominate adhesive failure (core material cover 25% of post surface)

2.6. Statistical Analysis

The push-out bond strength data in MPa were analyzed using one-way analysis
of variance (ANOVA). A Tukey HSD post hoc test was used to reveal any differences
between the groups. Failure mode analysis was analyzed using the Chi-square test. The
intra-examiner agreement for mode of failure was assessed using intra-class correlation
statistics. Statistical analysis was carried out using SPSS software (SPSS version 21, 64-bit
edition, IBM).

3. Results

The mean and standard deviations of the push-out bond strength (in MPa) of all tested
groups are summarized in Table 2. Among all groups, the HV group exhibited the highest
bond strength (22.64 ± 3.27 MPa), while the H3M group resulted in the lowest bond strength
(19.33 ± 2.63 MPa). The values of bond strength for other groups were 21.545 ± 3.202 MPa
for the C group, 22.39 ± 2.89 MPa for the HMP group, and 20.83 ± 2.42 MPa for the HMN
group. The values of push-out bond strength for all groups are illustrated in Figure 12.
ANOVA statistical analysis revealed a highly significant difference between the groups
(p < 0.05). The Tukey HSD statistical test revealed that the H3M group showed the lowest
bond strength, which was a significant difference (p < 0.001) from the other groups. On the
other hand, the difference between the other groups, namely the HMP, HMN, C, and HV
groups, was not statistically different (p > 0.05) (Table 3).
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Table 2. Descriptive statistics of push-out bond strength (in MPa) of all groups tested.

Post
Number

Section
Number

Rely X Post
with Hydrogen Peroxide

G1 = C

Rely X Post
with Vitique Silane

G2 = HV

Rely X Post with
Relyx Ceramic Primer

G3 = H3M

Rely X Post
with Monobond Plus

G4 = HMP

Rely X Post
with Monobond N

G5 = HMN

1 1
2

18.591
17.571

19.856
20.219

22.283
16.8

22.566
24.48

23.084
22.99

2 1
2

17.231
15.378

20.893
20.359

15.899
18.695

18.67
22.866

20.35
22.37

3 1
2

18.84
21.256

18.604
25.898

19.637
19.28

18.221
25.542

18.52
23.08

4 1
2

19.246
27.61

22.098
19.598

17.307
18.677

21.664
27.82

25.25
18.53

5 1
2

22.766
18.703

18.757
25.393

22.37
20.67

21.017
18.124

19.472
22.81

6 1
2

19.017
20.813

21.435
27.579

24.84
21.07

20.375
24.373

16.25
20.701

7 1
2

20.646
23.422

21.552
20.42

17.206
20.307

19.172
22.687

22.02
22.252

8 1
2

24.585
20.264

21.768
22.255

15.549
21.274

22.36
20.04

19.079
18.272

9 1
2

20.813
21.32

18.846
20.677

20.382
16.989

26.229
20.417

21.459
21.42

10 1
2

22.004
24.707

17.407
22.73

17.27
15.459

18.417
24.737

25.251
18.36

11 1
2

20.478
25.166

20.525
25.063

16.107
19.976

17.08
23.797

17.69
20.37

12 1
2

25.79
24.903

28.117
24.87

24.45
17.7

26.726
23.983

19.655
16.35

13 1
2

25.894
25.6

23.06
21.58

15.65
22.79

19.438
23.252

22.186
20.48

14 1
2

23.051
16.605

22.995
19.067

19.51
22.06

25.16
25.9

19.98
20.401

15 1
2

25.066
19.015

29.883
30.6

19.13
20.75

23.675
23.169

20.679
25.452

N = 15 (Total number of
posts in each group)

N = 30 (Total number
of sections)

M = 21.545 M = 22.64 M = 19.33 M = 22.39 M = 20.83

SD = 3.202 SD = 3.27 SD = 2.63 SD = 2.89 SD = 2.42

N indicates sample size; M indicates mean (in MPa); SD indicates standard deviation.
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Table 3. Post hoc Tukey HSD test of push-out bond strength.

Multiple Comparisons

Dependent Variable: Bond Strength
Tukey HSD

(J) Silane Mean Difference (I–J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

C

HV −1.10090 0.74957 0.584 −3.1715 0.9697

H3M 2.20880 * 0.74957 0.030 0.1382 4.2794

HMP −0.85353 0.74957 0.786 −2.9242 1.2171

HMN 0.71960 0.74957 0.872 −1.3510 2.7902

HV

C 1.10090 0.74957 0.584 −0.9697 3.1715

H3M 3.30970 * 0.74957 0.000 1.2391 5.3803

HMP 0.24737 0.74957 0.997 −1.8233 2.3180

HMN 1.82050 0.74957 0.114 −0.2501 3.8911

H3M

C −2.20880 * 0.74957 0.030 −4.2794 −0.1382

HV −3.30970 * 0.74957 0.000 −5.3803 −1.2391

HMP −3.06233 * 0.74957 0.001 −5.1330 −0.9917

HMN −1.48920 0.74957 0.278 −3.5598 0.5814

HMP

C 0.85353 0.74957 0.786 −1.2171 2.9242

HV −0.24737 0.74957 0.997 −2.3180 1.8233

H3M 3.06233 * 0.74957 0.001 0.9917 5.1330

HMN 1.57313 0.74957 0.226 −0.4975 3.6438

HMN

C −0.71960 0.74957 0.872 −2.7902 1.3510

HV −1.82050 0.74957 0.114 −3.8911 0.2501

H3M 1.48920 0.74957 0.278 −0.5814 3.5598

HMP −1.57313 0.74957 0.226 −3.6438 0.4975
* The mean difference is significant at the 0.05 level.

No group has demonstrated cohesive failure within the post (type 1 failure mode) or
cohesive failure within the composite core material (type 2 failure mode). Moreover, there
has been no group that had mixed minimal adhesive failure (type 4 failure mode). On the
other hand, the results revealed that the predominant mode of failure was total adhesive
failure with no composite core material attached to the post surface (type 3 failure mode),
which accounted for 97.3% of the total sample tested. Counts and percentages of different
modes of failure for the different groups are presented in Table 4, and the percentage of
each type of failure mode observed within the group is illustrated in Figure 13.

The highest failure mode observed when a composite core was bonded to a Rely X fiber
post without silane agents (Group 1) was total adhesive failure (type 3; 100%) (Figure 14A).
No other mode of failure (including types 1, 2, 4, 5, and 6) was observed in Group 1.

For Group 2, in which a Rely X fiber post was bonded to a composite core material
with the two-bottle silane coupling agent, Vitique silane, the highest failure mode observed
was type 3 total adhesive failure (96.7%). This was followed by type 6, in which mixed
failure with predominant adhesive failure occurred (type 6; 3.3%).

For Group 3, in which a Rely X fiber post was bonded to a composite core material
with the one-bottle silane coupling agent, RelyX Ceramic Primer, the highest failure mode
observed was type 3 total adhesive failure (93.3%). This was followed by type 6 (Figure 14B),
in which mixed failure with predominant adhesive failure occurred (type 6; 6.7%).
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Table 4. Counts and percentages of failure modes among groups tested.

Mode of Failure * Group: Cross-Tabulation

Groups
Total

C HV H3M HMP HMN

Mode of
Failure

Type 1: Cohesive Failure
within Post

Count
%Within failure mode.

%within groups

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

Type 2: Cohesive Failure
within Core

Count
%Within failure mode.

%within groups

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

Type 3: Total Adhesive
Failure

Count
%Within failure mode.

%within groups

30
20.5%

100.0%

29
19.9%
96.7%

28
19.2%
93.3%

30
20.5%

100.0%

29
19.9%
96.7%

146
100%
97.3%

Type 4 (mixed): Minimal
Adhesive Failure

Count
%Within failure mode.

%within groups

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

Type 5 (mixed): Moderate
Adhesive Failure

Count
%Within failure mode.

%within groups

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

0
0.0%
0.0%

1
100%
3.3%

1
100%
0.7%

Type 6 (mixed):
Predominant Adhesive

Failure

Count
%Within failure mode.

%within groups

0
0.0%
0.0%

1
33.3%
3.3%

2
66.7%
6.7%

0
0.0%
0.0%

0
0.0%
0.0%

3
100.0%

2%

Total
Count

%Within failure mode.
%within groups

30
20.0%

100.0%

30
20.0%

100.0%

30
20.0%

100.0%

30
20.0%

100.0%

30
20.0%

100.0%

150
100.0%
100.0%

* C = Rely X Post with Hydrogen Peroxide, HV = Rely X Post with Vitique Silane, H3M = Rely X Post with Rely X Ceramic Primer, HMP = Rely X Post with Monobond Plus, HMN = Rely
X Post with Monobond N.
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For Group 4, in which a Rely X fiber post was bonded to a composite core material
with the one-bottle silane coupling agent, Monobond Plus, the only failure mode observed
was type 3 total adhesive failure (100%).

For Group 5, in which a Rely X fiber post was bonded to a composite core material with
the one-bottle silane coupling agent, Monobond N, the highest mode of failure identified
was type 3, in which total adhesive failure between the fiber post and composite core
occurred (type 3; 96.7%). This was followed by type 5, in which mixed failure with moderate
adhesive failure occurred (type 5; 3.3%).

Following analysis of the modes of failure in all groups, the predominant failure mode
in all groups (groups 1, 2, 3, 4, and 5) was total adhesive failure (type 3), which ranged from
96.7% in Groups 2 and 5 to 93.3% in Group 3 and 100% in Groups 1 and 4 (Table 4).

In the analysis of the mode of failure of Group 2, in which a Rely X fiber post was
bonded to a composite core material with the two-bottle silane coupling agent, Vitique
silane, 96.7% of samples demonstrated type 3 total adhesive failure mode, while 3.3% of
samples demonstrated type 6, in which mixed failure with predominate adhesive failure
occurred (type 6; 3.3%).

In the analysis of the mode of failure of Group 4, in which a Rely X fiber post was
bonded to a composite core material with the one-bottle silane coupling agent, Monobond
Plus, 96.7% of samples demonstrated type 3 total adhesive failure mode, while 3.3% of
samples demonstrated type 5 (Figure 14C), in which mixed failure with moderate adhesive
failure occurred (type 5; 3.3%).

Intraclass correlation statistics were adopted to determine the intra-examiner agree-
ment on failure mode assessments. The data was based on the measurement of 30 samples
(6 samples from each group) twice on two separate occasions, two weeks later. The findings
revealed a high level of intra-examiner agreement for the mode of failure (95%).
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4. Discussion

The clinical outcome of a fiber-reinforced post and core restoration is determined by
the materials used and the condition of the interfaces between the various materials [13,16].

Several surface treatments of fiber-reinforced posts have been investigated to maxi-
mize bonding of composite resin core material to fiber-reinforced posts with intermediate
adhesive agents using either silane and/or adhesive application [17].

The coupling of fiber posts with epoxy resin to composite resin cores is hindered by
the lack of chemical union between epoxy resins and methacrylate-based resins. [16].

In this investigation, a low-viscosity, highly-filled composite resin core material was
bonded to a H2O2-etched fiber-reinforced post (Rely X post 3M ESPE) to evaluate the effect
of different types of silane coupling agents on bond strength between the core and the post.
The fiber-reinforced post used is cross-linked prefabricated epoxy resin mixed with zirconia
fillers and reinforced with glass fibers. The bond strength between the methacrylate-based
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resin composites and the epoxy resin matrix of fiber-reinforced composites is relatively low
when compared to dentin or enamel because of the lack of chemical union. This is caused
by the difference in composition [16].

The core material used is specifically made for core buildup and was found to provide
higher bond strength to fiber posts with an epoxy resin-based matrix as compared to
other core materials [18,19]. Silane coupling agents are generally used to optimize the
adhesion between inorganic surfaces and polymeric molecules. This is based on the
ability of silane to increase the wettability of the fiber post’s surface and the creation of a
chemical bond with an OH− substrate in the fiber post, such as glass [20–22]. Yet, earlier
research has shown that silane does not react effectively with the epoxy matrix [16,21].
Several chemical and mechanical surface treatment procedures for fiber-reinforced posts
have been investigated to improve the bond strength between silane and the epoxy resin
matrix. These pretreatments of the fiber-reinforced post surface, including sandblasting
or chemical etching with hydrogen peroxide (H2O2), phosphoric acid, or hydrofluoric
acid, have been investigated with the aim of exposing more glass fibers for improving
retention of composite cores or luting cements to fiber-reinforced posts [16,20,23,24]. H2O2
is recognized as one of the surface treatments that may successfully dissolve the epoxy
resin matrix, exposing the fibers and allowing them to be silanated [16,17,24].

In the current study, the application of the two-bottle silane coupling agent (Vitique,
DMG) and the other one-bottle silane coupling agent exhibited a higher bond strength
of the composite core to the hydrogen peroxide-etched fiber post as compared to the
application of the Rely X ceramic primer, which exhibited the lowest bond strength. This
result is in contrast with Novais et al.’s earlier findings [14], who showed that the two-bottle
silane produced higher bond strength than all prehydrolyzed one-bottle silane coupling
agents when it was used with air drying at room temperature (23 ◦C). The only similarity
between the current results and Novais et al.’s study [14] was that the Rely X ceramic
primer exhibited very low bond strength. This could be due to the difficulty of evaporating
ethyl alcohol and water, which are solvents of the Rely-X ceramic primer (3M ESPE) and
thus dissolve the bond [25].

All the silanes used in the current study have the same solvent composition (ethanol).
It is assumed that ethanol has no effect on the bond strength between a fiber-reinforced
post and a composite resin core. This assumption was proven by Kasraei et al.’s (2008)
previous study [26].

The rate of silane hydrolysis could be affected by several factors, which may influence
the nature of bonding between silane and the inorganic substrate. These include silane’s
molecular structure, pH, temperature, solvent system, and humidity [27]. Furthermore, the
rate of hydrolysis is affected by the solvent’s hydrophilicity. The hydrolysis rate reduces as
the hydrophilicity of methanol, ethanol, and propanol decreases. This is due to the ability
to separate “free” water molecules from bulk water (hydrogen-bonded network structure).
After that, the “free” water molecule takes part in the silane hydrolysis reaction.

To explain the bonding mechanism of silane coupling in adhesive dentistry, various
theories have been investigated [20]. According to the most historic chemical bonding
theory, the reaction of the organo-functional group (R) and the hydrolyzed alkoxy groups
(R’O3) with the resin matrix and the mineral substrate (glass or silica) of the composite
material results in the formation of covalent bonds [28]. The more recent theory, known as
the reversible hydrolytic bond mechanism theory, states that in the presence of water, the
bonds between silane and mineral substrate are reversibly broken and recreated, allowing
for stress release without loss of adhesion [28]. The chemical link is only achievable between
the resin of the core material and the exposed fibers of the post because the silane agent
can only chemically bridge resins and OH-covered inorganic substrates at the fiber post-
composite core contact [20]. The strongly cross-linked polymers of the matrix in fiber
posts, on the other hand, lack any functional group available for reaction, so the chemical
reaction can occur only between the composite resin and the exposed glass fibers of the
post [20]. The chemical or mechanical removal of the outermost layer of epoxy resin may
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leave more exposed fibers to react with the silane molecules. Previous research by De Sousa
Menezes et al. (2011) [29] demonstrated that hydrogen peroxide may dissolve epoxy resin
without harming glass fibers.

For dental applications, silane coupling agents are provided as either one- or two-bottle
agents. The one-bottle variety contains a clear solution of pre-hydrolyzed (pre-activated)
silane primers that contain solvents [30]. As a result of rapid solvent evaporation, such
solutions may turn milky or hazy over time after repeated opening of the bottle due to
the excess formation of siloxane oligomers or polymers, which are inactive components,
making the silane coupling agent useless [30]. Consequently, the two-bottle system was
introduced to prolong the shelf life and increase the reactivity [27]. In the two-bottle system,
the first bottle contains unhydrolyzed silane monomer dissolved in ethanol, whereas the
second bottle contains aqueous acetic acid. An equal amount of each bottle is mixed before
immediate use to allow silane to hydrolyze and form the silanol (−SiOH) group, which
then condenses, forming siloxane bonds [27].

In the current study, only one investigator assessed the mode of failure evaluations
twice within two-week intervals. This assessment method was adopted from a previ-
ously published study [15]. The intra-examiner agreement of failure mode assessment
was found to be 0.95. Earlier research suggested that a single operator performed failure
mode analysis [29,30], but the coefficient of variation of measurements was only given in
Alnaqbi et al. (2018) [15].

The predominant failure mode in all groups investigated in the current study was total
adhesive failure (type 3 failure mode). This finding is in agreement with previous studies [11,28].

5. Conclusions

Within the limitations of this study, it can be concluded that the application of a
silane coupling agent, pre-hydrolyzed or non-hydrolyzed, did not significantly affect the
bond strength between the composite core and hydrogen peroxide-etched epoxy-based
fiber-reinforced posts.

6. Clinical Implications

The choice of silane coupling agents is critical for improving the bond strength of
composite cores to fiber-reinforced posts.

Clinicians should be aware of the composition of posts, surface treatments of posts,
silane coupling agents, and composite core materials while selecting a combination of
composite core-post materials to endodontically treat teeth.
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