
inorganics

Review

Insights into the Antimicrobial Potential of Dithiocarbamate
Anions and Metal-Based Species

Chien Ing Yeo 1,* , Edward R. T. Tiekink 1 and Jactty Chew 2,*

����������
�������

Citation: Yeo, C.I.; Tiekink, E.R.T.;

Chew, J. Insights into the

Antimicrobial Potential of

Dithiocarbamate Anions and

Metal-Based Species. Inorganics 2021,

9, 48. https://doi.org/10.3390/

inorganics9060048

Academic Editor: Graeme Hogarth

Received: 30 April 2021

Accepted: 10 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University,
Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; edwardt@sunway.edu.my

2 Department of Biological Sciences, School of Medical and Life Sciences, Sunway University,
Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia

* Correspondence: allyy@sunway.edu.my (C.I.Y.); jacttyc@sunway.edu.my (J.C.)

Abstract: Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse
and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There
is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the an-
tibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2

(−),
and metal salts of transition metals and main group elements, is summarized. Preclinical studies
show a broad range of antibacterial potential, and these investigations are supported by appraisals of
possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic
review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the
crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness,
is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less
work conducted on antiparasitic behavior.

Keywords: antibacterial therapeutics; antifungal activity; dithiocarbamate; metal dithiocarbamates;
sulfur compounds; metal-based drugs; mechanism of action

1. Introduction

Dithiocarbamates are mono-anionic 1,1-dithiolate ligands of the general chemical
formula of R(R’)CNS2

(−) for R, R’ = H, alkyl, and aryl, Figure 1a. These molecules are
ubiquitous in coordination chemistry being able to coordinate practically every heavy
element [1,2] by virtue of having two sulfur atoms available for chelation and a significant
contribution of the dithiolate resonance structure, R(R’)C=N(+)S2

(2−), Figure 1b. The
oxidation of one of the more common dithiocarbamate anions, the diethyl derivative, gives
rise to the disulfide, Et2NC(=S)S–SC(=S)NEt2, commonly known as tetraethylthiuram
disulphide [3]. This molecule is marketed as Antabuse® and Disulfiram®, being a drug
employed for the treatment of alcohol abuse [4]. In the realm of metal complexes, the
zinc complex of the bifunctional dithiocarbamate ligand, ethylenebis (dithiocarbamate),
{Zn(S2CN(H)CH2CH2N(H)CS2)}n, known as Zineb®, has been employed as a fungicide
since the 1940s [5]; the crystal structure of this material has only recently been reported
and revealed a two-dimensional polymer owing to the presence of both chelating and
bidentate bridging ligands linked into the three-dimensional crystal via amine-N–H . . . S
(dithiocarbamate) hydrogen bonding [6]. These are but two examples of the prominent role
that dithiocarbamates play in contemporary society with other biological roles summarized
in the literature [7–10]. Of particular relevance to the present review on the antibacterial
potential of dithiocarbamate derivatives are reviews on the potential medicinal applications
of dithiocarbamate derivatives [11–13].
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Figure 1. Chemical diagrams for (a) the dithiocarbamate anion and (b) the dithiolate canonical form.
R, R’ = H, alkyl, and aryl.

The world’s population is facing a crisis in terms of bacteria being able to develop
resistance to currently employed drugs. Since the first antibacterial agent, penicillin,
developed by Sir Alexander Fleming [14], many synthetic drugs, usually organic molecules,
have been developed as antibiotics. However, the overuse of antibacterial agents in patients
and animal husbandry coupled with poor disposal practices have enabled bacteria to
develop effective resistance mechanisms, a problem exacerbated by the rapid replication
cycles of bacteria [15]. A similar observation in the rapid emergence of antifungal resistant
species, among which are drug-resistant Candida, including multi-drug resistant C. auris,
and azole-resistant A. fumigatus, which is recognized as driven by the extensive use of
antifungal agents in the clinical and agricultural sectors. The emergence of drug-resistant
fungal species severely impacts clinical outcomes as there are limited classes of antifungal
agents currently available in the market [16,17]. Thus, there is clearly an urgent imperative
to develop novel and effective antibiotics. A practical approach is to direct attention to
metallodrugs, which offer new opportunities in drug discovery with enhanced potency
and distinct mechanisms of action. While hardly a new concept [18], recent reviews have
highlighted the potential of metal-based compounds in combating microbial infections,
particularly bacterial infections [19–22]. Incidentally, Sir Alexander Fleming reported
investigations on the antimicrobial potential of K2 [TeO3] close to a century ago [23]; while
not the first heavy element one might consider in the pharmacopeia, tellurium compounds
exhibit a range of potential medicinal applications [24].

With the established medicinal use and potential of dithiocarbamate derivatives, the
bacterial crisis, and the increasing appreciation of the role of metal-based drugs, it seems
only natural that dithiocarbamates should be explored as potential antibacterial agents.
Herein, after a brief survey of some basic dithiocarbamate chemistry, attention will be
directed to describing preclinical studies investigating dithiocarbamates as antibacterial
agents followed by a summary of possible biological targets and modes of action. The focus
on antibacterial activity notwithstanding, there are a limited number of antifungal studies
of dithiocarbamate derivatives and even fewer of antiparasitic activity. These results are
also included and discussed herein to achieve a more comprehensive overview of the field.

2. Chemistry

The preparation of dithiocarbamates is generally facile and often involves the one-pot
reaction of an amine with carbon disulfide in the presence of a base. This is an exothermic
reaction and usually, an ice bath is recommended for the preparation of the dithiocarbamate
salt, especially on a large scale. Alkali metal hydroxides, such as sodium hydroxide and
potassium hydroxide, are commonly used bases, although tetraalkylammonium salts can
also be used. The dithiocarbamate salts are often soluble in water and short-chain alcohols.
Dithiocarbamates prepared from secondary amines possess greater stability compared to
those prepared from primary amines (to generate R(H)CNS2

(−)) and ammonia (H2CNS2
(−)).

The reactions to generate heavy element dithiocarbamates are more often than not via
simple metathesis.

Just as their synthesis is readily accomplished, characterization can be achieved
through a variety of physiochemical characterization methods. In particular, infrared
spectroscopy is useful as characteristic bands are observed in the ranges 1500–1400 and
1090–950 cm−1 due to ν(C–N) and ν(C–S), respectively. Similarly, characteristic UV absorp-
tions are observed in solution in the ranges 330–360, 275–296, and 240–260 nm which are
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ascribed to n→ π* (S(lone-pair)→ π*), π→ π* (within S–C=S), and π→ π* (within N–C=S)
transitions, respectively. It needs to be emphasized that heavy element dithiocarbamates
can be prepared in high yields, are stable, and readily crystallized. This is borne out by a
survey of the Cambridge Structural Database (version 5.42, November 2020) [25] where
over 4300 crystal structure determinations of dithiocarbamate derivatives are curated.

3. Screening of Dithiocarbamates for Antimicrobial Activity

In this section, antibacterial activities are discussed before the less well explored anti-
fungal/antiparasitic activities. In general, Section 3.1 collates the results of organic dithio-
carbamate derivatives while heavy element compounds are summarized in
Sections 3.2 and 3.3, with transition metal complexes discussed before main group ele-
ment dithiocarbamates. There is no clear delineation other than this breakdown as many
studies report the results of antimicrobial screening of more than one heavy element. How-
ever, generally, the discussion follows the order of the Periodic Table. Again, in general
terms, mononuclear species are covered before multinuclear species. Finally, for compact-
ness of discussion, an alphabetical listing of the full names of all microbes encountered in
this survey as well as likely diseases and infections they are thought responsible for are
given in the Appendix A at the conclusion of the review.

3.1. Organic Derivatives

A summary of antimicrobial activities along with antifungal activity when avail-
able, exhibited by reported R(R’) NCS2

(−) and Y(CH2CH2)2NCS2
(−) salts are presented in

Table 1.
The water-soluble salt, pyrrolidine dithiocarbamate, (CH2)4NCS2

(−), showed antibac-
terial properties against P. gingivalis, A. actinomycetemcomitans, S. aureus, and E. coli [26].
Subsequently, Camps and Boothroyd reported the selective killing effects of (CH2)4NCS2

(−)

on extracellular T. gondii parasites, effects ascribed to an oxidative mechanism [27]. Kang
et al. investigated the implications of the coadministration of metal salts, namely MClx [for
x = 2, M(II) = Zn and Cu; x = 3, M(III) = Fe] upon the inhibitory effect of (CH2)4NCS2

(−)

against P. gingivalis, A. actinomycetemcomitans, and F. nucleatum [26,28]. It was found
the coadministration of ZnCl2 augmented the inhibitory properties towards the three
studied bacteria while the presence of CuCl2 blocked the growth-inhibitory activity of
(CH2)4NCS2

(−) towards A. actinomycetemcomitans. On the other hand, the addition of FeCl3
showed no effect against either P. gingivalis or A. actinomycetemcomitans. The authors pro-
posed that (CH2)4NCS2

(−) facilitated the entry of zinc ions into the bacteria cells followed
by the inhibition of glycolysis of microorganisms.

An interesting multifunctional dithiocarbamate zwitterion formulated as R(R’) NCS2
(−),

with R = CH2CH2NH3
(+) and R’ = CH2C(=O)O(−), as the potassium salt, that has multiple

potential donor atoms for interaction with metal ions was reported to show significant
antibacterial activity against the tested Gram-positive and Gram-negative bacteria [29]. It
was proposed that the activity of this salt was due to its ability to form stable complexes
with different metals, thereby readily interacting with metalloenzymes of the bacteria
eventually leading to damage and death of the bacteria. Prompted by these findings,
the antimicrobial activities of dithiocarbamates and their metal complexes were widely
studied.
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Table 1. Summary of antibacterial and antifungal activities exhibited by R(R’)NCS2
(−) and Y(CH2CH2)2NCS2

(−) salts.
MIC = minimum inhibitory concentration.

Formulation/R(R’)NCS2(−) Method Activity Ref.

R = H; R’ = Me Broth dilution
MIC = 20 µg/mL against B. cereus; limited
antibacterial effects on probiotic bacteria L.
plantarum and L. mesenteroides

[30]

R = H; R’ = Ph Disc diffusion
Active against 12 bacterial species and 10 fungi
(zone of inhibition ranging 6–8 mm at MIC 1 × 104

and 1.25 × 104 µg/mL, respectively)
[31,32]

R = H; R’ = Cy Disc diffusion

Showed improved percentage of minimum
inhibitory zone towards A. flavus, A. carbonarius, A.
niger, S. Typhi, B. subtilis, B. cereus, P. aeruginosa, and
P. mirabilis at increased concentration; showed no
significant concentration effect on A. fumigatus

[32,33]

R = H; R’ = CH2CH2N(CH2)5
Broth dilution/zebrafish
model

Growth inhibition on M. marinum at approximate 18
µg/mL. Significantly inhibited bacterial growth in
zebrafish larvae at approximate 73 µg/ml

[34] a

R = H; R’ = N(CH2CH2)2NMe Broth dilution Growth inhibition on M. marinum at approximate 17
µg/ml [34] a

R = R’ = Me Broth dilution/well diffusion

MIC = 20 µg/mL against B. cereus [28]. Greater
activity towards Gram-positive bacteria (S. aureus
and B. subtilis) than Gram-negative bacteria (E. coli
and P. aeruginosa) compared to chloramphenicol [32]

[30,35]

R = Me; R’ = CH2CH(OMe)2
and R = Me; R’ =
2-methyl-1,3-dioxolane

Broth dilution
The species with R’ = CH2CH(OMe)2 presented at
least 6-fold greater activities against A. flavus, A.
niger, and A. parasiticus

[36]

R = Me; R’ = (1R,2S)-1-methyl-
2-phenyl-2-hydroxy]ethyl Broth dilution

Mild activity towards S. aureus, S. sciuri, and
drug-resistant bacterial strains: extended spectrum
beta-lactamase producing E. coli,
methicillin-resistant S. epidermidis, S. haemolyticus,
and S. simulans

[37]

R = Et; R’ = Et Well diffusion/disc diffusion
Greater sensitivity towards Gram-positive bacteria
than Gram-negative bacterial strains compared to
chloramphenicol

[35,38]

R = Et; R’ = Ph Disc diffusion

Tested against 4 bacterial species: E. coli, P.
aeruginosa, S. Typhi, and S. aureus; zone of inhibition
in the range 4–10 mm at 100 µg/mL; inactive
towards S. aureus. Additionally, tested against 2
fungal organisms: A. flavus and F. oxysporium; zone
of inhibition in the ranging (range) 9–10 mm at 100
µg/mL

[39]

R = Ph; R’ = Ph Disc diffusion

Active against Gram-positive bacteria: B. subtilis, S.
aureus, and Rhodococcus sp. with zone of inhibition in
the range 12–22 mm; inactive towards
Gram-negative bacteria namely, E. coli, P. aeruginosa,
and Enterobacter sp. Active against 4 fungal
organisms: A. niger, A. flavus, C. albicans, and
Acetomyceta sp.; zone of inhibition in the range 16–18
mm at 100 µg/mL

[40,41]
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Table 1. Cont.

Formulation/R(R’)NCS2(−) Method Activity Ref.

Y(CH2CH2)2NCS2
(−)

Y = CMe Well diffusion/tube diffusion

Active against 6 bacterial species: E. coli, B. subtilis, S.
flexneri, S. aureus, P. aeruginosa, and S. Typhi with
zones of inhibition in the range 12–20 mm. Active
against 4 fungi: T. longifusus, M. canis, F. solani, and
C. glabrata; zone of inhibition in the range 10–38 mm

[42]

Y = CCH2Ph Well diffusion

Mild activity against E. coli, S. Typhi, P. aeruginosa,
and S. aureus with zones of inhibition in the range
12–22 mm. Active against 5 fungi: A. nigar, A. flavus,
H. solani, A. solani, and Fusarium sp.; range of
inhibition: 12.6–43.5 mm at 200 µg/mL

[43]

Y = NMe Broth dilution/well
diffusion/agar dilution

Weak sensitivity towards 10 bacterial species (E. coli,
P. aeruginosa, S. aureus, E. faecalis, V. cholerae, S.
pneumoniae, B. cereus, B. subtilis, S. flexneri, and S.
Typhi) and 5 fungi (C. albicans, T. longifusus, M. canis,
F. solani, and C. glabrata).

[44–47]

Y = NC(=S)S(CH2)2N(CH2)5 Broth micro-dilution
Active against 6 species of fungi (C. albicans, C.
neoformans, S. schenckii, and T. mentagrophytes, A.
fumigates, and C. parapsilosis)

[44]

Y = NC(=S)S(CH2)3Me Broth micro-dilution

Active against 4 species of fungi (C. albicans, C.
neoformans, A. fumigates, and C. parapsilosis) and
displayed spermicidal activity at minimum effective
concentration (MEC) 31.6 mM

[44]

Y = CHCH2Ph Well diffusion
Tested against 4 bacterial species: E. coli, V. cholerae,
S. pneumoniae, and B. cereus with zones of inhibition
in the range 3–7 mm at 100 µg/mL

[45]

Y = NPh Disc diffusion

Active against S. Tyhimurium, P. aeruginosa, B.
pumilus, S. aureus, C. albicans, and A. niger. with
zones of inhibition in the range 14–45 mm at 1750
µg/mL

[48]

Y = NC6H4NO2-4 Disc diffusion

Showed activities against B. pumilus, S. aureus, C.
albicans, and A. niger with zones of inhibition in the
range 25–42 mm at 1000 µg/mL; inactive towards E.
coli

[48]

Y = NC6H4F-4 Disc diffusion

Showed activities against E. coli, S. Typhimurium, P.
aeruginosa, B. pumilus, S. aureus, C. albicans and A.
niger with zones of inhibition in the range 23–42 mm
at 2500 µg/mL

[48]

Y = O Well diffusion
Tested against 4 bacterial species: E. coli, V. cholerae,
S. pneumoniae, and B. cereus with zones of inhibition
in the range 4–8 mm at 100 µg/mL

[45]

a The MIC values reported for [39] were converted from µM to µg/mL for ease of comparison, hence the values reported herein are
rounded to integers.

3.2. Transition Metal Dithiocarbamates

The study of the antimicrobial activities of transition-metal dithiocarbamates was
initiated as early as 1987 by Manoussakis et al. [49]. Early work established the importance
of metal ions to improve the biocidal efficacy of dithiocarbamate anions [50,51]. Owing
to the presence of amine functionality in the beta-blockers, propranolol (Inderal®) and
atenolol (Tenormin®), used for the regulation of blood-pressure and the treatment of heart
conditions among other ailments, dithiocarbamate ligands L1 and L2 can be formed from
these amines; the chemical diagrams of the dithiocarbamate ligands discussed in this
review are shown in Figure 2. Indeed, Gölcü and colleagues explored the antibacterial
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activities of these dithiocarbamates and various metal complexes. The antimicrobial
activities of the complexes against 10 bacterial species surpassed those of dithiocarbamates
alone. The work showed the copper(II) complex to exert no effect towards any of the
microorganisms tested while the cobalt(II) complex exhibited the greatest activity [50,51].
A similar observation was made in the study of metal(II) complexes bearing mixed 4-
chlorophenyl- and 4-bromophenyldithiocarbamates, formulated as M(L3)(L4) for M(II) =
Co, Ni, Cu, Zn, Cd, and Hg, where the presence of the metal ion resulted in improved
efficacy against selected bacteria (E. coli, S. mercescens, and S. aureus) compared with the free
ligand [52]. However, the complexes exhibited weak to no activity towards the investigated
fungi (T. viride and M. albicans).

Figure 2. Chemical diagrams for dithiocarbamate anions L1 to L82 discussed herein. Fc is ferrocenyl, (C5H4)Fe(C5H5).
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The antimicrobial activities of transition metal complexes comprising N-alkyl-N-
phenyldithiocarbamate were explored against a range of microbial species [39,53]. In [39],
where alkyl = ethyl, M(L5)2 complexes, for M(II) = Mn, Co, and Cu, Cr(L5)3, and Pd(L5)2.4H2O
showed a broad spectrum of bactericidal and fungicidal activity. Overall, the complexes
displayed greater potency as antibacterial agents. Among the complexes screened, the
palladium(II) complex proved to be ineffective for all the organisms tested. The copper(II)
complex showed the greatest potency against S. aureus while the chromium(III) analog
displayed the best activity against P. aeruginosa, and the manganese(II) complex was the
most active towards S. Typhi and E. coli. These results suggest a metal-specific potency
towards bacteria. Furthermore, metal complexes with alkyl = methyl showed comparable
antibacterial activity to that of streptomycin, a standard antibiotic used as a control, to-
wards S. aureus and B. cereus with Co(L6)2 having greater efficacy compared to the nickel(II)
and copper(II) congeners [53]. In a related study, Ekennia et al. reported the antimicrobial
properties of heteroleptic nickel(II) and zinc(II) complexes containing N-alkyl-N-phenyl
dithiocarbamate and benzoate, formulated as M(Lx)(O2CPh) for x = 5 and 6, the potency
being assessed by agar and disc diffusion methods; the two complexes demonstrated
moderate to high activity against the bacteria and fungi tested [54]. However, due to the
distinct experimental methods adopted in the foregoing studies and the different metals
present in the complexes, no direct correlation can be derived from the testing outcomes
of [39,53,54].

Khan et al. evaluated the activities of the diphenyl dithiocarbamates, M(L7)2 for
M(II) = Ni, Cu and Zn [40]. Noteworthy from this study was that each of the metals
exhibits a distinctive efficacy against four bacterial strains (B. subtilus, P. aeruginosa, E.
coli, and Rhodococcus sp.) and four fungal strains (A. niger, A. flavus, C. albicans, and
Acetomyceta sp.) [40]. Among the evaluated complexes, the zinc(II) species was the most
potent against all the bacterial species tested while the copper(II) derivative showed the
highest antifungal activity; both zinc(II) and copper(II) derivatives also presented greater
activity than the standards (ampicillin and fluconazole) employed in the study. On the
other hand, Botha and colleagues evaluated the antimicrobial properties of another series
of copper(II) dithiocarbamates, Cu(L8–10)2 [55]. The aniline-derived Cu(L8)2 complex
displayed promising antibacterial activities towards E. coli, S. aureus, S. Typhi, and S.
Typhimurium while the piperidine-derived Cu(L10)2 was the least active among the series.
Tests were also conducted for antifungal activity with the Cu(Lx)2 complexes with x = 8
and 9 exhibiting antifungal activities comparable to or greater than the standard antifungal
drugs used as the control [55].

In order to delineate the importance of increasing hydrophilicity to enhance the
bioavailability, de Lima and colleagues assessed a series of four copper(II) dithiocarbamates
bearing an ethyl hydroxyl group, Cu{S2CN(R)CH2CH2OH}2 for R = Me (L11), Et (L12), n-Pr
(L13), and CH2CH2OH (L14) [56]. However, the research revealed the biocidal activity was
not greatly impacted by the enhanced hydrophilicity; liposolubility in drug cell interactions
was important as the less polar complex, Cu(L13)2, showed the greater potency towards
C. albicans. All four complexes were inert towards the bacterial strains S. aureus and P.
aeruginosa.

In 2013, Ferreira et al. reported the in vitro antimicrobial activities of Cu{S2CN(Me)R}2,
for R = CH2CH(OMe)2 (L15) and 2-methyl-1,3-dioxolane (L16), as well as of
Cu{S2CN(CH2CH2OH)R}2 for R = (CH2)3N=C(H)C6H4(2-OCH2Ph) (L17) against a range
of bacteria (L. monocytogenes, B. cereus, S. sanguinis, C. freundii, S. Typhimurium, and P.
aeruginosa) and fungi (A. flavus, A. niger, A. parasiticus, P. citrinum, and C. senegalensis) [57].
Overall, the complexes exerted greater activity against fungi while having no significant
effect on the bacterial strains, indicating the complexes were selective towards pathogenic
fungi. Among the fungal strains, A. flavus, A. niger, and P. citrinum were more susceptible
to the trial complexes as compared to A. parasiticus and C. senegalensis. Later, Ferreira et al.
extended the study to include other metal ions, namely M(Lx)2, for x = 15 and 16, and for
M(II) = Ni, Pd, and Pt [36]. The different metals induced distinct antifungal responses
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against A. flavus, A. niger, and A. parasiticus. The Pd(Lx)2 complexes were the most active
against A. flavus while A. niger was more sensitive towards the Ni(Lx)2 congeners. By
contrast, Pt(L16)2 was the most active against A. parasiticus despite its activity being nearly
10-fold lower when L15 was employed.

Despite most studies showing the presence of metal ions improves the biocidal ac-
tivities exhibited by the dithiocarbamates when administered alone, the inverse is true
for the case of morpholine dithiocarbamates, M(L18)2 for M(II) = Ni and Cu [58]. Thus,
K(L18) displayed better antibacterial efficacy on the growth of Gram-positive (S. aureus,
B. cereus, and L.monocytogenes) and Gram-negative (S. flexneri) bacteria compared to the
metal complexes. No definitive trend in activities between dithiocarbamates and their
metal complexes was observed for the series M(L19–21)2 for M(II) = Mn, Fe, Co, Ni, Cu,
and Zn, tested by Yilmaz et al. [48]. The complexes showed varied responses towards the
microorganisms tested (E. coli, P. aeruginosa, S. Typhimurium, B. pumilis, S. aureus, C. albicans,
and A. niger). Generally, the dithiocarbamates showed better sensitivity towards Gram-
positive bacteria (B. pumilus and S. aureus), yeast (C. albicans), and a mold (A. niger) while
the complexes exhibited comparative or better activities against Gram-negative bacteria (E.
coli, P. aeruginosa, and S. Typhimurium). The above indicates that the inclusion of metal ions
does not necessarily improve the bioactivity of the compound.

In 2015, Verma and Singh reported the antimicrobial activities of dithiocarbamate
derivatives of naphthoquinone (L22) and their transition metal complexes M(L22)y for y = 3
and M(III) = Mn and Co, and for y = 2, and M(II) = Ni, Cu, and Zn [59]. All complexes
showed moderate activities against the tested bacteria and fungi with M(L22)2 displaying
promising activity towards S. aureus (MIC 10 µg/mL cf. ciprofloxacin 15 µg/mL) and A.
niger (MIC 50 µg/mL cf. fluconazole 40 µg/mL).

Maurya et al. studied the efficacy of zinc(II) compounds bearing benzyl derived
dithiocarbamates; Zn(L23–26)2, with the L25 compound having the most prominent killing
potential against all the tested bacterial strains, that is, clinical and control strains of S.
aureus and E. coli [60]. Sathiyaraj et al. on the other hand explored the effect of dissymmetric
dithiocarbamates L27–30, featuring furyl groups, in Zn(L27–30)2 compounds against bacteria
(V. cholerae, B. subtilis, K. pneumoniae, E. coli, and S. aureus) and two fungi (A. niger and C.
albicans) by disc diffusion methods [61]. The synthesized compounds showed less activity
towards B. subtilis, E. coli, and S. aureus but slightly better effects on V. cholerae and K.
pneumoniae while showing moderate activities towards the two fungi.

Ferrocene, Cp2Fe (CpH is cyclopentadiene) is of great interest as an active pharma-
ceutical ingredient (API) in no small part owing to its redox chemistry, ability to generate
reactive oxygen species (ROS), and its ability to induce oxidation in various species such as
DNA and proteins [62,63]. Furthermore, ferrocene can impart increased cell permeability
and lipophilicity. Verma and Singh prepared a series of nine transition metal complexes
with ferrocene functionalized dithiocarbamates [64]. Among the complexes tested, Ni(L31)2
(MIC = 10 µg/mL against S. aureus) and Ni(L32)2 (MIC = 10 µg/mL against C. albicans)
as well as Cu(L33)2 (MIC = 10 µg/mL against S. aureus) exhibited the most promising
antimicrobial activities.

Manav et al. [65] and Shasheen et al. [66] evaluated the antibacterial properties of
platinum(IV) and palladium(II) complexes, respectively. None of the three Pt(L18,34,35)2Cl2
species showed significant antibacterial properties [65]. By contrast, the Pd(L10,34,36–39)2
complexes exhibited moderate to comparable activity in comparison with the standard
imipenem [66]. In a wider study, with six variations of H, Me, Cl, and i-Pr substituents
distributed among two phenyl rings, that is, M(L40–45)2, for M(II) = Ni and Cu, showed mod-
erate to good, broad range antibacterial activities against Gram-negative (S. Typhimurium, P.
aeruginosa, E. coli, and K. pneumoniae) and Gram-positive (S. aureus) bacteria; however, only
a weak effect on methicillin-resistant S. aureus (MRSA) was reported by Oladipo and col-
leagues [67]. Generally, complexes with chloro-substituted and symmetrically-substituted
dithiocarbamates ligands displayed better activities.
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Thus far, the focus of the discussion has been upon homoleptic transition metal
dithiocarbamates. A broader chemistry is evident in their heteroleptic complexes, often
involving the incorporation of neutral phosphane and bipyridine-type molecules. While
some studies suggest the antimicrobial activity of these heteroleptic complexes is reduced
upon the addition of triphenylphosphane [68] and 1,10-phenanthroline (phen) [69,70], the
opposite was observed when 2,2′-bipyridine (bipy) was incorporated in Zn(L46)2(bipy)
which was the most effective complex towards Gram-negative pathogenic bacterial strains
(E. coli, S. Typhi, and V. chlolerae) [71]. It was proposed that 2,2′-bipyridine enhanced the
membrane transport into the bacterium. This compound also displayed a good inhibitory
effect against the fungus T. mentagrophyte while Zn(L46)2 showed greater activities against
the fungi M. gypseum and T. rubrum. In another study, the presence of 2,2′-bipyridine
in Zn(L47)(bipy)Cl was also found to enhance the efficacy against five human bacterial
pathogens namely, S. Typhi, S. flexneri, S. aureus, A. hydrophila, and E. faecalis, compared to
Zn(L48)2(pyridine or 4-picoline) [72].

Kalia et al. also studied the effect of mixed ligand complexes by evaluating M(L37)2(phen)
and [M(L37)(phen)2]Cl, for M(II) = Mn, Co, and Zn, against C. albicans, E. coli, P. aeruginosa,
S. aureus, and E. faecalis [45]. The test complexes were highly effective against C. albicans
among the microbial species evaluated. A related complex, Co(L10)2(phen), showed bet-
ter antifungal activity towards C. albicans compared to A. flavus and A. niger [73]. Both
Co(L10)2(phen) and its derived nanoparticles also showed significant antibacterial activities
against E. coli, B. subtilis, S. aureus, and K. pneumoniae with the nanoparticles exerting a
greater antibacterial effect.

The recent report on a series of complexes formulated as M(L10)2(bipy or phen)
and M(L10)2(pyridyl-3-amine)2, for M(II) = Pd and Zn, as well as trans-(PPh3)2Pd(L10)
(benzisothiazolinate or saccharinate) and the evaluation of their antimicrobial properties
revealed the phosphane complexes to be the most active against bacteria (E. coli, S. aureus,
and S. pyogenes) and fungi (C. albicans and A. niger) [74]. The authors suggested that in ad-
dition to the enhanced activity attributed to the presence of metals and the heteroaromatics,
that is, benzisothiazolinate and saccharinate, the complexes with greater size (molecular
weight) were found to exert better antimicrobial responses due to their greater permeability
through the microbial cell wall [74]. In another study, El-said and colleagues reported
a series of nickel(II) complexes of multifunctional, dianionic dithiocarbamates, that is,
dithiocarbamates derived from amino acids, Ni(L49–53)(phen)2, as well as a dinuclear cop-
per(II) complex formulated as [Cu2(L51)Br2(phen)2(H2O)2]; these complexes were shown
to be active towards bacteria (B. cereus, E. coli, and P. aeruginosa) and fungi (A. niger and T.
roseum) [75].

Rani et al. reported a series of nickel(II) complexes of a dissymmetric dithiocarbamate
ligand containing both furyl and thienyl functionalities, namely L54 [76]. The screening of
the complexes, Ni(L54)2, (PPh3)Ni(L54)(NCS), and salt [(PPh3)2Ni(L54)]ClO4 showed the
presence of triphenylphosphine did not induce a significant effect upon their antibacterial
activity against S. aureus, E. coli, P. aeruginosa, and K. pneumoniae; the three complexes
exhibited promising effects against S. aureus and K. pneumoniae. Among the bacteria
species, E. coli was the least sensitive towards all the complexes tested.

A series of heteroleptic palladium(II) dithiocarbamates of general formula
(R3P)Pd(L36,55–61)Cl, for a broad range of monodentate phosphanes, such as Ph3P, Cy3P,
(n-propyl)Ph2P, and (C5H4N-2)Ph2P, were screened against two Gram-negative (E. coli
and K. pneumoniae) and three Gram-positive bacterial strains (S. epidermidis, S. aureus, and
B. subtilis) [77,78]. Moderate antibacterial activities were evidenced as well as a few con-
clusions deduced in terms of a structure-activity relationship: (i) the length of the alkyl
group of the dithiocarbamate ligands plays an important role in the antibacterial activity
with longer chains being more potent, (ii) bulky substituents increase the lipophilicity
and therefore, aid the permeability through the cell membrane of the bacterium, and iii)
electron-withdrawing substituents induce poorer antibacterial responses.
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Odola and Woods reported a series of mixed ligand nickel(II) dithiocarbamate com-
plexes bearing a monoanionic Schiff base ligand, ethylsalicylaldiminate (EtSal), of general
formula Ni(Ln)(EtSal), for n = 6, 34, 39, and 62–64 [79], and n = 3, 8, 10, 18, and 65–67 [80],
and evaluated their antimicrobial activities against six bacterial strains (S. aureus, B. subtilis,
E. coli, P. aeruginosa, P. mirabilis, and K. pneumoniae) and four fungi (C. albicans, C. glabrata,
C. tropicalis, and C. pseudotropicalis). The common feature of these complexes was their
selective activity against P. mirabilis and inactivity towards S. aureus and C. glabrata. In
related work, Asuquo et al. reported studies of Ni(L6,34,39,56,62–64,68)(PhSal), where PhSal
= phenylsalicylaldiminate, and tested them against three Gram-negative bacteria (E. coli,
P. aeruginosa, and S. Typhi) and two Gram-positive bacteria (S. aureus and B. subtilis) [81].
Generally, all complexes were active against the bacteria except for Ni(L56)(PhSal) which
was inactive against S. aureus while Ni(L39)(PhSal) and Ni(L56)(PhSal) were inactive against
E. coli.

Sovilj et al. showed the incorporation of metal ions improved the antibacterial activi-
ties in series of dinuclear copper(II) [Cu2(L10,18,69–71)tpmc](ClO4)3 [82]
and [Mo(=O)2(L10,18,69–71)2] [83] complexes, where tpmc = N,N′,N′ ′,N′ ′ ′-tetrakis
(2-pyridylmethyl)-1,4,8,11-teraazacyclotetradecane. A similar observation was made in
an evaluation of the antibacterial activities of three mononuclear, cyclometallated irid-
ium(III) complexes formulated as [Ir(L18,70,72)(2-phenylpyridine)2] against E. coli, V. cholerae,
S. pneumoniae, and B. cereus by agar disc diffusion [84]. The study showed [Ir(L10)(2-
phenylpyridine)2] to be the most active and suggested the enhanced activities could be
attributed to the increased lipophilic character of the metal complexes which facilitated
penetration into the bacterial cell membrane.

Ajibade et al. and Ekennia et al. evaluated the antimicrobial properties of ternary
complexes with a variety of transition metals formulated as M(L55,56)(sulfadiazine) for
M(II) = Co, Cu, Pd, and Pt [85], and the complexes [M(L55)(benzoylacetone)(H2O)2].nH2O
and [M(L55)(benzoylacetone)].nH2O for M = Zn, Cu, Mn, and Co [86]. In the first series [85],
the cobalt(II) complex showed greater antibacterial activities whereas of the others [86], the
zinc(II) compound exhibited overall better antimicrobial activities against Gram-positive
bacteria (S. aureus and S. pneumoniae), Gram-negative bacterium (E. coli), and two fungal
organisms (A. niger and A. candida).

Kim et al. developed a polymer matrix for the controlled release of drugs by preparing
metal-drug complexes derived from chemically modified chitosan [87]. Briefly, the chitosan
species with pendant dithiocarbamate residues (–CS2

(−)), DTCC, was treated with heavy
element tetracycline (Tc) complexes to afford DTCC–M–Tc conjugates with M(II) = Ca, Mg,
Cu, and Zn. The resulting species demonstrated prolonged antibacterial activity (28 to
44 days) against E. coli with the exception of the copper(II) example.

While copper(I) and copper(II) species have featured prominently in the above
overview, attention now turns to gold and silver. Gold-based drugs are known to have
significant medicinal properties with the phosphanegold(I) thiolate antiarthritic drug,
Auranofin®, being a prominent example [88]; studies of the antibacterial potential of gold
compounds are well established [89]. The potential of phosphanegold(I) dithiocarbamates,
that is, R3PAu(L14), for R = Ph and Cy, and Et3PAu(L56,65) was explored [38]. From the
antibacterial study conducted against a panel of 24 Gram-positive and Gram-negative
bacteria, it was found that compounds bearing bulkier phosphane ligands showed specific
activity towards Gram-positive bacteria while those with triethyl phospane displayed a
broader range of activity against the tested bacteria [38]. In a related study on a series of
{Cy3PAg(L11,14,56,65)}2 complexes showed the dinuclear silver(I) species to exhibit selective
activity towards Gram-positive bacteria [90]. Against susceptible bacteria, preliminary
time-kill assays revealed many of the gold(I) and silver(I) compounds to exhibit both time
and concentration-dependent pharmacokinetics [38,90]. The dinuclear silver compounds
lead nicely into the final series of multinuclear complexes to be reviewed in this section,
which again proved the axiom that the presence of a transition metal element enhanced
potency.
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Bipodal dianionic dithiocarbamates, that is, (−)S2CN(H)R(H)NCS2
(−), for R = zero,

CH2CH2, and C6H4, give rise to dinuclear metal(II) complexes of the general formula
[M(S2CN(H)R(H)NCS2)]2, with M = Ni, Cu, Zn, and Cd, demonstrating enhanced activity
as compared to the ligand alone towards B. subtilis, S. pyogenes, E. coli, K. pneumoniae, A.
niger, and S. cerevisiae [91]. On the other hand, the presence of dithiocarbamate dianions in a
series of dinuclear transition metal(II) dithiocarbamate based metallamacrocycles of general
formula, [M(S2CN(H)(C6H4)N=C(Ph)–C(Ph)=NC6H4(H)NCS2)]2, with M(II) = Co, Ni, and
Cu [92], exhibited improved efficacy against S. aureus and E. coli compared with the free
ligand; these complexes were inactive against P. aeruginosa. The final series of complexes
provide a convenient segue to the next section, as they contain both transition metal,
M(II), and tin(IV) centers. In Sn(thiocarbohydrazide)2{M(L56)2}2, pairs of tin-coordinating
nitrogen atoms link transition metals, already coordinated by two L56 anions [93]. Thus,
trinuclear species with M(II) = Mn, Fe, Co, Ni, and Cu, were screened against bacterial
strains E. coli and S. Typhi. Here, the dithiocarbamate complexes exerted better efficacy
compared to Sn(tch)2 with the complex with M = Co being the most potent [93].

3.3. Main Group Element Dithiocarbamates

The study of the antimicrobial potential of main group element dithiocarbamates is
dominated by investigations of tin compounds as well as those of antimony and bismuth.
Probably the most well-studied are organotin dithiocarbamates, especially diorgano- and
triorgano-tin(IV) species.

Shahzadi et al. and Zia-ur-Rehman et al. reported the antimicrobial activities of
Ph3Sn(L70) [42] and Me2Sn(L70)2 [46], respectively. In both cases, it was shown that the
incorporation of tin(IV) enhanced the antibacterial (E. coli, B. subtilis, S. flexneri, S. aureus,
and S. Typhi) and antifungal (T. longifusus, F. solani, and C. glabrata) activities compared to
the ligand alone, Table 1. In 2008, Menezes et al. revealed that for a series of RxSn(L56,65)4−x,
with x = 1, 2, and 3; R = Cl, n-Bu, Ph, and Cy, the presence of a tin-bound phenyl substituent
resulted in lower MIC values towards S. aureus [94]. Other important findings worth
highlighting from this study include: (i) trisubstituted tin(IV) compounds showed better
antibacterial potency, (ii) the L56 compounds showed better antibacterial activity with
greater inhibition zones, and (iii) the antibacterial potency of the tin(IV) compounds differ
when evaluated in solution or pseudo solid medium (agar); the results obtained from the
disc diffusion method and MIC values cannot be well correlated possibly due to the limited
mobility of the complexes in the agar.

The importance of lipophilicity was also mentioned by Awang et al. [95–97] in their
study of compounds in a series of RxSn(L34,35)4−x compounds, with x = 2 and 3, R = Me,
n-Bu, and Ph. The compounds were tested against S. aureus, S. Typhimurium, P. aeruginosa,
B. subtilis, Klebsiella sp., A. baumanii, E. raffinosus, and E. aerogenes—increased lipophilicity
of the compounds generally enhanced the antibacterial activity; the R = n-Bu compounds
were inactive.

The issue of lipophilicity was also addressed in the work published by Adeyemi
et al. [98–100] in their reports upon the antimicrobial potential of RSn(L6)2Cl with R = n-Bu
and Ph; (n-Bu)Sn(L73)2Cl and R2Sn(L73)2 with R = Me, n-Bu, and Ph; Sn(L74)2Cl2 and
R2Sn(L74)2 with R = Me, n-Bu, and Ph. The authors observed increased lipophilicity
in the diphenyltin derivatives correlated with greater activities in comparison with the
other derivatives. Furthermore, these organotin complexes showed better activity towards
bacterial species than the fungi tested, with Gram-negative bacteria being more susceptible
than the Gram-positive organisms. Another series of R2Sn(L10)Cl, with R = Me, Et, n-Bu,
Ph, and CH2Ph, also showed promising antibacterial activities against E. coli, B. subtilis,
S. flexneri, S. aureus, P. aeruginosa, and S. Typhi but exhibited reduced activities compared
to the standard drugs Miconazole and Amphotericin B against the six strains of fungi
screened (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) [101].

Several studies indicate triorganotin(IV) species generally show better bioactivities
compared to their diorganotin(IV) counterparts [43,102–104]. Zia-ur-Rehman et al. [43]
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prepared a series of organotin(IV) complexes bearing 4-benzylpiperidine-1-carbodithioate
that is, R3Sn(L72), with R = Me, n-Bu, Ph, and Cy, R2Sn(L72)Cl and R2Sn(L72)2, with R = Me,
Et, and n-Bu, and evaluated their activities against bacteria species (E. coli, S. Typhi, P.
aeruginosa, S. aureus, and Streptococcus sp.) and fungi (A. niger, A. flavus, H. solani, A. solani,
and Fusarium sp.). The triorganotin(IV) derivatives displayed good antibacterial activities
with the exception against S. aureus where none of the compounds was able to inhibit
its growth. Additionally, the triorganotin(IV) derivatives generally had better antifungal
activities than the diorganotin(IV) derivatives against A. niger and A. flavus but showed
weaker sensitivities towards the other three fungi strains. Furthermore, the diorganotin(IV)
chloride compounds were more active compared to their counterparts without chloride; it
was proposed that the presence of chloride facilitated hydrolysis.

In 2012, Shaheen et al. reported the screening of a series of organotin(IV) compounds:
R3Sn(L75), with R = Me, n-Bu, and Ph, R2Sn(L75)Cl, with R = Me, n-Bu, Ph, and Et, as
well as Et2Sn(L75)2. The antibacterial study conducted against S. aureus, B. subtilis, P.
aeruginosa, and E. coli revealed a similar trend as observed above where the triorganotin(IV)
compounds are more active than the diorganotin(IV) derivatives [102].

Among the three organotin(IV) compounds Ph3Sn(L76) and R2Sn(L76)2, with R = Me
and n-Bu, those with bulkier substituents showed the greatest antibacterial activities [103].
Furthermore, Ph3Sn(L76) showed maximum potency against S. aureus and B. cereus, possibly
owing to the enhanced lipophilicity [103]. Similarly, enhanced activities were observed for
triorganotin(IV) compounds in two series of homobimetallic R3Sn(L77)SnR3 species, with
R = n-Bu and Ph, and R2(Cl)Sn(L77)Sn(Cl)R2, with R = Me and n-Bu, compounds where
L77 also carries a thiolate-sulfur atom available for coordination [104]. The triorganotin(IV)
congeners displayed better antimicrobial potency towards the eight microbials tested
(S. aureus, E. coli, B. subtilis, P. multocida, A. niger, A. flavus, R. solani, and A. alternata).
Antimicrobial studies on Ph3Sn(L71,77), Ph2Sn(L71)Cl, R2Sn(L71)2 with R = n-Bu and Ph,
and Ph2Sn(L77)2 [105] indicated all compounds were effective against E. coli with Ph3Sn(L71)
being the most effective and Ph3Sn(L77) being the least. This shows that in determining
antibacterial activity both the tin and dithiocarbamate bound substituents must be taken
into consideration.

Attention is now directed to the other major class of main group dithiocarbamates,
namely those of the Group 15 elements; a review appeared recently covering aspects of
the antibacterial activity exhibited by antimony and bismuth compounds [106]. Chauhan
et al. prepared two series of ternary dithiocarbamate complexes comprising dithiophos-
phate ligands, namely, M(L55,56)2(S2POYO) for M = arsenic(III) [107] and bismuth(III) [35]
for Y = –CH2C(Et)2CH2–, –CH2C(Me)2CH2–, –CH(Me)CH(Me) –, and –C(Me)2C(Me)2–.
Coordination of L55,56 with bismuth(III) enhanced the biological properties as compared
to the ligands alone, Table 1. Furthermore, the compounds were more sensitive towards
Gram-positive bacteria. Overall, the compounds with L55 showed better inhibition towards
the bacterial strains tested (S. aureus, B. subtilis, E. coli, and P. aeruginosa) compared to
those with L56. Chauhan et al. also studied the antimicrobial properties of arsenic(III)
and antimony(III) dithiocarbamates against four bacterial strains (S. aureus, B. subtilis,
E. coli, and P. aeruguinosa) and two fungal species (A. niger and T. reesie) [108–110]. The
investigated mono-nuclear compounds were [Sb(L18,55)2]X for X = O(O=)CMe, O(O=)CPh,
O(S=)CMe, SCH2COOH, O(O=)CC6H4(OH), S(n-Pr), and OPh [109,110]; [M(L18,55)2]2X,
for M(III) = As and Sb, X = –SCH2CH2S– [108,109], and M(L55,56,65)2[S(S)P(Y)2] for M(III) =
As and Sb; Y = OPh and Ph [110]. The evaluation of the antimicrobial activities showed that
complexation enhanced the biological properties and the compounds showed comparable
or better activities than the standard drugs, chloramphenicol and terbinafine.

On the other hand, the study conducted by Tamilvanan et al. on three bismuth(III)
furfuryl-substituted dithiocarbamate compounds, Bi(L79–81)3 against V. chlorerae, B. subtilis,
K. pneumoniae, E. coli, and S. aureus showed they exhibited selective activities towards V.
chlorerae and K. pneumoniae with the n-butyl compound, Bi(L80)3, being less active than the
others [111].
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Organoantimony(III) and organoantimony(V) dithiocarbamates have also being in-
vestigated for antimicrobial activity. Thus, Sharma et al. prepared series of compounds of
general formula PhSb(L18,37,65,70)Cl and PhSb(L18,37,65,70)2 [112]. Their antimicrobial prop-
erties were screened against two Gram-negative bacteria (E. coli and P. aeruginosa) and two
fungal strains (A. flavus and A. niger); the results indicated the incorporation of antimony
enhanced the inhibitory effect compared to the free ligand owing to the increased lipophilic
character of the metal chelate that aids the permeation of the compounds through the lipid
layer of cell membranes [112]. Later, Beniwal et al. further investigated the antimicrobial ac-
tivities of antimony(III) dithiocarbamates also containing substituted oxime molecules, that
is, PhSb[R(R′)C=NO](L10) [113] and Sb[R(R′)C=NO]2(L10) [114], and some antimony(V)
species, Ph3Sb[R(R′)C=NO](L18) [115], for R = Me, R’ = Ph, C6H4Me-4, C6H4Cl-4, and
C6H4Br-4; R = H and R’ = C6H4OH-4; and CR(R’) = C5H10, against Gram-positive (B.
subtilis) and Gram-negative (E. coli) bacterial strains. Overall, the antimony compounds
showed enhanced activity as compared to the free dithiocarbamate and oxime ligands. The
PhSb[R(R′)C=NO](L10) compounds showed greater antibacterial effects towards B. subtilis
while PhSb[(C6H4OH-4)HC=NO](L10) exhibited marked activities against both bacteria.
On the other hand, [(C6H4Me-4)C(Me)=NO]2Sb[S2CN(L10)] was the most active among
the series in [114] while in the case of Ph3Sb[R(R′)C=NO](L18) [115], when R = Me, R’ =
C6H4Cl-4; and R = H, R’ = C6H4OH-4, the compounds showed greater antibacterial activity
towards B. subtilis.

A broader range of main group elements was investigated in a study of M(L82)3, where
M(III) = Ga, In, As, Sb, and Bi, which were subjected to antibacterial assays against ten
American Type Culture Collection (ATCC) bacterial strains and ten multiresistant clinical
isolated strains, including four extended-spectrum β-lactamase producing E. coli strains,
one methicillin resistant S. epidermidis strain, three methicillin-resistant S. haemolyticus
strains, and one methicillin-resistant S. simulans strain [37]. Overall the indium(III) species
demonstrated the greatest antibacterial activities against the evaluated bacterial strains, a
result correlated with computational studies that showed In(L82)3 possessed better stability
than the other congeners thus promoted its transport to the biological target site in the
bacterial cell.

4. Possible Mechanisms of Action

As mentioned in the introduction, dithiocarbamates such as Zineb® have been used
as agricultural fungicides in various countries since the 1940s but their possible mode(s) of
action and molecular targets remained elusive until the last decade. Dithiocarbamates are
strong chelating agents, and this feature seems to play a crucial role in their antimicrobial
activity. To date, evidence shows that the mechanisms responsible for the antimicrobial
activity include their ability to act as enzyme inhibitors for (i) fungal, protozoan, and
bacterial carbonic anhydrase and (ii) metallo-beta-lactamase (MBL) in antibiotic resistant
bacteria, particularly Gram-negative bacteria.

4.1. Carbonic Anhydrase Inhibitors

Carbonic anhydrases (E.C. 4.2.1.1) are a group of metalloenzymes that catalyze the
conversion of carbon dioxide to bicarbonates and protons. This group of metalloenzymes
is made up of genetically distinct protein families, namely, the α-, β, γ-, δ-, ζ-, η-, and θ-
families, which are distinguished by their molecular structures and folds. These metal-
loenzymes are widespread and were identified in organisms across all three life domains:
Eukarya, Bacteria, and Archaea [116]. Like carbon dioxide, bicarbonate, and protons play
important roles in various physiological processes, the use of carbonic anhydrase inhibitors
was demonstrated to have multiple therapeutic applications, including antiglaucoma, an-
tiobesity, anticonvulsant, and antimicrobial [117]. Various classes of carbonic anhydrase
inhibitors have been identified to date, including carboxylic acids, phenols, polyamines,
diols, borols, boronic acids, coumarins, and sulfonamides [118]. The potential of dithio-
carbamates as a carbonic anhydrase inhibitor in the context of antimicrobial agents was
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established and reviewed [119,120]. In the following Sections 4.1.1–4.1.3), the carbonic
anhydrase inhibitor roles of dithiocarbamates in bacteria, fungi, and protozoa will be
reviewed.

4.1.1. Bacteria

Bacteria encode three families of carbonic anhydrases, namely α-, β-, and γ-. The
α- and β-carbonic anhydrases use zinc(II) as the catalytic metal in their active sites while
γ-carbonic anhydrases use iron(II) centers, and possibly bound zinc(II) or cobalt(II) centers
as catalytic metals [121]. Evidence suggests dithiocarbamates act as carbonic anhydrase
inhibitors in two human pathogenic bacteria, namely L. pneumophila and M. tuberculosis.

L. pneumophila, a Gram-negative bacterium that causes Legionnaires’ disease, is an
intracellular pathogen that evolves to evade phagocytosis of human macrophage cells by
surviving within phagosomes of macrophages. Generally, once a pathogen is engulfed by
a macrophage, a phagosome will form around the pathogen, followed by a change in the
pH within the phagosome as part of the processes of killing and digesting the pathogen. L.
pneumophila evolved to maintain a neutral pH in phagosomes avoiding the acidic conditions
that occur naturally in phagosomes [122]. It is thought that the pH regulation by L.
pneumophila is associated with the activity of a carbonic anhydrase enzyme that generates
protons and bicarbonate via the hydration of any available CO2 [123]. An earlier study
investigated the carbonic anhydrase inhibition activity of various molecules, including
diethyldithiocarbamate among other species such as sulfamide, phenylboronic acid, and
phenylarsonic acids on two of the β-class carbonic anhydrases from L. pneumophila, lpCA1,
and lpCA2. Data showed that diethyldithiocarbamate was a much stronger inhibitor for
lpCA1 and lpCA2 compared to the known carbonic anhydrase inhibitor, sulfamide [124].

In a separate study, Bryne and coworkers reported the potent antibacterial activity of
diethyldithiocarbamate, pyrrolidine dithiocarbamate and Disulfiram® on persister cells of
M. tuberculosis, dormant bacterial cells that do not respond to antibiotic treatment. At this
point, the mechanism of action of these compounds was not known but the authors sug-
gested that the antibacterial activity may be related to their metal-chelating abilities [125].
It was not until 2013, when Maresca et al. showed that a wide range of 27 dithiocarbamate
derivatives were able to inhibit the activity of carbonic anhydrases, mtCA1 and mtCA3,
from M. tuberculosis, indicating the antibacterial activity of these molecules is due to their
inhibition of carbonic anhydrase [126]. From this study, a structure-activity relationship
revealed that dithiocarbamates obtained from primary amines exhibited good inhibitory ac-
tivity while those derived from secondary amines are comparatively less effective. Overall,
it was observed that the increase in aliphatic chain and/or cyclization contributed to en-
hanced inhibitory activity, with dihydroxyethyl dithiocarbamate, [(−)S2CN(CH2CH2OH)2],
morpholine dithiocarbamate, [(−)S2CN(CH2CH2)2O], and (S)-proline dithiocarbamate, [(S)-
NaS2CNC4H7CO2-2Na], being the most effective inhibitors.

In a recent report, a panel of seven dithiocarbamates was tested against β-carbonic
anhydrase 3 of M. tuberculosis. Of the seven compounds, sodium morpholine dithiocar-
bamate appeared to inhibit the carbonic anhydrase enzyme effectively and exhibited low
toxicity effects on zebrafish larvae [127]. The potent carbonic anhydrase inhibition activity
of dithiocarbamates on M. tuberculosis brings hope to the scientific community as this
deadly pathogen was recorded to kill 1.5 million people in 2014 alone. Compounding the
issue, many M. tuberculosis strains have evolved into Multi Drug-Resistant (MDR) and
Extensively Drug-Resistant (XDR) tuberculosis pathogens that are challenging to treat
using existing antibiotics [128].

4.1.2. Fungi

Similar to bacteria, fungal species encode for both α- and β-carbonic anhydrases [119].
The known antifungal activity of dithiocarbamate molecules and their metal complexes
were reviewed above. The overwhelming majority of those studies focused upon the
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testing for antifungal potential without elucidating the possible mechanisms of the putative
antifungal agents.

A limited number of studies demonstrated the carbonic anhydrase inhibitory role of
dithiocarbamates. In 2012, Monti et al. reported N-mono- and N,N-disubstituted dithio-
carbamates generally inhibited the activity of three β-carbonic anhydrases, namely Can2,
CaNce103, and CgNce103 from three opportunistic yeast species, C. neoformans, C. albicans,
and C. glabrata, respectively [129]. In a more recent report, the β-carbonic anhydrase in-
hibitory role of dithiocarbamates was also proven in baker’s yeast S. cerevisiae [130]. The
carbonic anhydrase inhibition capability of dithiocarbamates on α-carbonic anhydrase has
not been described thus far.

4.1.3. Protozoa

To date, a limited number of studies have demonstrated the antiprotozoal potential
of dithiocarbamate derivatives and metal dithiocarbamates. As discussed in Section 3.1,
pyrrolidine dithiocarbamate was able to kill extracellular T. gondii, the causative agent
of toxoplasmosis, but not intracellular T. gondii. The authors claimed the killing effect of
pyrrolidine dithiocarbamate was related to oxidation in cells [27]. In a separate study, three
sodium salts of piperazine bis(dithiocarbamate) esters, that is, (−)S2CN(CH2CH2)2NCS2R
for R = n-Bu, CH2Ph, and CH2CH2N(CH2)5, were reported to have effects against T.
vaginalis, even though these are weaker compared to the chemotherapeutic agent, metron-
idazole [46]. Despite interesting data on the antiprotozoan activity of these compounds,
the mode of action remains unexplored. However, in the following year, Pal and coworkers
investigated the inhibition activity of three metal dithiocarbamates, Zineb® and closely
related species Propineb®, {Zn(S2CN(H)CH(Me)CH2N(H)CS2)}n, and Maneb®, {Mn(S2CN
(H)CH2CH2N(H)CS2)}n, on L. major promastigotes [131]. Using both real-time polymerase
chain reaction (RT-PCR)) and carbonic anhydrase assays, their data confirmed these metal
dithiocarbamates inhibited carbonic anhydrase expression and its activity at submicromo-
lar concentrations. Their study also reported the ability of these metal dithiocarbamates
to reduce the intracellular burden of the protozoa without exhibiting cytotoxic effects on
human mammalian cell lines, that is, macrophage 774A.1 and fibroblast NIH 3T3 [131] cells.
L. major is one of the causative agents for vector-borne disease leishmaniasis that occurs
commonly in tropical and subtropical regions. Despite being the ninth-largest disease
burden among infectious diseases, limited drug options are available to treat this dis-
ease [132]. The carbonic anhydrase inhibition activity of dithiocarbamates on this parasite
provides a foundation for further investigations of the potential of metal dithiocarbamates
in combating leishmaniasis globally.

4.2. Metallo-Beta-Lactamase Inhibitors

Beta-lactam antibiotics that target bacterial peptidoglycan structure are one of the
largest groups of commercially available antibiotics, and include penicillin, cephalosporins,
monobactams, and carbapenems [133]. The unregulated use of these antibiotics has led to
the emergence of beta-lactam-resistant bacteria. One of the resistance mechanisms involves
the production of beta-lactamases, enzymes that hydrolyze the beta-lactam rings present in
many antibiotics. Of the four classes of beta-lactamases, metallo-beta-lactamases (MBLs),
Class B Ambler beta-lactamases, are produced by a group of multidrug-resistant Gram-
negative bacteria, including Enterobacter spp., K. pneumoniae, and P. aeruginosa, members of
the key nosocomial ESKAPE pathogens [134,135]. MBLs confer resistance to carbapenems,
such as imipenem and meropenem, employed as the last resort antibiotics for extended-
spectrum beta-lactamase (ESBL) producing drug-resistant bacteria [136]. The most com-
mon metallo-beta-lactamase families include the New Delhi metallo-beta-lactamase 1
(NDM-1), Verona integron encoded metallo-beta-lactamase (VIM) and imipenem resis-
tant pseudomonas (IMP) [137]. MBLs contain zinc(II) in their catalytic sites which enable
nucleophilic attack at the beta-lactam via a polarized water molecule. Unlike other serine-
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containing beta-lactamases (Classes A, C, and D), the activity of MBLs is not susceptible to
beta-lactam inhibitors such as clavulanic acid, sulbactam, and tazobactam [138].

As part of the attempt to address carbapenem resistance, the development of car-
bapenemase inhibitors, particularly MBL inhibitors, emerges as a feasible approach. The
investigation of drugs containing thiols such as captopril, thiorphan, dimercaprol, and
tiopronin, restored the efficacy of imipenem in resistant bacteria, proving the potential of
thiol-containing drugs as MBL inhibitors [139]. A separate study in the same year reported
the potential of combining two metal chelating agents, namely 1,4,7-triazacyclononane-
1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
(DOTA), in restoring the efficacy of carbapenems, such as imipenem and meropenem, in
E. cloacae and K. pneumoniae, with the former showing superior antibacterial activity in
combination with carbapenems [140]. Following the success of thiols, particularly in com-
bination with NOTA, Zhang et al. synthesized a series of cyclic dithiocarbamate analogs
of NOTA and examined their potential as MBL inhibitors and successfully proved that
trisodium 1,4,7-triazonane-1,4,7-tris(carboxylodithioate) was most active in restoring the
activity of meropenem in clinical carbapenem-resistant K. pneumoniae and E. coli isolates
carrying the blaNDM-1 gene [141]; this compound was shown to have low cytotoxicity
towards a mammalian cell line. Later, the same group identified two more dithiocarbamate
compounds, sodium piperidine dithiocarbamate and sodium pyrrolidine dithiocarbamate
which were able to reverse the resistant phenotype against meropenem in clinical isolates
harboring blaNDM-1 and IMP-4 [142]. When in combination with these dithiocarbamates,
the effectiveness of meropenem was increased up to 2560 times in the tested bacterial
strains. The potential of dithiocarbamates as MBL inhibitors was also proved in two sepa-
rate recent reports [143,144]. In the most recent of these articles, Chen et al. demonstrated
that Disulfiram® was a promising NDM-1 inhibitor that works by covalently binding to
NDM-1 by forming a S–S bond with the cysteine 208 residue in the enzyme using an in
silico approach. Disulfiram® successfully restored the antibiotic activity of imipenem, a
carbapenem, against drug-resistant K. pneumoniae and P. aeruginosa [143].

These advances in the development of novel dithiocarbamate MBL inhibitors in a few
key ESKAPE pathogens are clearly an exciting development. The enhancing of the efficacy
of existing antibiotics, via the use of new inhibitors, that are approved by the FDA [145],
may be a cornerstone in the identification of effective antibiotics in the post-antibiotic era.

5. Overview

While long known [18,146], there is an increasing appreciation of the potential of
metal-based drugs in the treatment of various diseases [19–22,147], including as antimicro-
bial agents. The potential of heavy elements, incorporating both transition metals and main
group elements, dithiocarbamates as antimicrobial agents, in particular against bacteria,
was demonstrated in a relatively large number of studies. The range of dithiocarbamate lig-
ands that may be synthesized is vast [148] and offers opportunities for tailoring properties
relevant to the development of therapeutics, such as solubility, lipophilicity, etc. In keeping
with this idea, in the present survey, 82 different dithiocarbamate ligands were found com-
plexed to a heavy element. In the same way, a wide variety of transition metals, but usually
belonging to the first row, and main group elements feature in this survey. While the reader
is alerted to the salient outcomes of many of these studies, several serious shortcomings
are apparent and need to be acknowledged. First and foremost is the lack of systematic
study, whereby many different elements were coupled with a larger number of different
dithiocarbamate ligands. Is there a standout metal that ought to be studied as a priority? Is
there a dithiocarbamate ligand or even class of dithiocarbamate ligands deserving of special
attention? In other words, there seems little progress towards a guiding structure-activity
relationship. In the same fashion, militating against a structure-activity relationship is that
there is also a very wide variety of potential co-ligands that can be employed to generate
ternary, quaternary, etc. compounds and there is no coherent panel of microorganisms
under investigation. Drug-resistant bacteria, particularly ESKAPE (E. faecium, S. aureus,
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K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter sp.) pathogens which are
capable of causing severe nosocomial infections, should be given more attention in the de-
velopment of new antimicrobial agents. Despite its relevance and impact on human health,
none of the surveyed articles tested dithiocarabamate based compounds and derivatives
on E. faecium. However, the majority of the articles investigated antibacterial activity of
dithiocarbamate derivatives on S. aureus and P. aeruginosa. Additional work is warranted
as there may be a special combination of metal and dithiocarbamate (and other) ligands
that is specifically active against a given microorganism.

6. Conclusions

In summary, the evaluation of metal dithiocarbamates has presented evidence for
their potential use as antimicrobial agents; this potential is enhanced compared to the
dithiocarbamate ligands themselves. Opportunities arise to fine-tune crucial biological
indicators such as lipophilicity by varying the heavy element center (transition metal, main
group element . . . ), the dithiocarbamate ligand (substituents, denticity . . . ) and even
co-ligands (phosphane, pyridine . . . ). Systematic studies leading to structure-activity
relationships are highly desirable, as are investigations into possible mechanisms of action.
There is increasing evidence to indicate dithiocarbamates inhibit the activity of a group of
essential metalloenzymes, that is, carbonic anhydrases. As these enzymes are conserved
in different organisms including bacteria, fungi, and protozoa, novel dithiocarbamate
compounds may possess significant antimicrobial potential. The ability to restore the
efficacy of metallo-beta-lactams in drug-resistant bacteria by dithiocarbamates further
supports the imperative to develop effective dithiocarbamate antimicrobial compounds.
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Appendix A

Table A1. A list of bacterial species mentioned in the review and the diseases inflicted by these.

Bacteria Infections and Diseases

Acinetobacter baumannii Pneumonia, urinary tract infections, blood-stream infections, wound infections,
and meningitis

Aeromonas hydrophila Soft-tissue infections, diarrhea, bacteremia, and septicemia

Aggregatibacter actinomycetemcomitans Chronic and localized aggressive periodontitis

Bacillus cereus Food poisoning, ocular infection, bacteremia, and pneumonia

Bacillus pumilus Bacteremia and sepsis

Bacillus subtilis Bacteremia, endocarditis, pneumonia, and septicemia

Citrobacter freundii Gastroenteritis, neonatal meningitis, septicemia, and urinary tract infections

Enterobacter aerogenes Iatrogenic bacteremia, septicemia, pneumonia, urinary tract infections, and wound
infections

Enterobacter cloacae Nosocomial bloodstream infections
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Table A1. Cont.

Bacteria Infections and Diseases

Enterococcus faecalis Foodborne infections, endocarditis, bacteremia, urinary tract infections,
intra-abdomen, pelvis, and soft tissue infections

Enterococcus raffinosus Nosocomial infections, including bacteremia, urinary tract infection, wound, and
abscesses

Escherichia coli Urinary tract infections, diarrhea, sepsis, meningitis, respiratory infections, and
pericarditis

Fusobacterium nucleatum Periodontal disease and colorectal cancer

Klebsiella pneumoniae Urinary tract infections, pneumonia, septicemia, wound infections, and soft tissue
infections

Lactobacillus plantarum Part of the normal microbiota and a lactic acid bacterium

Legionella pneumophila Legionnaires’ disease and pneumonia

Leuconostoc mesenteroides Part of the normal microbiota and a lactic acid bacterium

Listeria monocytogenes Listeriosis—a foodborne infection

Mycobacterium marinum Chronic skin infections—aquarium granuloma, swimming pool granuloma or fish
tank granuloma

Mycobacterium tuberculosis Tuberculosis

Pasteurella multocida Bacteremia, cellulitis, endocarditis, lymphadenopathy, meningitis, and
osteomyelitis

Porphyromonas gingivalis Periodontal disease and putative causative agent for rheumatoid arthritis, and
neurodegenerative diseases

Proteus mirabilis Kidney failure, kidney stones, pneumonia, and sepsis

Pseudomonas aeruginosa Bacteremia, chronic lung infection, acute ulcerative keratitis, and urinary tract
infections

Rhodococcus sp. Rhodococcus equi in the genus causes zoonotic infection and infections in
immunosuppressed patients, including those in HIV patients

Salmonella enterica serotype Typhi Typhoid fever

Salmonella enterica serotype Typhimurium Salmonellosis

Serratia mercescens Respiratory tract, the urinary tract, surgical wounds, and soft tissues in
hospitalized patients

Shigella flexneri Shigellosis (diarrhea, severe abdominal pain, cramping, septicemia, pneumonia,
and haemolytic uremic syndrome)

Staphylococcus aureus
Skin (Scalded skin syndrome, skin abscesses) soft tissue, bone (osteomyelitis), joint
and central intravenous line infections, endocarditis, staphylococcal meningitis,
septic arthritis, and toxic shock syndrome

Staphylococcus epidermidis Prosthetic valve endocarditis (PVE) infections, intracardiac abscesses, bacteremia,
and neonatal sepsis

Staphylococcus haemolyticus Meningitis, endocarditis, prosthetic joint infections, and bacteremia in
immunocompromised individuals

Staphylococcus sciuri Subcutaneous abscesses, dermatitis, and surgical wound infections

Staphylococcus simulans Skin and soft tissue infections

Streptococcus pneumoniae Pneumonia and sepsis

Streptococcus pyogenes Pharyngitis (Strep Throat), cellulitis, Scarlet Fever, Streptococcal Toxic Shock
Syndrome, impetigo, acute rheumatic fever, and type II necrotizing fasciitis

Streptococcus sanguinis Bacterial endocarditis

Vibrio cholerae Cholera
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Table A2. A list of fungal species mentioned in the review and the diseases inflicted by these.

Fungi Infections and Diseases

Alaternaria solani Septic arthritis, osteomyelitis, and epiglottitis

Alternaria alternata Rhinosinusitis

Aspergillus carbonarius Human kidney diseases such as chronic interstitial nephropathy and
renal diseases

Aspergillus flavus Chronic granulomatous sinusitis, keratitis, cutaneous aspergillosis,
wound infections, and osteomylitis

Aspergillus fumigatus Abscesses, pleural empyema, cholangitis, thrombophlebitis, and
haemolytic uraemic syndrome

Aspergillus niger Respiratory infections associated with pneumonia in
immunocompromised individuals

Aspergillus parasiticus Produces aflatoxins known as carcinogens for liver cancer

Candida albicans (formerly known as Miconia albicans) Candidiasis, including vaginal candidiasis, and candidemia

Candida auris Invasive candidiasis in immunocompromised patients

Candida glabrata Superficial candidiasis, including vulvovaginitis, oral thrush, and
candidemia

Candida parapsilosis Candidal arthritis and candidemia

Candida pseudotropicalis Fungemia and invasive diseases in spleen and kidney in
immunocompromised individuals

Candida tropicalis Candidemia

Cryptococcus neoformans Cryptococcosis and cryptococcal meningitis

Curvularia senegalensis
A plant pathogen, but an etiologic agent of allergic sinusitis, keratitis,
and endophthalmites in immunocompetent and immunosuppressed
patients

Fusarium solani Keratitis, onychomycosis, endophthalmitis, and skin and
musculoskeletal infections

Fusarium oxysporium Urinary tract infection, diarrhea, sepsis, meningitis, respiratory
infections, pericarditis, and septicemia of poultry

Helminthosporium solani A plant pathogen that causes silver scurf in potatoes

Microsporum canis Zoophilic dermatophytosis but occasionally causes human skin
infections

Microsporum gypseum Dermatophytosis

Penicillium citrinum Mycotic keratitis, urinary tract infection, and pneumonia in
immunocompromised individuals

Rhizoctonia solani A plant pathogen that causes damping-off on cultivated plants
including potato, legumes, and vegetables

Sacchoromyces cerevisiae Part of the normal microbiota but has been shown to cause fungemia in
critically ill patients

Sporothrix schenckii Sporotrichosis, also known as rose garden disease

Trichoderma reesie A soil fungus that rarely causes human diseases

Trichoderma viride Pulmonary mycoma in immunocompromised individuals

Trichophyton longifusus Dermatophytosis

Trichophyton mentagrophytes Dermatophytosis

Trichophyton rubrum Dermatophytosis

Trichothecium roseum A plant pathogen that causes pink rot on apples and white stains on
grapes
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Table A3. A list of parasites species mentioned in the review and the diseases inflicted by these.

Parasites Infections and Diseases

Leishmania major Leishmaniasis

Toxoplasma gondii Toxoplasmosis

Trichomonas vaginalis Trichomoniasis
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6. Lefton, J.B.; Pekar, K.B.; Runčevski, T. The crystal structure of Zineb, seventy-five years later. Cryst. Growth Des. 2020, 20, 851–857.

[CrossRef]
7. Aly, A.A.; Brown, A.B.; Bedair, T.M.I.; Ishak, E.A. Dithiocarbamate salts: Biological activity, preparation, and utility in organic

synthesis. J. Sulfur Chem. 2012, 33, 605–617. [CrossRef]
8. Lal, N. Dithiocarbamates: A versatile class of compounds in medicinal chemistry. Chem. Biol. Interface 2014, 4, 321–340.
9. Bala, V.; Gupta, G.; Sharma, V.L. Chemical and medicinal versatility of dithiocarbamates: An overview. Mini Rev. Med. Chem.

2014, 14, 1–12. [CrossRef] [PubMed]
10. Thind, T.S.; Hollomon, D.W. Thiocarbamate fungicides: Reliable tools in resistance management and future outlook. Pest Manag.

Sci. 2018, 74, 1547–1551. [CrossRef] [PubMed]
11. Hogarth, G. Metal-dithiocarbamate complexes: Chemistry and biological activity. Mini Rev. Med. Chem. 2012, 12, 1202–1215.

[CrossRef] [PubMed]
12. Buac, D.; Schmitt, S.; Ventro, G.; Kona, F.R.; Dou, Q.P. Dithiocarbamate-based coordination compounds as potent proteasome

inhibitors in human cancer cells. Mini Rev. Med. Chem. 2012, 12, 1193–1201. [CrossRef]
13. Nagy, E.M.; Ronconi, L.; Nardon, C.; Fregona, D. Noble metal-dithiocarbamates precious allies in the fight against cancer. Mini

Rev. Med. Chem. 2012, 12, 1216–1229. [CrossRef] [PubMed]
14. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B.

influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236. [CrossRef]
15. D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al.

Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [CrossRef] [PubMed]
16. Beardsley, J.; Hallidat, C.L.; Chen, S.C.; Sorrell, T.C. Responding to the emergence of antifungal drug resistance: Perspectives

from the bench and the bedside. Future Microbiol. 2018, 13, 1175–1191. [CrossRef]
17. Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mecha-

nisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [CrossRef]
18. Gielen, M.; Tiekink, E.R.T. (Eds.) Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine; John Wiley

& Sons Ltd.: Chichester, UK, 2005. [CrossRef]
19. Claudel, M.; Schwarte, J.V.; Fromm, K.M. New antimicrobial strategies based on metal complexes. Chemistry 2020, 2, 56. [CrossRef]
20. Frei, A. Metal complexes, an untapped source of antibiotic potential? Antibiotics 2020, 9, 90. [CrossRef] [PubMed]
21. Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal

complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [CrossRef] [PubMed]
22. Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham,

R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11,
12888–12917. [CrossRef]

23. Fleming, A. On the specific antibacterial properties of penicillin and potassium tellurite. Incorporating a method of demonstrating
some bacterial antagonisms. J. Pathol. Bacteriol. 1932, 35, 831–842. [CrossRef]

24. Tiekink, E.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealised. Dalton Trans. 2012, 41,
6390–6395. [CrossRef] [PubMed]

25. Taylor, R.; Wood, P.A. A million crystal structures: The whole is greater than the sum of its parts. Chem. Rev. 2019, 119, 9427–9477.
[CrossRef] [PubMed]

26. Kang, M.S.; Choi, E.K.; Choi, D.H.; Ryu, S.Y.; Lee, H.H.; Kang, H.C.; Koh, J.T.; Kim, O.S.; Hwang, Y.C.; Yoon, S.J.; et al.
Antibacterial activity of pyrrolidine dithiocarbamate. FEMS Microbiol. Lett. 2008, 280, 250–254. [CrossRef] [PubMed]

http://doi.org/10.1002/0471725587.ch2
http://doi.org/10.1002/0471725587.ch1
http://doi.org/10.1107/S0365110X67000465
http://www.ncbi.nlm.nih.gov/pubmed/5630407
http://doi.org/10.2174/0929867324666171023161121
http://doi.org/10.3390/ijms13021541
http://www.ncbi.nlm.nih.gov/pubmed/22408407
http://doi.org/10.1021/acs.cgd.9b01233
http://doi.org/10.1080/17415993.2012.718349
http://doi.org/10.2174/1389557514666141106130146
http://www.ncbi.nlm.nih.gov/pubmed/25373849
http://doi.org/10.1002/ps.4844
http://www.ncbi.nlm.nih.gov/pubmed/29286551
http://doi.org/10.2174/138955712802762095
http://www.ncbi.nlm.nih.gov/pubmed/22931592
http://doi.org/10.2174/138955712802762040
http://doi.org/10.2174/138955712802762004
http://www.ncbi.nlm.nih.gov/pubmed/22931593
http://doi.org/10.1093/clinids/2.1.129
http://doi.org/10.1038/nature10388
http://www.ncbi.nlm.nih.gov/pubmed/21881561
http://doi.org/10.2217/fmb-2018-0059
http://doi.org/10.1016/S1473-3099(17)30316-X
http://doi.org/10.1002/0470864052
http://doi.org/10.3390/chemistry2040056
http://doi.org/10.3390/antibiotics9020090
http://www.ncbi.nlm.nih.gov/pubmed/32085590
http://doi.org/10.1039/C9SC06460E
http://www.ncbi.nlm.nih.gov/pubmed/32206266
http://doi.org/10.1039/D0SC04082G
http://doi.org/10.1002/path.1700350603
http://doi.org/10.1039/c2dt12225a
http://www.ncbi.nlm.nih.gov/pubmed/22252404
http://doi.org/10.1021/acs.chemrev.9b00155
http://www.ncbi.nlm.nih.gov/pubmed/31244003
http://doi.org/10.1111/j.1574-6968.2008.01069.x
http://www.ncbi.nlm.nih.gov/pubmed/18248425


Inorganics 2021, 9, 48 21 of 25

27. Capms, M.; Boothroyd, J.C. Toxoplasma gondii: Selective killing of extracellular parasites by oxidation using pyrrolidine
dithiocarbamate. Exp. Parasitol. 2001, 98, 206–214. [CrossRef]

28. Choi, E.K.; Lee, H.H.; Kang, M.S.; Kim, B.G.; Lim, H.S.; Kim, S.M.; Kang, I.C. Potentiation of bacterial killing activity of zinc
chloride by pyrrolidine dithiocarbamate. J Microbiol. 2010, 48, 40–43. [CrossRef]
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