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Abstract: The structural, electronic, and magnetochemical properties of the star-shaped
polyoxopalladate [Pd15O10(SeO3)10]10− (POPd) and its lanthanide-functionalized derivatives have
been investigated on the basis of density functional theory, followed by a ligand field analysis
using the Radial Effective Charge (REC) model. Our study predicts that heteroPOPd is a robust
cryptand that enforces D5h symmetry around the encapsulated Ln3+ centers. This rigid coordination
environment favors an interesting potential magnetic behavior in the Er and Ho derivatives,
and the presence of a cavity in the structure suggests an effective insulation of the electronic
system from the lattice phonons, which may be of interest for molecular spintronics and quantum
computing applications.
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1. Introduction

Quantum computing is an emerging area of research based on the explicit use of
quantum-mechanical phenomena to implement logic operations for the purposes of highly efficient
information and communication technologies. In contrast to conventional computers which store
information in one of the two definite states ‘0’ or ‘1’, the basic units of a quantum computer are
quantum bits (qubits), which can be a superposition of the basis states. Within this new paradigm,
magnetic molecules are quantum two-level systems that have been proposed as promising candidates
to build up quantum computers [1–6]. In this regard, magnetic molecules exhibit remarkable structural
and chemical versatility, tunable physicochemical properties, and inherent scalability, considering
the enormous opportunities of (self-)organization [7]. Although the current prospects for their
technological implementation remain elusive due to challenges such as loss of quantum coherence [8],
a series of recent breakthroughs in the field have been encouraging [9–14].

In this context, polyoxometalate (POM) chemistry has shown some advantageous chemical,
structural, and electronic features such as robustness, highly symmetrical encapsulating environments,
and absence of nuclear spins around the magnetic ion [15]. Indeed, lanthanide-based polyoxometalates
(POMs) are among the first examples of single-ion magnets (SIMs) [16] and have also contributed
significantly to the field of molecular spin qubits [17,18]. Some relevant examples in molecular
magnetism include two families of lanthanide-containing polyoxomolybdates [19] and the cube-shaped
polyoxopalladates (POPds) [20].

In this work, we focus on a different series of lanthanide-containing POPds as model systems
with the aim to rationally design new molecular nanomagnets. The theoretical investigation
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we present herein is based on the polynuclear star-shaped heteoropoly-15-palladate(II) polyanion
[Pd15Se10O40]10− (1) (Figure 1a) [21,22]. This negatively charged nanocluster is the selenite analogue of
the star-shaped polyanion of general formula [Pd15O10(PO4)10]20− reported in 2009 [23] and belongs
to the family of non-classical late transition metal-based POMs (Ni, Cu, Pd, Pt, and Au) [24–28].
The chemical structure of 1 presents an internal cavity defined by oxo ligands positioned at the
vertices of a virtual pentagonal prism that is suitable for encapsulation of metal cations and water
molecules (Figure 1b) [21–23,29,30]. Among the other available phosphate- or phenyl arsenate-capped
polyanions [23,29,30], we decided to study 1 because it contains the lowest number of atoms
and a relatively low negative charge, while retaining the high overall D5h symmetry. Using
density functional theory (DFT), we initially explore the diamagnetic [NaPd15Se10O40]9− (1-Na)
POPd system and we find a suitable level of theory that can accurately estimate the geometry
of the inner cavity. As a second step, we calculate and discuss the structural and electronic
properties of three lanthanide-encapsulating model systems with general formula [LnPd15Se10O40]7−,
where Ln = La(1-La), Gd(1-Gd) and Lu(1-Lu). Finally, we use the optimized molecular geometry of the
Gd3+ derivative to explore the spin energy levels and ground doublet composition of the Tb3+(1-Tb),
Dy3+(1-Dy), Ho3+(1-Ho), and Er3+(1-Er) derivatives. Our approach provides a general protocol based
on the former two steps, i.e., DFT calculations followed by a ligand field analysis, for the inexpensive
estimation of the potential of coordination complexes as molecular nanomagnets and spin qubits prior
to beginning the experimental work.

Figure 1. Combined polyhedral and ball-and-stick representation polyanion 1 (a) with detail of the
inner cavity suitable for encapsulation of metal cations (b). The assigned d1 and d2 refer to interatomic
O···O distances that define the size of the inner cavity (vide infra). Color code: Se = yellow, Pd = blue,
O = red, and Na/Ln = grey spheres. {O10}/{MO10} = cyan transparent polyhedra.

2. Results and Discussion

2.1. Structural and Electronic Properties

The structural and electronic properties of 1, 1-Na, 1-La, 1-Gd, and 1-Lu were investigated by
means of relativistic density functional theory (DFT) as implemented in the ADF code (ADF 2017,
SCM, Theoretical Chemistry, Vrije Univesity, Amsterdam, The Netherlands) [31]. The geometry
of 1-Na in water was followed at different theoretical levels (Table S1) that have been successfully
used previously for an accurate estimation of the structure of noble metal-based POMs [32–35].
Considering that for the ligand field analysis it is more essential to have geometries that primarily
provide an accurate estimation of positions of the oxo ligands that coordinate to the encapsulated
lanthanide centers, we have found that geometry optimization calculations of the model system 1-Na
at BP86/TZ2P/ZSC/COSMO-water level provide the most accurate approximation of the coordination
environment around the Na+ center, while the Pd–O and Se–O bonds are also well approximated
(see Table S1). Subsequently, polyanions 1, 1-La, 1-Gd, and 1-Lu were optimized at this level as well.
To confirm energy minima, vibrational analysis was performed at the same theoretical level (Figure S4).
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All insights on the electronic structure and bonding energies are discussed based on single-point
calculation performed at (U)B3LYP/TZ2P/ZSC/COSMO-water level (see Supplementary Materials).

Our calculations show that polyanions 1, 1-Na, 1-La, 1-Gd, and 1-Lu exhibit very narrow Se–O,
Pd–O(Pd), Pd–O(Se) bond lengths in the ranges of 1.731–1.733 Å, 1.994–2.008 Å, and 2.058–2.092 Å,
respectively (Table S2). The interatomic distances d1(O···O) and d2(O···O) that define the internal
pentagonal cavity (Figure 1b) are found in the range of 2.646–2.701 Å and 2574–2672 Å, respectively.
The changes induced by encapsulation of the different cations are in the range of <0.1 Å, which implies
that the internal cavities are generally unaffected by the encapsulation. The calculated Ln–O
bonds/distances are in the range of 2.559–2.644 Å, which are characteristic for lanthanide-containing
POM systems [16–20].

The optimized systems 1-La, 1-Gd, and 1-Lu exhibit a gap energy of ca 3.5–3.6 eV between the
highest occupied and the lowest unoccupied molecular orbital (i.e., HOMO and LUMO). The high gap
energy is comparable to that of the reported polyanions 1 (3.4 eV) and 1-Na (3.5 eV), which substantiates
that the proposed lanthanide-encapsulating systems exhibit significant intrinsic stability making them
promising candidates for future preparation (see Table S4). The HOMO in systems 1-La, 1-Gd, and 1-Lu
is doubly degenerate and is composed of Pd-centered dxy- and dyz-type orbitals and O-centered p-type
orbitals (Figure 2a). The LUMO in 1-La, 1-Gd, and 1-Lu is also doubly degenerate and populates
mainly O and Pd centers but also minorly Se4+ and Ln3+ centers (Figure 2a). The antibonding LUMO
exhibits nodes between the Pd-centered dx2−y2 -type orbitals and O-centered p-type orbitals, suggesting
that population of this molecular orbital (e.g., via electrochemical reduction) can destabilize these
bonds. The transition between the HOMO to LUMO corresponds predominantly to d–d transitions
accompanied by metal-to-ligand charge transfer (Pd→ O) (Table S5).

Figure 2. (a) The doubly degenerate highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) of 1-La which is also representative for 1-Gd and 1-Lu; (b) molecular electrostatic
potential plotted over the density isosurface of polyanions 1–5. The most negative potentials are colored in
red. All calculations are performed at (U)B3LYP/TZ2P/ZSC/COSMO-water level. Color code: Se = yellow,
Pd = blue, O = red, and Ln = grey spheres.

In our view, polyanions 3–9 can be potentially prepared in a two-step approach, where polyanions
1 or 2 serve as precursors and are reacted with the lanthanide trications to yield [LnPd15Se10O40]7−,
either by direct encapsulation or by Na+ cation exchange. Some aspects of the DFT calculations
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substantiate this opportunity. First, polyanions 1 and 1-Na exhibit pentagonal entrance defined by five
oxo ligands that is comparable in size to that of the Preyssler-type polyoxoanions, (Figure S1) which
is well-known to permeate lanthanide cations [16]. The inscribed virtual radius of the pentagonal
entrance in 1 is ca. 1.79 Å, which is significantly larger than the effective ionic radius of the bare
lanthanide trications [36]. Second, Mulliken charge analysis (Table S3) and molecular electrostatic
potential (Figure 2b) of 1 show that the inner oxygen atoms defining the inner cavity are highly
negatively charged and thus very nucleophilic. The high nucleophilicity of the inner cavity is the
driving force for encapsulation of Na+, showing favorable binding energies of −201.2 kcal/mol,
which is in line with the experimental evidence [21]. In contrast, the lanthanide trications show
more negative binding energies which increase along the lanthanide series (La3+ = −983.9 kcal/mol,
Gd3+ = −1031.1 kcal/mol, and Lu3+ = −1060.6 kcal/mol).

2.2. Ligand Field Analysis

Starting from the DFT-relaxed structure of the 1-Gd, we have applied the Radial Effective Charge
(REC) model [37] using the SIMPRE computational package [38] to the 1-Tb, 1-Dy, 1-Ho, and 1-Er
derivatives. This parametric model introduces covalency effects by placing an effective charge at an
effective distance determined by a radial displacement Dr (see Section Five of Supplementary Materials
for details). One of its main advantages is that, for similar families of homoleptic coordination
complexes, such parameters are reusable, allowing an inexpensive determination of the spectroscopic
and magnetic properties [39]. Thus, we have taken advantage of the semi-empirical information of
the recently reported [LnPd12(AsPh)8O32]5− series [20] to provide an estimation of the ligand field
splitting of the ground-J multiple as well as the ground state composition of each derivative. As the
coordination number in these two families of POPds is different, 8 in the case of [LnPd12(AsPh)8O32]5−

and 10 in [LnPd15Se10O40]7− and we do not have access to the X-ray structures, we have explored
different possibilities for the REC parameters, always keeping constant the total f = Dr·Zi product [40].
The scanning of the REC parameters at different levels of covalency allows us to evaluate the robustness
of the composition of the ground state with the aim of identifying which candidates are more suitable
to exhibit single-molecule magnet (SMM) behavior. The resulting energy level pattern as a function of
the value of the radial displacement for 1-Tb, 1-Dy, 1-Ho, and 1-Er is reported in Figure 3.

A general trend that one can observe in the evolution of the energy levels versus Dr is
that the larger the covalent correction, the larger the total ligand field splitting. This is related
to the 1/(Ri

K+1) dependence of the k = 2, 4, 6 ligand field parameters in the model, where
Ri is the effective distance between the point charge and the Ln3+ ion (see Section Five of
Supplementary Materials, Equations (2a)–(2c)). Because of the almost perfect D5h geometry around the
lanthanide, the extra-diagonal ligand field Bkq parameters, which are responsible of the mixing between
MJ microstates, are practically negligible. This results in almost pure wave functions (~100% |MJ>)
(Table S7). Regarding the ground state compositions, one can notice that for the non-Kramers ions
(1-Tb and 1-Ho), the same MJ is the most stable along our exploration. In the case of 1-Tb, the equatorial
geometry of {Pd15Se10O40} yields to a diamagnetic state MJ = 0, whereas for 1-Ho, the ground state is
composed by two±4 microstates. This indicates that we can practically discard the 1-Tb as a molecular
nanomagnet, whereas the 1-Ho derivative is a potential candidate as a quantum two-level system, as
long as small distortions in the real structure of the complex create a sufficiently large tunneling splitting
between these two states [17]. On the other hand, the ground states of the 1-Dy and 1-Er derivatives
present two different possibilities based on our magnetostructural investigation. Thus, we cannot state
accurately the main MJ contribution to the ground doublet of these systems, as it will be very sensitive
to the real coordinates of the compounds. However, whereas the 1-Dy analogue can be either ±1/2 or
±11/2, the 1-Er analogue is clearly the most promising of the series, as the model consistently predicts
a ground state determined by a pure high MJ microstate (either ±15/2 or ±13/2). This preference of
the polyoxoanion for stabilizing larger spin microstates in 1-Er is a direct consequence of the equatorial
distribution of the electrostatic charge around the magnetic center [5,41]. Thus, according to our
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calculations, we can conclude that compound 1-Ho presents an interesting composition of the ground
state to design a molecular spin qubit with possible operating points, whereas 1-Er has a very favorable
coordination environment to exhibit slow relaxation of the magnetization. In comparison with the
[LnPd12(AsPh)8O32]5− family [20], where the lack of anisotropy prevented SMM behavior in all the
analogues of the series, the [LnPd15Se10O40]7− derivatives offer a promising pathway to develop
POPd-based nanomagnets. Finally, the internal rigid cavity of the POM is expected to reduce the loss
of quantum information by shielding the electronic structure from lattice vibrations, which means
larger coherence times.

Figure 3. Energy level scheme of the (a) 1-Tb; (b) 1-Dy; (c) 1-Ho, and (d) 1-Er as a function of Dr using
the Radial Effective Charge (REC) model. The different colors indicate the main MJ contribution to the
wave function.
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3. Conclusions

In summary, we have theoretically investigated the structural, electronic, and magnetic
properties of a high-symmetry molecular structure based on POPds, providing a general protocol
for the inexpensive screening of potential molecular nanomagnets and quantum two-level systems.
Our calculations based on density functional theory and a ligand field approach indicate that the rigid
near-perfect D5h coordination environment practically cancels all the extra-diagonal contributions
to the ligand field Hamiltonian, leading to almost pure spin states in all the systems of the series.
The equatorially expanded charge distribution around the lanthanide favors the stabilization of
a high-spin ground doublet in the 1-Er derivative, which can be considered as a potential single-ion
magnet. On the other hand, the ground state of the 1-Ho derivative offers an interesting playground
to break ±4 degeneracy through ligand field-induced tunneling splitting which can be of interest for
quantum computing applications. Our efforts to shed more experimental light on these systems are
currently underway.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/4/101/s1.
Figure S1: Combined ball-and-stick and polyhedral representation of the [P5W30O110]15− polyanion, Figure S2:
Ball-and-stick representation depicting segment of the 1, 1-Na, 1-La, 1-Gd, and 1-Lu polyanions, Figure S3:
Spin density isosurface of 1-Gd indicating accumulation of α spins at the GdIII center as calculated at
UB3LYP/TZ2P/ZSC/COSMO level. Color code: Pd = blue, O = red, and Se = yellow spheres, Table S1:
Characteristic bond lengths of polyanion 1-Na system as calculated at different theoretical levels, Table S2:
Characteristic bond lengths and interatomic distances in polyanions 1, 1-Na, 1-La, 1-Gd, and 1-Lu as calculated at
BP/TZ2P/ZSC/COSMO-water levels, Table S3: Mulliken charge populations of 1, 1-Na, 1-La, 1-Gd, and 1-Lu
obtained at (U)B3LYP/TZ2P/ZSC/ COSMO for different O atoms, following the labeling in Figure S2, Table S4:
HOMO, LUMO, and HOMO–LUMO gap (∆LUMO–HOMO) energies in eV of 1, 1-Na, 1-La, 1-Gd, and 1-Lu,
calculated at (U)B3LYP/TZ2P/ZSC/COSMO, Table S5: Contributions (in %) of the Kohn–Sham orbitals centered
on palladium, oxygen, selenium, and the incorporated cations to the HOMO and the LUMO orbitals of 1, 1-Na,
1-La, 1-Gd, and 1-Lu, Table S6: Crystal field parameters ( Aq

k< rk >; Stevens notation) in cm−1 calculated
for 1-Tb, 1-Dy, 1-Ho, and 1-Er, Table S7: Ground multiplet energy level scheme (cm−1) and main |MJ>
contributions to the wave function calculated for 1-Tb, 1-Dy, 1-Ho, and 1-Er, Figure S4: Calculated spectrum of
bare 1-La on BP/TZ2P/ZSC/COSMO-water levels. Main absorptions at 747 cm−1 and 671 cm−1 correspond
to Se–O stretch, while a combination of stretch and bending modes corresponds to the absorption at 535 cm−1.
References [16,20,21,24,31–34,37,38,42–61] are cited in the supplementary materials.
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