Supporting Information

for

One-pot Synthesis of Heavier Group 14 N-Heterocyclic Carbene using Organosilicon Reductant

Ravindra K. Raut, Sheikh Farhan Amin, Padmini Sahoo, Vikas Kumar and Moumita Majumdar*

Contents

1.	Plots of NMR Spectra	S2
2.	X-ray Data	S15
3.	Molecular Structure	S17

Department of Chemistry, Indian Institute of Science, Education and Research, Pune Pune-411008, Maharashtra India

E-mail: moumitam@iiserpune.ac.in

1. Plots of NMR Spectra

Figure S1. ¹H NMR of Compound 1 (crude reaction mixture, before crystallization)

Figure S2. ¹³C NMR of Compound 1 (crude reaction mixture, before crystallization)

Figure S3. 1H NMR in CDCl $_3$ of the hexane insoluble solid residue from the crude reaction mixture of compound 1

Figure S4. ¹H NMR of Compound 1

Figure S5. 13 C NMR of Compound 1

Figure S6. ¹H NMR

Figure S7. ¹³C NMR

Figure S8. 1 H NMR of Compound 2 (crude reaction mixture, before crystallization); * = free ligand

Figure S9. ¹³C NMR of Compound 2 (crude reaction mixture, before crystallization)

Figure S10. 119Sn NMR of Compound 2 (crude reaction mixture, before crystallization)

Figure S11. ¹H NMR of Compound 2

Figure S12. 13 C NMR of Compound 2

Figure S13. 119Sn NMR of Compound 2

<u>Attempts to synthesize N-Heterocyclic Silylene:</u>

Trial 1:

To a mixture of N^I , N^2 -dimesitylethane-1,2-diimine (0.254 g, 0.865 mmol) and 1,1'-bis(trimethylsilyl)-1,1'-dihydro-4,4'-bipyridine (0.528 g, 1.74 mmol) taken in 20 mL of tetrahydrofuran maintained at 0 $^{\circ}$ C, was added drop-wise 5 mL tetrahydrofuran solution of SiCl₄ (0.1 mL, 0.865 mmol). The red reaction mixture was warmed to room temperature and stirred for 12 hours. The volatiles were removed under vacuum giving a brown solid. Hexane was added to it and filtered. Subsequently, the filtrate was evaporated under vacuum giving orange sticky solid.

Figure S14. ¹H NMR plot of Trial 1 (* = 4,4'-Bipyridine, ' = A, '' = B)

Figure S15. ¹³C NMR Plot of Trial 1

Trial 2:

 $20\,\text{mL}$ of toluene was added to mixture of 2,2-dichloro-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazasilole [S1] (0.3 g, 0.631 mmol) and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (0.142 g, 0.631 mmol) at room temperature. The yellow reaction mixture was refluxed for 24 hours. Volatiles were removed under vacuum giving yellow viscous liquid.

Figure S16. ¹H NMR of Trial 2

Figure S17. ²⁹Si NMR of Trial 2

Trial 3:

 $20\,\text{mL}$ of toluene was added to mixture of 2,2-dichloro-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazasilole (0.3 g, 0.631 mmol) and 1,1'-bis(trimethylsilyl)-1H,1'H-4,4'-bipyridinylidene (0.191 g, 0.631 mmol) at room temperature. The orange reaction mixture was refluxed for 24 hours. Volatiles were removed under vacuum giving orange yellow viscous liquid.

Figure S18. ¹H NMR of Trial 3

Figure S19. ²⁹Si NMR of Trial 3

Trial 4:

Photochemical reactor was charged with 70 mL tetrahydrofuran solution of 2,2-dichloro-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazasilole (0.238 g, 0.5 mmol) and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (0.113 g, 0.5 mmol). The yellow reaction mixture was irradiated with ultrviolet light for 4 hours. The volatiles were removed under vacuum giving yellow viscous liquid.

Figure S20. ¹H NMR

Figure S21. ²⁹Si NMR

Reaction of Diazabutadiene with Organosilicon Reductant

10 mL of tetrahydrofuran was added to a mixture of N^1,N^2 -dimesitylethane-1,2-diimine (0.1 g, 0.342 mmol) and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (0.077g, 0.342 mmol) at room temperature. The yellow reaction mixture was stirred for 12 hours at room temperature. Solvent was removed under vacuum giving yellow solid.

Figure S22. ¹H NMR study for the reaction between diazabutadiene and organosilicon reductant.

2. X-ray Data
Table S1. Crystal data and structure refinement for Compound 1.

Empirical formula	$C_{20}H_{24}N_2Ge$
Formula weight	365.00
Temperature	100 K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 8.1542 (4) \text{ Å} \alpha = 76.988 (2)$
	$b = 10.2525 (4) \text{ Å} \beta = 75.233 (2)$
	$c = 12.5214 (6) \text{ Å} \gamma = 67.180 (2)$
Volume	923.58 (7) Å ³
Z	2
Density (calculated)	1.312 g/cm^3
Absorption coefficient	2.241 mm ⁻¹
F(000)	380
Crystal size	$0.09 \times 0.08 \times 0.07 \text{ cm}^3$
Theta range for data collection	4.727 to 66.731°.
Index ranges	-9<=h<=9, -12<=k<=12, -14<=l<=14
Reflections collected	5992
Independent reflections	3188 [R(int) = 0.0371]
Completeness to theta = 66.731°	97.3 %
Absorption correction	Multi-scan
Max. and min. transmission	0.817 and 0.855
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3188 / 0 / 214
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0359, $wR2 = 0.0969$
R indices (all data)	R1 = 0.0371, $wR2 = 0.0979$
Largest diff. peak and hole	0.629 and -0.404 e.Å-3

 Table S2. Crystal data and structure refinement for Compound 2

Empirical formula	$C_{20}H_{24}N_2Sn$	
Formula weight	411.10	
Temperature	100 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	$a = 8.1203 (5) \text{ Å} \alpha = 92.139 (2)$	
	$b = 10.3254 (6) \text{ Å} \beta = 104.427 (2)$	
	$c = 12.4256 (7) \text{ Å} \gamma = 111.697 (2)$	
Volume	927.74 (10) Å ³	
Z	2	
Density (calculated)	1.472 g/cm^3	
Absorption coefficient	10.943 mm ⁻¹	
F(000)	416	
Crystal size	0.1 x 0.08 x 0.06 cm ³	
Theta range for data collection	3.712 to 66.644°.	
Index ranges	-9<=h<=9, -12<=k<=12, -14<=l<=14	
Reflections collected	9456	
Independent reflections	3260 [R(int) = 0.0512]	
Completeness to theta = 66.644°	99.2 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.402 and 0.519	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3260 / 0 / 214	
Goodness-of-fit on F ²	1.132	
Final R indices [I>2sigma(I)]	R1 = 0.0493, $wR2 = 0.1215$	
R indices (all data)	R1 = 0.0512, $wR2 = 0.1234$	
Largest diff. peak and hole	2.874 and -2.247 e.Å-3	

3. Molecular Structure

Figure S23. Molecular structure of **1** in the solid state (thermal ellipsoids at 30%, H atoms omitted for clarity). Selected bond lengths [Å] and bond angle $[^{0}]$: Ge1-N1 = 1.8679 (18) Å, Ge1-N2 = 1.8786 (18); N1-Ge-N2 = 83.62 (8).

Figure S24. Molecular structure of **2** in the solid state (thermal ellipsoids at 30%, H atoms omitted for clarity). Selected bond lengths [Å] and bond angle [$^{\circ}$]: Sn1-N1 = 2.089 (4) Å, Sn1-N2 = 2.096 (4); N1-Sn-N2 = 77.95 (16).

References

[S1] Park, P.; Schäfer, A.; Mitra. A.; Haase, D.; Saak, W.; West, R.; Müller, T. Synthesis and reactivity of *N*-aryl substituted *N*-heterocyclic silylenes. *J. Organomet. Chem.* **2010**, *695*, 398-408, DOI: 10.1016/j.jorganchem.2009.10.034.