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Abstract: Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are
performed to investigate the geometric and electronic structures and chemical bonding of a series of
Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution of CunZn3O3 (n = 1–4)
clusters may reveal the aggregation behavior of Cu atoms on the Zn3O3 cluster. The planar seven-
membered ring of the CuZn3O3 cluster plays an important role in the structural evolution; that is,
the Cu atom, Cu dimer (Cu2) and Cu trimer (Cu3) anchor on the CuZn3O3 cluster. Additionally, it
is found that CunZn3O3 clusters become more stable as the Cu content (n) increases. Bader charge
analysis points out that with the doping of Cu atoms, the reducibility of Cu aggregation (Cun−1)
on the CuZn3O3 cluster increases. Combined with the d-band centers and the surface electrostatic
potential (ESP), the reactivity and the possible reaction sites of CunZn3O3 (n = 1–4) clusters are
also illustrated.

Keywords: copper-doped zinc oxide clusters; density functional theory; structural evolution; reactivity

1. Introduction

Cu-based catalysts have played important roles in industry, such as in electrocatalytic
reduction of CO2, methanol steam reforming and water gas shift reaction [1–4]. But at the
same time, Cu-based catalysts have suffered some restrictions, such as thermal instabilities
and low selectivity [1,2]. Sintering and aggregation of the supported Cu nano-particles
are considered to be among the reasons for deactivation of Cu-based catalysts [2]. To
develop Cu-based catalysts with superior performance, the structure–activity relationship
of catalytic active sites and the interaction of the main active component with the additives,
including the supports, are the fundamental issues that need to be solved [5]. Cu/ZnO
catalysts are among the commonly used Cu-based catalysts, in which Cu usually acts
as the main active component and ZnO plays the dual role of promoter and support [6].
Specifically, Cu2+ ions would be reduced to the active Cu0/Cu+ species, and the addition
of ZnO would increase copper dispersion and reducibility, which are related to enhanced
catalytic activity [3,7]. Despite great progress, the interaction of the active copper com-
ponent with other additives, as well as the reaction mechanisms on Cu-based catalysts,
are still controversial due to the complexity of the surface [5]. In this context, gas-phase
clusters with various sizes, charge states and stoichiometries could unravel the structural
characteristics, bonding rules and reactivity of the clusters. Furthermore, the clusters which
could emulate specific reactive centers have served as a fruitful tool for providing insight
into the reaction mechanism of catalytic materials [8–10].

Additionally, well-supported single-/dual-atom and cluster catalysts have recently
become research hotspots [11–15]. Among these, copper oxide clusters have been suggested
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to be the catalytic active sites of copper-exchanged zeolites in the methane oxidation to
methanol [15]. Herein, copper oxide clusters with different stoichiometries and sizes were
embedded in the zeolites channel, and the geometries and stabilities of these clusters and
their underlying correlations with the catalytic activities were elaborated. Additionally, a
fully exposed Cu7 cluster anchored to the loop-like [6]cycloparaphenylene was found to be
highly active and selective in the CO electroreduction [14]. As for the ZnO clusters, it is
accepted that (ZnO)n (n < 8) clusters favored the Zn–O alternating ring structure. As the
size (n) of the (ZnO)n clusters increased to 8, a ring-to-cage transition occurred [16–18]. In
these stoichiometric (ZnO)n (n = 1–13) clusters, (ZnO)3, (ZnO)9 and (ZnO)12 were found
to possess relatively higher stability [18]. Notably, the discrete Zn3O3 cluster is the planar
six-membered ring structure, and the wrinkled Zn3O3 six-membered ring can be found in
the larger (ZnO)n (n > 8) clusters and the common exposed surfaces of hexagonal wurtzite
ZnO crystals [17,19–22].

We have constantly strived to explore the novel chemical bonding of gas-phase clusters
and to gain further insights into the active sites of complicated catalyst surfaces and the
reaction mechanisms of catalytic processes [23–26]. As mentioned above, the sintering and
aggregation of the supported Cu nano-particles are among the deactivation reasons for Cu-
based catalyst [2]; whereas small-sized supported Cu clusters possess high activity in some
reactions [14]. So, it may be interesting to explore the structural evolution and bonding
in the CunZn3O3 (n = 1–4) clusters via the sequential adding of Cu atoms, as well as the
interaction of doped Cu atoms with the Zn3O3 cluster. In this work, we make an effort to
reveal the evolution rule of the geometric and electronic structures, as well as the chemical
bonding in the Cu-doped CunZn3O3 (n = 1–4) clusters. Bader charge analysis, d-band
center theory and surface electrostatic potential (ESP) are used to analyze the reactivity and
reaction sites of CunZn3O3 (n = 1–4) clusters. This work may prove enlightening for our
future studies on the mechanisms of cluster reactions.

2. Methods

The initial geometries of CunZn3O3 (n = 1–4) clusters were constructed using the struc-
tural searches of the ABCluster program [27,28] in combination with artificial constructions.
These initial geometries were optimized using the B3LYP functional [29–31] in the Gaussian
09 program [32]. The Stuttgart small-core relativistic effective core potential (RECP) was
used for the Cu and Zn atoms, whose corresponding basis sets are Cu: [6s,6p,4d,3f,2g]; Zn:
[6s,6p,4d,3f,2g] [33–36]. As for O atoms, the aug-cc-pVTZ basis set was adopted [37,38].
In structural optimizations, the vibrational frequencies were calculated to ensure that the
optimized structures were free of imaginary frequencies. In order to verify the reliabil-
ity of the above computational methods (denoted as B3LYP/BS), we compared the bond
lengths, binding energies, vibrational frequencies and dipole moments of ZnO and CuO
molecules from the available experiments with our calculations. As shown in Table S1, our
calculations are in agreement with the data from those experiments. The low-lying isomers
within 0.50 eV at the B3LYP/BS level were then subjected to more accurate coupled cluster
CCSD(T) single-point-energy calculations using the Molpro 2010 software [39]. Multiwfn
program [40,41] was employed to analyze the Bader charge, surface electrostatic potential
(ESP) and d-band centers of CunZn3O3 (n = 0–4) clusters.

3. Results

It is accepted that the Zn3O3 cluster is a planar six-membered ring structure with D3h
symmetry (Figure 1a) [16], in which Zn and O atoms are alternately bonded (dZn-O = 1.817 Å).
The distance between two Zn atoms is 2.654 Å.
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the previous theoretical study [18]. It can be regarded as inserting a Cu atom into the Zn-
O bond of the Zn3O3 cluster, leading to the planar seven-membered ring structure. The 
second low-lying isomer (Figure 1c) is 0.50 eV higher in energy, for which the six-mem-
bered Zn3O3 ring is broken. Other CuZn3O3 isomers are higher in energy by at least 0.50 
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viewed as inserting a Cu atom into the Zn-Cu bond of the CuZn3O3 cluster, resulting in a 
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taining to the Cu2Zn3O3 cluster. The Cu-Cu bond length is 2.366 Å, slightly longer than 
the Cu-Zn bond length (2.343 Å). This is in agreement with the covalent radius of the Cu 
and Zn atoms (dCu = 1.52 Å, dZn =1.45 Å) [42] and suggests the metal–metal bonding of the 
inserting Cu atom with the neighboring Cu and Zn atoms. The second low-lying isomer 
(Figure 2b), which can be viewed as adding a bridged Cu to the CuZn3O3 ground state, is 
0.39 eV less stable than the ground state. Other isomers are found to be much higher in 
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adding a copper dimer (Cu2) between two bridged oxygen atoms of the CuZn3O3 ground 
state. At this point, the three-fold coordinated bridged oxygen atom (µ3-O) begins to ap-
pear in the ground states of CunZn3O3 clusters. The Cu-Cu bond length of Cu dimer (Cu2) 
is 2.388 Å in the Cu3Zn3O3 cluster, which is much longer than that (2.232 Å) of the isolated 

Figure 1. Optimized structures (∆E ≤ 0.50 eV) for Zn3O3 and CuZn3O3. The bond lengths are in
angstroms and the relative energies (∆E) in eV are in the parentheses.

3.1. Optimized Structures of CuZn3O3

CuZn3O3 clusters are constructed by adding a Cu atom to the most stable Zn3O3
cluster. The most stable structure of CuZn3O3 is shown in Figure 1b, which is consistent
with the previous theoretical study [18]. It can be regarded as inserting a Cu atom into the
Zn-O bond of the Zn3O3 cluster, leading to the planar seven-membered ring structure. The
second low-lying isomer (Figure 1c) is 0.50 eV higher in energy, for which the six-membered
Zn3O3 ring is broken. Other CuZn3O3 isomers are higher in energy by at least 0.50 eV. They
are collected in the Supporting Information (Figure S1).

3.2. Optimized Structures of Cu2Zn3O3

To search for the ground state of the Cu2Zn3O3 cluster, a Cu atom was added to the
most stable CuZn3O3 cluster. The optimized Cu2Zn3O3 clusters with relative energy below
0.50 eV are shown in Figure 2. The ground state of the Cu2Zn3O3 cluster (Figure 2a) can
be viewed as inserting a Cu atom into the Zn-Cu bond of the CuZn3O3 cluster, resulting
in a planar eight-membered ring structure. It is consistent with the earlier finding of [18]
pertaining to the Cu2Zn3O3 cluster. The Cu-Cu bond length is 2.366 Å, slightly longer than
the Cu-Zn bond length (2.343 Å). This is in agreement with the covalent radius of the Cu
and Zn atoms (dCu = 1.52 Å, dZn =1.45 Å) [42] and suggests the metal–metal bonding of the
inserting Cu atom with the neighboring Cu and Zn atoms. The second low-lying isomer
(Figure 2b), which can be viewed as adding a bridged Cu to the CuZn3O3 ground state, is
0.39 eV less stable than the ground state. Other isomers are found to be much higher in
energy (∆E > 0.50 eV). They are collected in the Supporting Information (Figure S2).
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3.3. Optimized Structures of Cu3Zn3O3

As the number of doped Cu atoms increases, more low-lying isomers appear for the
Cu3Zn3O3 clusters (Figure 3). The most stable Cu3Zn3O3 cluster (Figure 3a) can be seen as
adding a copper dimer (Cu2) between two bridged oxygen atoms of the CuZn3O3 ground
state. At this point, the three-fold coordinated bridged oxygen atom (µ3-O) begins to
appear in the ground states of CunZn3O3 clusters. The Cu-Cu bond length of Cu dimer
(Cu2) is 2.388 Å in the Cu3Zn3O3 cluster, which is much longer than that (2.232 Å) of the
isolated Cu2 molecule (D∞h

1Σg
+) at the same calculation level. It is inferred that there are

relatively strong interactions of the Cu2 moiety with the remaining fragments of Cu3Zn3O3.
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As shown in Figure 3, there are several isomers that have energies close to the ground
state. To further distinguish the stability of these low-lying isomers, single-point CCSD(T)
calculations were performed using their B3LYP equilibrium geometries. The single-point
CCSD(T) calculations still support the structure contained the Cu2 (Figure 3a) being the
most stable Cu3Zn3O3 cluster (Table S2). Other higher-energy isomers (∆E > 0.50 eV) are
shown in the Supporting Information (Figure S3).
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3.4. Optimized Structures of Cu4Zn3O3

In our calculations, the most stable Cu4Zn3O3 cluster is shown in Figure 4a. It can
be viewed as adding a copper trimer (Cu3) between two bridged oxygen atoms of the
CuZn3O3 ground state. Meanwhile, several low-lying isomers within 0.50 eV were found
(Figure 4). Among them, there is an isomer (Figure 4b) which contains the Cu4 moiety and
is only 0.10 eV higher in energy. The relative energies of these isomers were further refined
by CCSD(T) single-point calculations (Table S2). The CCSD(T) results support the structure
shown in Figure 4a being the most stable one, and the isomer shown in Figure 4b is 0.28 eV
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less stable. Other higher-energy isomers (∆E > 0.50 eV) are displayed in the Supporting
Information (Figure S4).
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4. Discussion
4.1. Structural Evolution in CunZn3O3 (n = 1–4) Clusters and Their Stability

It has been reported that the supported Cu2 and Cu3 clusters are the multi-atom cluster
catalysts in specific reactions, and appropriate supports could improve their stability and
dispersibility [43,44]. Zinc oxides are among the most common promoters and supports
for Cu-based catalysts, the Zn3O3 six-membered ring is common in the larger (ZnO)n
(n > 8) clusters and the wurtzite ZnO [17,19–22]. Studying the structural evolution of the
CunZn3O3 (n = 1–4) clusters via the sequential doping of the Zn3O3 cluster with Cu atoms
may help us gain insight into the aggregation behavior of Cu atoms on the Zn3O3 cluster.

For CuZn3O3, the Cu atom is inserted into the Zn-O bond of the Zn3O3 cluster. For
Cu2Zn3O3, the Cu atom is inserted into the Zn-Cu bond of the CuZn3O3 cluster. As for
Cu3Zn3O3 and Cu4Zn3O3 clusters, the planar seven-membered ring of the CuZn3O3 cluster
starts to play an important role in the subsequent aggregation of Cu atoms (Figure 5); that
is, the Cu dimer (Cu2) and Cu trimer (Cu3) are attached to the CuZn3O3 cluster by two
bridged oxygen atoms (µ3-O). Herein, we found that at low Cu content (n = 1, 2), Cu
atoms prefer to insert into the Zn-O bond of Zn3O3 first then aggregate to form the ZnCu2
units. The six-membered ring of Zn3O3 gradually expanded to the eight-membered ring of
Cu2Zn3O3. When the Cu content further increases (n = 3, 4), the extra Cu atoms aggregate
with each other to form Cun-1 units which are supported on the CuZn3O3 cluster.

The relative stability of CunZn3O3 (n = 1–4) clusters is evaluated via the calculated at-
omization energy (Eb,1). The atomization energy (Eb,1) of CunZn3O3 clusters was calculated
via the following formula:

Eb,1 = nE(Cu) + 3E(Zn) + 3E(O) − E(CunZn3O3). (1)

E(CunZn3O3), E(Cu), E(Zn) and E(O) represent the energy of the CunZn3O3 ground
state and Cu, Zn and O atoms, respectively. As seen in Table 1, the Eb,1 increases gradually
with the increase in Cu content. This suggests that the CunZn3O3 clusters become more
stable with Cu atoms doping (n = 0–4).
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Table 1. Atomization energy (Eb,1) of the CunZn3O3 cluster. The energies are in eV.

Cluster Zn3O3 CuZn3O3 Cu2Zn3O3 Cu3Zn3O3 Cu4Zn3O3

Eb,1 22.07 24.03 26.68 28.28 31.27

4.2. Chemical Bonding of CunZn3O3 (n = 1–4) Clusters

It is known that zinc has the electronic configuration of 3d104s2. Usually, its 3d
electrons do not participate in the bonding with other elements. So, in zinc oxides, there
is almost an exclusively +2 oxidation state. But copper, as the neighbor element of zinc,
has the 3d104s1 configuration, and its 3d electrons participate in the bonding. So, the
oxidation state of Cu is more abundant (+1, +2 and +3) [45]. To better understand the
charge transfer in the sequential doping of the Zn3O3 cluster with Cu atoms, we calculated
the Bader charges of the CunZn3O3 (n = 1–4) clusters (Table 2). For the Zn3O3 cluster, the
Bader charges of Zn and O atom are +1.13 |e| and −1.13 |e|, respectively. Obviously, the
oxidation states of Zn and O in the Zn3O3 cluster are +2 and −2, respectively. Thus, the
Bader charge of about ±0.5 |e| is indicative of a single-electron transfer, and the Bader
charge of about ±1.0 |e| corresponds to a double-electron transfer [46].

Table 2. Bader charges (|e|) analysis of CunZn3O3 (n = 0–4).

Cluster Zn-1 Zn-2 Zn-3 O-1 O-2 O-3 Cu-1 Cu-2 Cu-3 Cu-4

Zn3O3 1.13 1.13 1.13 −1.13 −1.13 −1.13
CuZn3O3 0.64 1.12 1.15 −1.15 −1.14 −1.06 0.43
Cu2Zn3O3 0.75 1.14 1.12 −1.15 −1.15 −1.10 0.37 0.02
Cu3Zn3O3 0.37 1.11 1.12 −1.16 −1.14 −1.09 0.28 0.25 0.26
Cu4Zn3O3 0.37 1.12 1.11 −1.17 −1.14 −1.11 0.26 0.31 0.31 −0.06

With the Cu atoms doping, the Bader charge of the Zn-1 (as labeled in Figure 5)
deviates considerably from +1.0 |e|, and its adjacent Cu atom (denoted as Cu-1) has a
Bader charge of less than +0.5 |e|. This suggests an electron transfer between the Zn-1
atom and its adjacent Cu atom (denoted as Cu-1), and the valence state of the Cu-1 atom
is Cuδ+ (0 < δ ≤ 1). Additionally, the Bader charges of the different elements seem to be
related to the electronegativity (Pauling scale): 1.65 (Zn) < 1.90 (Cu) < 3.44 (O). The charges
of Zn are always more positive than those of Cu, and the Cu atom which is bonded to
oxygen always has a more positive charge than that of the Cu, which only connects to metal
atoms. For example, the Bader charge of the Zn-1 atom in CuZn3O3 drops to +0.64 |e| and
the charge of the Cu-1 atom is +0.43 |e|. This suggests a charge transfer between the Zn-1
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atom and the adjacent Cu-1 atom, and the Cu-1 atom should be Cu+. A metal–metal bond
is formed between Zn-1 and Cu-1, as indicated by the singly occupied molecular orbital
(SOMO) in Figure 6a. On the other hand, the ZnCu unit in CuZn3O3 transfers 1.07 |e| to
the nearby oxygen atoms (denoted as O-1 and O-3) in total. It is inferred that the ZnCu
unit in CuZn3O3 transfers total two electrons to their adjacent oxygen atoms (O-1 and O-3),
which leads to two metal–oxygen single bonds. With continued adding of a Cu atom to
the CuZn3O3 cluster, the added Cu atom (denoted as Cu-2) inserts into the Zn-Cu bond of
the CuZn3O3 cluster. As given in Table 2, the Bader charge of Cu-2 in Cu2Zn3O3 is only
+0.02 |e|. This could be understood in terms of the electronegativity discussed above, and
the Cu-2 atom may be assigned as Cu0. There are metal–metal bonds between Cu-2 and the
Zn-1 and Cu-1 atoms, corresponding to the molecular orbital diagrams shown in Figure 6b.
Herein, the Bader charge of Zn-1 slightly increases to +0.75 |e|, and the charge of the
Cu2 unit is calculated to be +0.39 |e|. This suggests more electron transfers between the
Zn-1 atom and its adjacent Cu2 unit. Furthermore, the ZnCu2 unit in the Cu2Zn3O3 cluster
transfers 1.14 |e| to the adjacent oxygen atoms (O-1 and O-3) in total, which corresponds
to two metal–oxygen single bonds. Compared with the Zn3O3 cluster, the charges of the
other atoms in CunZn3O3 (n = 1,2) clusters do not change much.
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For CunZn3O3 (n = 3, 4) clusters, they can be viewed as adding the Cu2 (Cu-2 and
Cu-3) and Cu3 (Cu-2, Cu-3 and Cu-4) to the CuZn3O3 cluster linked by two three-fold
coordinated oxygen atoms (O-1 and O-3). As mentioned above, the Bader charges of the Zn-
1 and Cu-1 atom in CuZn3O3 are +0.64 |e| and +0.43 |e|, respectively. But in CunZn3O3
(n = 3, 4), the charge of Zn-1 reduces to +0.37 |e|, and that of Cu-1 also decreases to roughly
+0.3 |e|. This suggested fewer charge transfers from the ZnCu diatom of CunZn3O3
(n = 3, 4) to the O-1 and O-3 atoms compared with the charge transfers in the CuZn3O3
cluster. Here, the valence state of Cu-1 atom is predicted to be Cuδ+ (0 < δ < 1). As
compensation, the newly added Cu2 and Cu3 units in CunZn3O3 (n = 3, 4) transfer charges
of +0.51 |e| and +0.56 |e| to the O-1 and O-3 atoms. As depicted in Figure 6c,d, there are
metal–metal bonds in the CuZn unit and in the Cun-1 units of CunZn3O3 (n = 3,4) clusters.
To analyze the interaction of Cu aggregation (Cun−1) with the CuZn3O3 cluster, the binding
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energies (Eb,2) of the isolated Cun−1 clusters with the CuZn3O3 cluster were calculated via
the following formula:

Eb,2 = E(CunZn3O3) − E(CuZn3O3) − E(Cun−1). (2)

E(CunZn3O3), E(CuZn3O3) and E(Cun−1) represent the ground-state energy of
CunZn3O3, CuZn3O3 and Cun−1 clusters, respectively. The Eb,2 of Cu2 in the Cu3Zn3O3
cluster is calculated to be −1.60 eV, and that of Cu3 in the Cu4Zn3O3 cluster is −3.21 eV.
The more negative Eb,2 means a stronger interaction between Cu aggregation (Cun−1) and
the CuZn3O3 cluster and a higher stability of Cun−1 on the CuZn3O3 seven-membered
ring. Here, the more negative binding energies (Eb,2) coincide with the more transferred
charge from Cun−1 to CuZn3O3. For Cu/ZnO catalysts, the addition of ZnO is conducive
to increasing the dispersion and reducibility of the active copper component [47]. From the
perspective of Bader charge, the Cun−1 in CunZn3O3 (n = 3, 4) is more reducible than the
Cun in CunZn3O3 (n = 1, 2). The synergistic interaction between Cu and Zn in CuZn3O3
may enhance the reducibility of Cu species in CunZn3O3 (n = 3, 4).

4.3. Reactivity of CunZn3O3 (n = 1–4) Clusters

The model of the d-band center was developed by Nørskov and co-workers [48]
and was used as an important descriptor to determine the reactivity of surfaces and
clusters [49–53]. The partial density of states (PDOS) for the d-orbitals of metal atoms
in CunZn3O3 (n = 0–4) clusters are depicted in Figure 7, and the d-band centers (εd) are
denoted by the red solid line. For the open-shell systems, the spin up (α) and spin down
(β) d-band centers (εd) were calculated separately (Table S3), and the spin down ones were
always higher in energy. So, we uniformly use the spin down d-band centers (εd) for
the subsequent comparison. The energy levels of the highest occupied molecular orbital
(HOMO-β) are marked by the blue dashed line. For comparison, all HOMO energy levels
in Figure 7 are shifted to zero. As shown in Figure 7f, the εd moves toward HOMO-β
as the Cu content (n) increases. This suggests that the interactions between nucleophilic
molecules and the metal atoms become stronger as the Cu content (n) increases [49,52] and
also indicates that the reactivity of CunZn3O3 (n = 0–4) clusters increase as the Cu content
(n) increases.

The electrostatic potential (ESP) provides a means of identifying the active sites [49,54].
The surface ESP for CunZn3O3 (n = 1–4) clusters are shown in Figure 8. Obviously, the
red-colored (positive ESP) regions are positioned at the metal atoms, and the ESP of
CunZn3O3 clusters are less localized compared to the Zn3O3 clusters. Additionally, the
cyan and yellow tiny spheres in Figure 8 point out the locations of the extreme points of
the surface ESP, and the arrows indicate the extreme points with the maximum absolute
values. The sites with the most positive values of molecular ESP are associated with the
ideal adsorption positions for nucleophilic reagents, whereas the most negative ESP are
related to that of electrophilic reagents. In this series of CunZn3O3 (n = 1–4) clusters, the
most-positive regions of ESP are always nearby the Zn-2 atom, except for Cu2Zn3O3. Except
for Cu2Zn3O3, the other CunZn3O3 clusters can be viewed as adding the Cu2 and Cu3
units to the CuZn3O3 cluster linked by two three-fold coordinated oxygen atoms (O-1 and
O-3). For Cu2Zn3O3, the newly added Cu atom (Cu-2) expands the seven-membered ring
of CuZn3O3 to the eight-membered ring. The most-positive region of ESP of Cu2Zn3O3
is nearby the newly added Cu-2 atom. In CunZn3O3 (n = 1–4) clusters, the ESP of the
three-fold coordinated oxygen atoms is more negative than that of the two-fold coordinated
oxygen atoms. For CuZn3O3 and Cu2Zn3O3, the most-negative regions are located near
the O-1 or O-3 atom. For Cu3Zn3O3 and Cu4Zn3O3, the most-negative regions are located
near the O-2 atoms. They indicate the sensitivity of reactivity to the structures.
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5. Conclusions

We report a systematic theoretical study of a series of copper-doped zinc oxide clusters:
CunZn3O3 (n = 1–4). The geometric and electronic structures and the chemical bonding of
CunZn3O3 (n = 1–4) clusters are investigated via extensive density functional theory (DFT)
and coupled cluster theory (CCSD(T)) calculations. The structural evolutions of CunZn3O3
(n = 1–4) clusters are found in our work. At the low Cu content (n = 1, 2), Cu atoms prefer to
insert into the Zn-O bond of Zn3O3 first; then, they aggregate to form the ZnCu2 units. The
six-membered ring of Zn3O3 gradually expands to the eight-membered ring of Cu2Zn3O3.
When the Cu content further increases (n = 3, 4), the extra Cu atoms aggregate with each
other to form Cun−1 units on the CuZn3O3 cluster. Additionally, the relative stability of
CunZn3O3 (n = 1–4) clusters is evaluated. The CunZn3O3 clusters become more stable
with the doping of Cu atoms (n = 1–4). Bader charge analysis suggests that as the Cu
content (n) increases, the reducibility of Cu aggregation (Cun−1) on the CuZn3O3 cluster
increases. The studies on the d-band centers of CunZn3O3 (n = 0–4) clusters indicate that
the reactivity also increase as the Cu content (n) increases. Information on the possible
reaction site of CunZn3O3 (n = 1–4) clusters are predicted by surface electrostatic potential
(ESP) calculations. This work may inspire future studies on the reactions of related clusters.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/inorganics12020056/s1. Table S1: Calculated results at the B3LYP/BS
level for the bond lengths, binding energies and other properties of ZnO and CuO along with the
corresponding available experimental data. Table S2: Relative energies of CunZn3O3 (n = 1–4) clusters
which were further refined by the CCSD(T) single-point calculations. Table S3: The calculated d-
band centers for the spin up (α), spin down (β) and both spin modes of CunZn3O3 (n = 0–4) clusters.
Figures S1–S4: Alternative optimized structures for CunZn3O3 (n = 1–4) clusters at the B3LYP/BS level.
Table S4: Cartesian coordinates for the optimized CunZn3O3 (n = 0–4) clusters. References [55–58] are
cited in the Supplementary Materials.
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