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Abstract: To achieve the peak of carbon dioxide emission and carbon neutrality, utilizing it as a
renewable carbon unit in organic synthesis presents an effective chemical solution for sustainable
development. In this study, we report a theoretical investigation into the reaction mechanism and the
regiodivergence of the Ni-catalyzed [2+2+2] cycloaddition of unsymmetric diynes and CO2 by using
DFT calculations. The reaction mechanisms can be classified into two types: one is related to the
oxidative coupling of the C≡C moiety with CO2, and the other is related to the oxidative coupling of
the two C≡C moieties of diyne. In each type, two possible paths were proposed depending upon
the positions of the substituents (H and silyl). Our calculation results indicate that the oxidative
coupling of the C≡C moiety and CO2 favors the positions of H-substituent, while the oxidative
coupling of the two C≡C moieties is beneficial for inserting CO2 at the positions of silyl-substituent.
The regiodivergence is controlled by substrate chain-length and ligand in the different reaction
mechanisms.
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1. Introduction

Carbon dioxide (CO2) has been recognized as a greenhouse gas causing global warm-
ing. To attain the peak of carbon dioxide emissions and carbon neutrality, employing it as a
renewable carbon unit in organic synthesis stands out as an effective chemical solution for
sustainable development [1–4]. However, due to its chemical inertness, the widespread
application of CO2 in chemical reactions is limited by thermodynamic considerations [5,6].
Transforming CO2 into other organic compounds as a feedstock remains challenging, often
requiring sluggish reactivity and harsh reaction conditions such as high temperatures
and pressure [7–9]. Various processes and technologies for activating CO2 are under
development in different research fields, and recent decades have witnessed significant
contributions from organic chemists in the field of CO2 chemistry [10–16]. Although the
fixation of CO2 was initially conducted using stoichiometric organometallic reagents under
harsh reaction conditions, several transition metal catalysis methods have emerged as
promising approaches for the utilization of CO2 in recent years. [17–27] Among these,
the Ni-catalyzed oxidative coupling of CO2 and unsaturated compounds has garnered
attention [28–38]. Notably, studies by Tsuda and Saegusa et al. demonstrated intriguing
regiodivergence in the Ni-catalyzed [2+2+2] cycloaddition of unsymmetric diynes and CO2
(Scheme 1) [33]. For instance, the Ni-catalyzed coupling of CO2 and diyne 1 with monoden-
tate ligands (PR3) regiospecifically afforded the product 2, a 6-(trimethylsilyl)-substituted
bicyclic α-pyrone containing a fused cyclohexane ring [39]. In contrast, the isomeric prod-
uct 3 could not be obtained. When bidentate ligands were used, the isomeric product 3
became the major product, while 2 became the minor one. For diyne 4 tethered with a
longer chain, the Ni-catalyzed coupling of CO2 regiospecifically generated the product 6
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using both monodentate ligands and bidentate ligands. Although plausible mechanistic
paths have been proposed by experimentalists [31], more detailed mechanistic information
and a deeper understanding for the catalytic reaction are still valuable. Particularly, the re-
giodivergence involved in the Ni-catalyzed reaction remains an intriguing and unresolved
issue, as raised by Shi et al. [40] and Lin et al. [41], without further mechanistic studies.
Although the mechanism of the experimentally observed formation of the five-membered
nickelacarboxylate complex in the Ni-assisted oxidative coupling of CO2 and C2H4 was
revealed by means of density functional calculations [42], and the mechanism of the Ni-
catalyzed [2+2+2] cycloaddition of unsymmetric diynes and CO2 with N,P-bidentate ligand
was theoretically studied [43], the regiodivergence with different substrates and ligands
remains an unsolved debated topic in recent decades.
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In this paper, we present a density functional theory (DFT) study on the Ni-catalyzed
[2+2+2] cycloaddition of diynes with CO2, as reported by Tsuda and Saegusa et al., aiming
to give a chemical insight into the more detailed mechanistic information and the regiose-
lectivity inherent in the reaction. These findings should prove valuable in the design of
improved catalysts and ligands for carbon dioxide activation.

2. Results and Discussion

The Ni-catalyzed [2+2+2] cycloaddition reaction mechanism of diynes with CO2
catalyzed can be categorized into two types. One is the oxidative coupling of a single C≡C
bond moiety in diyne with CO2, while the other entails the coordination of NiL2 with the
two C≡C bonds in the diyne, followed by oxidative coupling. To delve deeper into the
reaction mechanism, we conducted DFT calculations for the [2+2+2] cyclization reaction
with CO2 using diynes 1 and 4 as the model substrates.

2.1. Ni-Catalyzed Coupling of CO2 and Diyne 1 with Monodentate Ligand (PR3)
2.1.1. Oxidative Coupling of the C≡C Moiety and CO2

As depicted in Figure 1, initially, Ni(COD)2 undergoes the ligand exchange with
monodentate ligand (PMe3), which is exergonic to transform to Ni(PMe3)2. Then, diyne
1 coordinates with Ni(PMe3)2, and the coordinated intermediate can undergo oxidation
coupling through the pathways involving the monophosphine ligand and bisphosphine
ligands. The results indicate that an activation energy of 13.1 kcal/mol is required for
pathway A of the terminal alkyne through transition state TS1-1a with the monophosphine
ligand (black line), while an activation energy of 14.4 kcal/mol is required through TS4-1a
with the bisphosphine ligands (red line). Therefore, the oxidative coupling of terminal
alkynes with the monophosphine ligand is the main route of the process. Subsequently,
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the silyl-substituted C≡C bond is forced to coordinate with Ni through the rotation of the
C-C single bond, followed by insertion into the Ni-C(sp2) bond through TS2-1a with the
energy barrier of 7.1 kcal/mol, generating a seven-membered nickelacycle intermediate
INT5-1a. When the bisphosphine ligands coordinate with the Ni center, the energy of
TS5-1a is 19.9 kcal/mol higher than that of TS2-1a, indicating that the Ni center prefers a
four-coordinate planar structure over a five-coordinate bipyramid structure. Finally, the
reductive elimination reaction through TS3-1a with the monophosphine ligand took place
readily to form C(sp2)-O bond with the dissociation of the Ni(PMe3)2 complex, leading to
the final product 3. The energy barrier of the reductive elimination through TS6-1a with
the bisphosphine ligands is 2.7 kcal/mol higher than that of TS3-1a, indicating that the
reductive elimination prefers monophosphine ligand pathway.
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Figure 1. Potential energy profiles for Ni-catalyzed cycloaddition of diyne 1 and CO2 with monodentate
ligand. Pathway A/B: proposed to start with the oxidative coupling of the C≡C moiety and CO2.

As defined above, pathway B for the diyne 1 at the positions of TMS-substituent was
related to the oxidative coupling of CO2 and INT1-1b. The subsequent oxidative coupling
through TS1-1b requires an activation energy of 26.3 kcal/mol with the monophosphine
ligand, while the activation energy of 24.5 kcal/mol is required through TS4-1b with the
bisphosphine ligands. Both routes on pathway B have significantly higher energy barriers
than that on pathway A, attributed to the steric hindrance of the TMS group. Upon reviewing
all the energy profiles, it was found that the oxidative coupling of one C≡C bond moiety in
the diyne with CO2 is the rate-determining step and the H-substituted C≡C bond favors
oxidative coupling with CO2 over the silyl-substituted C≡C bond in the diyne.

2.1.2. Oxidative Coupling of the Two C≡C Moieties

In an alternative mechanism, the coordination of Ni(PMe3)2 occurs initially with two
C≡C moieties of diyne 1, with the release of PMe3 to form INT8-1cd (Figure 2). The five-
membered nickelacycle INT9-1cd was then formed through TS7-1cd with an activation
energy of 10.1 kcal/mol. The subsequent step involves the insertion of CO2 into either the
unsubstituted Ni-C(sp2) bond or the TMS-substituted Ni-C(sp2) bond. Surprisingly, despite
the steric hindrance with the TMS group, the calculation results show that CO2 prefers to
insert into TMS-substituted Ni-C(sp2) bonds. The energy barrier of TS8-1c is 5.6 kcal/mol
higher than that of TS8-1d. The formed seven-membered nickelacycle intermediates are
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INT5-1a and INT5-1b, identical to those in pathways A and B, followed by a final reduction
elimination reaction to afford the cyclized products. Upon reviewing all the energy profiles,
it becomes evident that the oxidative coupling of the two C≡C moieties with Ni(PMe3) is
the rate-determining step, and the insertion of CO2 serves as the regioselectivity-control
step, revealing that the formation of 2 is kinetically favorable over 3.
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odentate ligand. Path C/D: proposed to start with the oxidative coupling between the two C≡C
moieties.

2.2. Ni-Catalyzed Coupling of CO2 and Diyne 1 with Bisdentate Ligand (PN-Ligand)
2.2.1. Oxidative Coupling of the C≡C Moiety and CO2

Initially, Ni(COD)2 undergoes the ligand exchange with bidentate PN-ligand (L2),
which is slightly exergonic to transform to Ni(L2)2 with biphosphine coordination. There
are several other Ni-complexes such as NiL2 and Ni(L2)2-1-4 with bisdentate, tridentate or
tetrodentate coordination, which suffer from higher energies (Figure 3). Subsequently, the
replacement of P-N ligand with the unsubstituted C≡C moiety of diyne 1 to form INT1-
1e is the most stable starting complex (pathway E). Then, the NiL2-catalyzed oxidative
coupling of CO2 and diyne 1 starts from INT1-1e via monodentate N-ligand, P-ligand
or bisdentate PN-ligand. The calculated results showed that the PN-coordinated route
is the most favorable for the oxidative coupling process and the energy barrier of the
bisdentate PN-coordinated TS4-1e is 4.8–15.4 kcal/mol is lower than that of the mon-
odentate P-coordinated TS1-1e’ or N-coordinated TS1-1e. The formed five-membered
nickelacycle intermediate INT6-1e with PN coordination exhibits the lowest energy and
the greatest stability. Then, the TMS-substituted C≡C bond was coordinated with the Ni
center, followed by insertion into the Ni-C(sp2) bond through TS2-1e with monodentate
N-ligand, TS2-1e’ with monodentate P-ligand or or TS5-1e with bisdentate PN-ligand to
generate the seven-membered nickelacycle intermediates INT5-1e and INT7-1e. Surpris-
ingly, TS2-1e’ with monodentate P-ligand is favored over TS2-1e and TS5-1e by 4.6–4.9
kcal/mol, indicating that the P-coordinated route is the most favorable for the insertion
process of the second C≡C bond. The formed four-coordinate nickelacycle INT7-1e is
much more stable than three-coordinate nickelacycle INT5-1e. Finally, the subsequent
reductive elimination via TS6-1e is facile, forming the O-C(sp2) bond to obtain the final
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product 3. The rate-determining step here shifts to the insertion of the TMS-substituted
C≡C moiety into a C(sp2)-Ni bond, and the formation of 3 is kinetically favorable over 2.
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As mentioned above, pathway F for the diyne 1 at the positions of the TMS-substituent
was related to the oxidative coupling of CO2 and INT1-1f (−11.1 kcal/mol), which is higher
in energy than INT1-1e (−16.7 kcal/mol). The following oxidative coupling through TS1-
1f required an activation energy of 29.9 kcal/mol with monodentate N-ligand, while the
activation energy of 15.0 kcal/mol was required through TS4-1f with bisdentate PN-ligand.
Both routes on pathway F have significantly higher energy barriers than that on pathway E,
due to the steric hindrance of the TMS group.

2.2.2. Oxidative Coupling of the Two C≡C Moieties

In an alternative mechanism, the coordination of NiL2 with the two C≡C moieties
of diyne 1 occurs, resulting in the formation of INT8-1gh with a monodentate N-ligand
and INT8-1gh’ with monodentate P-ligand (Figure 4). Obviously, INT8-1gh’ favors over
INT8-1gh by 7.1 kcal/mol. The five-membered nickelacycle INT9-1gh’ was then formed
through TS7-1gh’ with an activation energy of 8.6 kcal/mol, which is much lower than that
of TS7-1gh. Although the INT9-1gh’ has a parallel energy with INT9-1gh, the following
insertion of CO2 with monodentate P-ligand is favored over that with monodentate N-
ligand. CO2 is favorable for insertion into TMS-substituted Ni-C(sp2) bonds despite the
steric hindrance with the TMS group. The energy barrier of TS8-1h’ with monodentate
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P-ligand is 6.1 kcal/mol, which is lower than that of TS8-1g’ for the insertion of CO2 at
the positions of H-substituent (11.8 kcal/mol). TS8-1h and TS8-1g with monodentate N-
ligand require higher energies, leading to the unfavorable pathways for the insertion of CO2
process. The formed seven-membered nickelacycle intermediates INT5-1e/INT5-1f with
monodentate N-ligand are less stable than INT7-1e/INT7-1f with bisdentate PN-ligand,
which are followed by final reductive elimination reaction through TS6-1e/TS6-1f with
the parallel low activation energies to afford the cyclized products 2/3. Upon reviewing
all the energy profiles, it is evident that the oxidative coupling of the two C≡C moieties
of diyne 1 with NiL2 is the rate-determining step, and the insertion of CO2 serves as the
regioselectivity-control step, revealing that the formation of 2 is kinetically favorable over 3.

Inorganics 2024, 12, x FOR PEER REVIEW 6 of 13 
 

 

through TS7-1gh’ with an activation energy of 8.6 kcal/mol, which is much lower than 
that of TS7-1gh. Although the INT9-1gh’ has a parallel energy with INT9-1gh, the follow-
ing insertion of CO2 with monodentate P-ligand is favored over that with monodentate 
N-ligand. CO2 is favorable for insertion into TMS-substituted Ni-C(sp2) bonds despite the 
steric hindrance with the TMS group. The energy barrier of TS8-1h’ with monodentate P-
ligand is 6.1 kcal/mol, which is lower than that of TS8-1g’ for the insertion of CO2 at the 
positions of H-substituent (11.8 kcal/mol). TS8-1h and TS8-1g with monodentate N-lig-
and require higher energies, leading to the unfavorable pathways for the insertion of CO2 
process. The formed seven-membered nickelacycle intermediates INT5-1e/INT5-1f with 
monodentate N-ligand are less stable than INT7-1e/INT7-1f with bisdentate PN-ligand, 
which are followed by final reductive elimination reaction through TS6-1e/TS6-1f with 
the parallel low activation energies to afford the cyclized products 2/3. Upon reviewing 
all the energy profiles, it is evident that the oxidative coupling of the two C≡C moieties of 
diyne 1 with NiL2 is the rate-determining step, and the insertion of CO2 serves as the re-
gioselectivity-control step, revealing that the formation of 2 is kinetically favorable over 3. 

 
Figure 4. Potential energy profiles for Ni-catalyzed cycloaddition of diyne 1 and CO2 with bisdentate 
ligand. Path G/H: proposed to start with the oxidative coupling between the two C≡C moieties.  

2.3. Ni-Catalyzed Coupling of CO2 and Diyne 4 with Monodentate Ligand (PR3) 
2.3.1. Oxidative Coupling of the C≡C Moiety and CO2 

The mechanism involving the oxidative coupling of the C≡C moiety and CO2 for 
diyne 4 exhibits potential energy profiles similar to those of diyne 1 (Figure 5). The initial 
step involves the coordination of diyne 4 with Ni(PMe3)2, generating intermediate INT1-
4a (pathway A), which can undergo oxidation coupling through TS1-4a (energy barrier of 
13.7 kcal/mol) with monophosphine ligand (black line) and TS4-4a (energy barrier of 14.9 
kcal/mol) with bisphosphine ligand (red line), indicating that the oxidative coupling with 
the monophosphine ligand is the main route. Subsequently, the TMS-substituted C≡C 
bond coordinates with the Ni center, followed by insertion into the Ni-C(sp2) bond 
through TS2-4a (energy barrier of 8.1 kcal/mol), affording a seven-membered nickelacycle 
intermediate INT5-4a. Finally, the reductive elimination reaction through TS3-4a (energy 
barrier of 1.6 kcal/mol) takes place, forming the C(sp2)-O bond and leading to the final 
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2.3. Ni-Catalyzed Coupling of CO2 and Diyne 4 with Monodentate Ligand (PR3)
2.3.1. Oxidative Coupling of the C≡C Moiety and CO2

The mechanism involving the oxidative coupling of the C≡C moiety and CO2 for
diyne 4 exhibits potential energy profiles similar to those of diyne 1 (Figure 5). The
initial step involves the coordination of diyne 4 with Ni(PMe3)2, generating intermediate
INT1-4a (pathway A), which can undergo oxidation coupling through TS1-4a (energy
barrier of 13.7 kcal/mol) with monophosphine ligand (black line) and TS4-4a (energy
barrier of 14.9 kcal/mol) with bisphosphine ligand (red line), indicating that the oxidative
coupling with the monophosphine ligand is the main route. Subsequently, the TMS-
substituted C≡C bond coordinates with the Ni center, followed by insertion into the Ni-
C(sp2) bond through TS2-4a (energy barrier of 8.1 kcal/mol), affording a seven-membered
nickelacycle intermediate INT5-4a. Finally, the reductive elimination reaction through
TS3-4a (energy barrier of 1.6 kcal/mol) takes place, forming the C(sp2)-O bond and leading
to the final product 6. Alternatively, pathway B involving the oxidative coupling of TMS-
unsubstituted C≡C moiety and CO2 through TS1-4b with monophosphine ligand and
TS4-4b with bisphosphine ligand requires activation energies of 24.5–26.2 kcal/mol, which
are significantly higher in energy than those associated with pathway A, attributed to the
steric hindrance of the TMS group. Upon reviewing all the energy profiles, it is evident
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that the oxidative coupling is the rate-determining step and the H-substituted C≡C bond
favors oxidative coupling with CO2 over the silyl-substituted C≡C bond in the diyne 4.
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2.3.2. Oxidative Coupling of the Two C≡C Moieties

The alternative mechanism commences with the coordination of Ni(PMe3)2 by two
C≡C moieties of diyne 4, leading to the formation of INT8-4cd with the release of PMe3
(Figure 6). Subsequently, the five-membered nickelacycle INT9-4cd is formed through
TS7-4cd with an activation energy of 15.5 kcal/mol. CO2 then preferentially inserts into
TMS-substituted Ni-C(sp2) bonds despite the steric hindrance posed by the TMS group. The
energy barrier of TS8-4d was 7.4 kcal/mol, which is 5.9 kcal/mol lower than that of TS8-
4c. The resulting seven-membered nickelacycle intermediates, INT5-4a and INT5-4b, are
identical to those observed in pathways A and B in Figure 5. The subsequent final reductive
elimination reaction yields the cyclized products 5/6. Upon reviewing all the energy
profiles, it is evident that the oxidative coupling of the two C≡C moieties with Ni(PMe3) is
the rate-determining step, and the insertion of CO2 serves as the regioselectivity-control
step, revealing that the formation of 5 is kinetically favored over that of 6.

2.4. Ni-Catalyzed Coupling of CO2 and Diyne 4 with Bisdentate Ligand (PN-Ligand)
2.4.1. Oxidative Coupling of the C≡C Moiety and CO2

The first type of the mechanism for the Ni(L2)2 (L2 = PN-ligand)-catalyzed coupling of
CO2 and diyne 4 originates from the coordination of NiL2 with unsubstituted C≡C moiety
of diyne 4 via monodentate N-ligand or bisdentate PN-ligand on pathway E (Figure 7). The
calculated results show that the PN-coordinated route was more favorable and the energy
of the bisdentate PN-coordinated TS4-1e is 5.6 kcal/mol, which is 16.0 kcal/mol lower
than that of monodentate N-coordinated TS1-4e. The formed five-membered nickelacycle
intermediate INT6-4e with PN coordination exhibits lower energy and greater stability. Sub-
sequently, the TMS-substituted C≡C bond is coordinated with the Ni center, followed by
insertion into the Ni-C(sp2) bond through TS2-4e with monodentate N-ligand (energy bar-
rier of 10.8 kcal/mol), TS2-4e’ with monodentate P-ligand (energy barrier of 8.8 kcal/mol)
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or TS5-4e with bisdentate PN-ligand (energy barrier of 15.8 kcal/mol), generating a seven-
membered nickelacycle intermediate INT7-4e. It is noteworthy that the P-coordinated route
is the most favorable pathway for the insertion process of the second C≡C bond and the
formed four-coordinate nickelacycle INT7-1e with bisdentate PN-ligand is more stable than
three-coordinate nickelacycle with monodentate P- or N-ligand. INT7-4e then undergoes
facile reductive elimination reaction via TS6-4e to form O-C(sp2) bond, resulting in the final
product 6. The rate-determining step in this process is the insertion of the TMS-substituted
C≡C moiety into a C(sp2)-Ni bond, and the formation of 6 is kinetically favored over
that of 5. Alternatively, pathway F for the diyne 4 at the positions of TMS-substituent is
associated with the oxidative coupling of CO2 and INT1-4f. The subsequent oxidative
coupling through TS1-4f requires an activation energy of 34.1 kcal/mol with monodentate
N-ligand, while the activation energy of 18.8 kcal/mol is required through TS4-4f with
bisdentate PN-ligand. Both routes on pathway F have significantly higher energy barriers
than that on pathway E, attributed to the steric hindrance of the TMS group.
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2.4.2. Oxidative Coupling of the Two C≡C Moieties

Alternatively, the second type of the mechanism is initiated by the coordination of
NiL2 by two C≡C moieties of diyne 4, forming INT8-4gh with monodentate N-ligand and
INT8-4gh’ with monodentate P-ligand (Figure 8). Similarly, INT8-4gh’ is favored over
INT8-4gh by 3.9 kcal/mol. The five-membered nickelacycle INT9-4gh’ was then formed
through TS7-4gh’ with an activation energy of 13.8 kcal/mol, which is 7.7 kcal/mol lower
than that of TS7-4gh. The formed INT9-4gh’ is also more stable than INT9-4gh. Subse-
quently, the following insertion of CO2 with monodentate P-ligand is favored over that
with monodentate N-ligand, and CO2 is favorable for insertion into the TMS-substituted
Ni-C(sp2) bonds. The energy barrier of TS8-4h’ with monodentate P-ligand is 5.3 kcal/mol,
which is lower than that of TS8-4g’ for the insertion of CO2 at the positions of H-substituent
(10.5 kcal/mol). TS8-4h and TS8-4g with monodentate N-ligand require higher energies,
leading to unfavorable pathways for the insertion of CO2 process. The seven-membered
nickelacycle intermediates INT7-4e/INT7-4f with bisdentate PN-ligand formed are more
stable than other nickelacycle intermediates with monodentate ligand. The nickelacycle
intermediates then undergo final reductive elimination reaction through TS6-4e/TS6-4f
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with low activation energies to afford the cyclized products 5/6. Upon reviewing all the
energy profiles, it is evident that the oxidative coupling of the two C≡C moieties with NiL2
is the rate-determining step, and the insertion of CO2 serves as the regioselectivity-control
step, revealing that the formation of 5 is kinetically favorable over that of 6.
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2.5. The Regiodivergence in Ni-Catalyzed Coupling of CO2 and Diyne 1 and 4

Upon reviewing all the energy profiles, the computational results demonstrate that
diyne 1 preferentially undergo the oxidative coupling of the two C≡C moieties with mon-
odentate ligand. This leads to the formation of 2, which is kinetically favored over 3
(∆∆G‡(2–3) = −3.0 kcal/mol) (Table 1). On the other hand, the use of a bisdentate ligand
(NP-ligand) is advantageous for promoting the oxidative coupling of the C≡C moiety and
CO2, resulting in the formation of 3, which is both kinetically and thermodynamically
favored over 2 (∆∆G‡(2–3) = 2.0 kcal/mol), and is consistent with the experimental observa-
tion [33]. In the case of diyne 4, both monodentate and bisdentate ligands tend to facilitate
the oxidative coupling of the C≡C moiety and CO2, favoring the kinetically preferred
formation of 6 (∆∆G‡(5–6) = 1.8–5.0 kcal/mol), which is once again in good agreement with
the experimental results [33]. The distinct mechanisms and the regiodivergence observed
for diyne 1 and 4 are actually regulated by key steps, including INT8 and TS7 (Figure 9).
INT8-1cd exhibits greater stability with enhanced coordination of NiL2 by two C≡C moi-
eties of 1 compared to that of 4. This results in a lower energy barrier through TS7-1cd,
establishing the oxidative coupling of the two C≡C moieties as the dominant pathway and
providing the distinct regioselectivity. Conversely, INT8-4cd, containing seven-membered
ring tension, suffers from a higher energy barrier through TS7-4cd, leading to the unfavor-
able pathway C/D. These findings comprehensively elucidate the regiodivergence observed
in the Ni-catalyzed [2+2+2] cycloaddition reaction of unsymmetric diynes and CO2.
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Table 1. The energy barriers and their gaps of rate-determining steps, and the ratio of products.

Substrate Ligand ∆G‡ (2 or 5)
(kcal/mol)

∆G‡ (3 or 6)
(kcal/mol)

∆∆G‡ (2–3 or
5–6)

(kcal/mol)

Cal. 2/3 or
5/6

Exp. 2/3 or
5/6 Ref.

1 L1 10.1 13.1 −3.0 >99/1 100/0 [33]
1 L2 8.6 6.2 2.0 3/97 8/92 [33]
4 L1 15.5 13.7 1.8 4/96 0/100 [33]
4 L2 13.8 8.8 5.0 <1/99 0/100 [33]
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3. Computational Methods

All of the DFT calculations were performed with the Gaussian 09 program pack-
age [44]. The geometry optimization of all the minima involved were performed at the
B3LYP level of theory [45,46] with a 6-31G(d) + Lanl2DZ (for Ni) basis set (keyword 5D).
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The structures of the reactants, intermediates, transition states, and products were fully
optimized without any restriction. The vibrational frequencies were computed at the same
level to check whether each optimized structure is an energy minimum or a transition state
and to evaluate its zero-point vibrational energy (ZPVE) and thermal corrections at 298 K.
IRC calculations [47–50] were used to confirm that the transition states found through
the optimization calculations connect the related reactants and products. Single-point
solvent calculations were performed with a 6-311 + G(d,p) + SDD (for Ni) basis set at the
optimized gas–phase geometries for all the intermediates and transition states, using the
SMD model [51] in tetrahydrofuran (THF) as a solvent. Through the same approach, full
optimization, without any restriction, was carried out for the model reactions. The reported
energies are Gibbs free energies in a THF solution (∆GTHF) (see supplementary materials).
Figure 9 was prepared using CYLView, 1.0b [52]

4. Conclusions

In summary, we have carried out a theoretical study on the reaction mechanism of Ni-
catalyzed [2+2+2] cycloaddition of unsymmetric diyne and CO2 by using DFT calculations.
The reaction mechanisms were categorized into two types: one is related to the oxidative
coupling of the C≡C moiety and CO2, and the other is related to the oxidative coupling of
the two C≡C moieties of diyne. In each type, two possible paths were proposed depending
upon the positions of the substituents (H and silyl). Our calculation results indicated that
the oxidative coupling of the C≡C moiety and CO2 favors the positions of H-substituent,
while the oxidative coupling of the two C≡C moieties is advantageous for CO2 insertion at
the positions of silyl-substituent. The regioselectivity is controlled by the different reaction
mechanisms. For diyne 1 containing a three-carbon linker length, it is preferable to undergo
the oxidative coupling of the two C≡C moieties with monodentate ligand (PR3), resulting
in the final product 2. In contrast, the bisdentate PN-ligand promotes the oxidative coupling
of the C≡C moiety and CO2, leading to the formation of product 3. On the other hand,
diyne 4, with a four-carbon linker length, favors the oxidative coupling of the C≡C moiety
and CO2 with both monodentate ligand (PR3) and bisdentate PN-ligand, giving the final
product 6. This work not only provides a chemical insight into the detailed mechanistic
information and the regioselectivity involved in the reaction, but also promotes the design
of better catalysts and ligands for carbon dioxide activation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics12020039/s1, DFT-computed energies and coordinates of all
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