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Abstract: A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordi-
nation chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenyl-
porphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The
SnP center was strongly bonded to the surface of the TiO2 nanoparticles via the adipic acid linkage
in SnP/AA@TiO2, as confirmed by various instrumental techniques. SnP/AA@TiO2 exhibited re-
markably enhanced photocatalytic activity toward the degradation of rhodamine B dye (RhB) in
aqueous solution under visible-light irradiation. The RhB degradation efficiency of SnP/AA@TiO2

was 95% within 80 min, with a rate constant of 0.0366 min−1. The high degradation efficiency, low
catalyst loading and high reusability make SnP-anchored photocatalysts more efficient than other
photocatalysts, such as TiO2 and SnP@TiO2.

Keywords: Sn(IV)porphyrin; TiO2; adipic acid; photocatalyst; degradation of dye

1. Introduction

With the increasing development of civilization and industrialization, environmental
pollution has become a serious problem affecting ecosystems, biodiversity and human
health worldwide. Every year, the leather, textile, drugs and paper printing industries
discharge large amounts of toxic compounds, such as organic dyes, pesticides, herbicides,
pigments, plasticizers, biphenyls, phenols, nitro and amino compounds, into water bodies.
These organic chemicals not only deteriorate the potability of these water sources but also
have negative effects on aquatic life (flora and fauna) [1,2]. This has led to increasing scien-
tific efforts to develop strategies for environmental remediation by wastewater treatment in
the environmental and research fields [3,4]. Currently, various physicochemical methods,
including adsorption [5], filtration [6], chemical coagulation [7], precipitation [8], bacterial
treatment [9], electrochemical methods [10] and advanced oxidation processes (AOPs) [11],
are utilized for the removal of these hazardous compounds from wastewater. Undoubt-
edly, AOPs are the most promising techniques for the remediation of wastewater due to
their simple operation, low cost and high efficiency in degrading hazardous pollutants to
less-toxic CO2 and H2O without the generation of secondary pollution. In AOP methods,
visible light is absorbed by a photocatalyst, which subsequently generates reactive oxygen
species (ROS) in situ, thereby accelerating the degradation of pollutant chemicals. Light
absorption and ensuing electron transfer are the key factors for obtaining photocatalysts
with efficient solar energy conversion [12,13].

In general, nanoscale materials display distinctive optical and electronic properties,
depending on the size and shape of the photo-functional materials. Considering the
advantages of photocatalytic processes, various organic and inorganic-based nanomaterials,
such as ZnO [14], TiO2 [15], graphitic carbon nitride (g-C3N4) [16], zeolites [17], metal-
organic framework (MOF) [18], bismuth-based photocatalysts [19], carbon quantum dots
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(CQDs) [20], fullerene [21], graphene oxide or reduced graphene oxide (GO and RGO) [22]
and porphyrin-based nanostructures [23], have been used to remove toxic compounds
from wastewater. Among them, TiO2 and related materials have earned distinction as
promising photocatalysts due to their high stability, low toxicity, low cost and high catalytic
efficiency in degrading hazardous chemicals in water. The large bandgap (~3.2 eV) of these
catalysts restricts the absorption of the solar spectrum in the visible region and results in
low photocatalytic efficiency. A large amount of catalyst is required to achieve effective
degradation rates in the photocatalytic process [24].

On the other hand, because of their high absorption coefficient in the regions of
400–440 nm (Soret band) and 500–720 nm (Q bands), porphyrinoids (free-base porphyrins
or metalloporphyrins) are capable of absorbing light over a wider range (UV and visible),
which facilitates the generation of ROS through a spin-forbidden intersystem crossing
mechanism [25,26]. The inherent aromatic electronic features and rigid structural skeleton of
porphyrinoids facilitate their self-aggregation in solution [27,28]. The use of porphyrinoid
compounds in photocatalysis is limited by the proneness of these compounds to fast
deactivation, easy agglomeration in solution and poor reusability. The development of new
photocatalysts that overcome all of the above-mentioned drawbacks remains a challenge.
For this purpose, porphyrinoid compounds have been immobilized on solid supports, such
as matrices [29], hydrogels [30], zeolites [31] and nano- or microparticles [32–35], where
the resulting hybrid materials show outstanding photocatalytic activity compared to that
of the starting porphyrinoid compounds. After entrapping porphyrinoid compounds on
solid supports, the resultant hybrid materials exhibit increased solar absorption/harvesting
capabilities, as well as enhanced electronic conductivity mediated by intimate chemical
contacts. The rigid framework of these hybrids is resistant to hydrolysis and increases the
chemical and physical stability for further use.

Previously, we and others immobilized Sn(IV)porphyrins on TiO2 to construct nano-
hybrid materials for photocatalysis [36–38]. Sn(IV)porphyrin complexes were selected be-
cause they are outstanding building blocks for constructing functional porphyrin nanomate-
rials for the photocatalytic degradation of organic pollutant dyes [39–44]. Sn(IV)porphyrin
centers are oxophilic and can form stable 6-coordinate complexes with two trans-axial
oxyanion ligands (alkoxides and carboxylates) [45–54]. In this study, the axial coordination
chemistry of Sn(IV)porphyrins is utilized to construct SnP/AA@TiO2 as a hybrid nanoma-
terial for water remediation. Sn(IV)porphyrin complexes, as visible-light sensitizers, are
anchored on the surface of TiO2 nanoparticles by bridging via adipic acid, as depicted in
Scheme 1. SnP@TiO2 was also prepared by directly anchoring Sn(IV)porphyrin complexes
without the bridging adipic acid molecules.

To evaluate the photocatalytic activity for the degradation of organic dyes under
visible-light irradiation, we consider rhodamine B (RhB) dye as a model pollutant in this
study. RhB is a water-soluble, organic amino xanthene dye. It is widely used as a coloring
agent in the printing, textile, leather and cosmetic industries. It is one of the 20 dyes
detected most frequently in wastewater, and it irritates the skin and eyes and damages the
respiratory, reproductive and nervous systems. Even at low concentrations, RhB dye is
carcinogenic. RhB dye is very stable in aqueous solutions and non-biodegradable. It is im-
perative to find an effective oxidation system for removing this pollutant dye from wastew-
ater [55–65]. We investigate the photocatalytic degradation of RhB using Sn(IV)porphyrin-
anchored TiO2 photocatalysts. The degradation efficiency of SnP/AA@TiO2 is compared
with that of SnP@TiO2, and the kinetics and the mechanism of the degradation process are
also discussed.
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Scheme 1. Chemical structure of SnP/AA@TiO2.

2. Results and Discussion
2.1. Fabrication and Characterization of Photocatalysts

The synthesis of SnP/AA@TiO2 has been described in the experimental section, where
the surface of the TiO2 nanoparticles was firstly functionalized with adipic acid, after which
SnP was anchored by forming a chemical Sn–O2C bond through the interaction of the
axial OH ligand of the Sn(IV)porphyrin and COOH group of adipic acid to afford the
SnP/AA@TiO2 composite. The above reaction was also performed without treating the
nanoparticles with adipic acid, affording the SnP@TiO2 composite. The surface modifi-
cations for generating SnP/AA@TiO2 and SnP@TiO2 were confirmed by analyzing the
zeta potential, which is calculated by the degree of electrostatic repulsion of the composite
surface. The average zeta potentials of pure TiO2 and the SnP@TiO2 and SnP/AA@TiO2
composites were measured in aqueous solutions at pH 7, with respective values of −6.97,
−4.87 and 7.02 mV. The more negative value for pure TiO2 is mainly due to the pres-
ence of electronegative oxygen atoms on the surface. In contrast, the high positive zeta
potential of SnP/AA@TiO2 compared to that of pure TiO2 and SnP@TiO2 indicates that
Sn(IV)porphyrins sufficiently covered the surface of TiO2 over a large area in the former.
As expected, this immobilization was successfully achieved through chemical anchoring
via the adipic acid linkage. On the other hand, the zeta potential of SnP@TiO2 was less
negative than that of pure TiO2. The presence of hydroxyl groups on the surface of TiO2
is essential for the formation of Sn–O–Ti bonds in SnP@TiO2. This is because hydroxo-
Sn(IV)porphyrin complexes undergo dehydrating condensation with OH or COOH groups
to yield covalently bonded moieties, such as Sn–O–Ti. However, the main linkages on the
surface of TiO2 are O–Ti–O groups, which remain intact or may physically adsorb SnP
species via weak hydrogen bonding to form species such as Ti–O···HO–SnP. The amount
of adsorbed porphyrin (SnP) was estimated from the Sn content of the hybrid compos-
ites (SnP/AA@TiO2 or SnP@TiO2) by ICP analysis. The determined amount of SnP in
SnP/AA@TiO2 and SnP@TiO2 was 0.149 and 0.042 mmol/g, respectively.

The FT-IR spectra of SnP, TiO2, SnP@TiO2 and SnP/AA@TiO2 are depicted in Figure 1.
The FT-IR spectrum of SnP shows vibrational peaks at 790 and 1024 cm−1, attributed to
the out-of-plane bending vibration of C–H and the in plane bending vibration of C–H
in the benzene ring, respectively. The peaks at 1406, 1591 and 3384 cm−1 are designated
to the stretching vibrations of C–N, C=C and C–H in the pyrrole ring, respectively. The
peak at 3601 cm−1 is assigned to the stretching vibration of the OH of the axial hydroxyl
group in the Sn(IV) porphyrin. The strong peaks at 855–515 cm−1 are characteristic peaks
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of Ti–O–Ti stretching in TiO2. The FT-IR spectrum of SnP@TiO2 showed the characteristic
band of Ti–O–Ti stretching at 595 cm−1. A very broad band was also observed at 3450 cm−1,
corresponding hydrogen-bonded OH groups. All other peaks remained unchanged or
were slightly modified relative to those of the starting components. For SnP/AA@TiO2,
the characteristic carboxylate stretching band of AA shifted from 1685 to 1690 cm−1 upon
complexation with SnP. All other peaks remained unchanged or were slightly changed
relative to those of SnP@TiO2. These observations indicate that the characteristic linkages
of SnP and TiO2 remained intact in the composites (SnP/AA@TiO2 or SnP@TiO2).
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Figure 1. FT-IR spectra of (a) SnP, TiO2, SnP@TiO2 and SnP/AA@TiO2; (b) magnified views in the
range of 1750–500 cm−1.

Solid-state UV-vis spectroscopy was used to evaluate the light absorption properties
of SnP, TiO2, SnP@TiO2 and SnP/AA@TiO2 (Figure 2). The spectrum of SnP shows a strong
absorption band at 427 nm, assigned as the Soret band, and two weak absorption bands
at 566 and 606 nm corresponding to the Q bands. The spectrum of pure TiO2 showed
only one strong absorbance band at 359 nm in the UV region. In the visible light region,
a strong and very broad absorption band was centered at 440 nm in the spectrum of
SnP/AA@TiO2, which is the Soret band, along with four weak bands at 523, 565, 603
and 626 nm, which are the Q bands. The absorption pattern of SnP@TiO2 was similar.
Accordingly, SnP/AA@TiO2 and SnP@TiO2 are expected to have enhanced light-harvesting
ability in most of the visible light regions. The bandgap energy (Eg) calculated from the
Tauc plot was ~2.42 eV for SnP/AA@TiO2, which is narrower than that of SnP (~2.96 eV),
TiO2 (~3.12 eV) and SnP@TiO2 (~2.75 eV). The enhanced light absorption and narrower
bandgap of SnP/AA@TiO2 can effectively improve solar energy utilization to generate
more photogenerated reactive species that can participate in the photocatalytic degradation
of organic pollutants.

The fluorescence spectra are presented in Figure 3. The spectrum of SnP showed a
single fluorescence peak at 654 nm, and that of the SnP/AA@TiO2 composite exhibited
two fluorescence peaks at 630 and 650 nm. On the other hand, the spectrum of SnP@TiO2
showed a broad fluorescence peak that seems to be a combination of the peaks of SnP and
SnP/AA@TiO2. Note that under excitation at 550 nm, pure TiO2 showed no fluorescence
signal. A comparison of the spectral features suggests that the immobilization mode of the
SnP molecules in SnP/AA@TiO2 and SnP@TiO2 is different, which is consistent with the
zeta potential analysis discussed above.
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The morphological developments of the synthesized composites were examined by
field-emission scanning electron microscopy (FE-SEM). The morphologies of SnP@TiO2
and SnP/AA@TiO2, along with those of the starting compounds, are presented in Figure 4.
SnP did not develop any well-defined nano-scale morphology (Figure 4a), whereas TiO2
comprised regularly shaped particles with an average diameter in the range of 145–305 nm
(Figure 4b). Compared to TiO2, the shape and size remained almost unchanged for
SnP@TiO2 (Figure 4c). In contrast, SnP/AA@TiO2 had a flower-like, fused morphology,
which is different from that of SnP, TiO2 and SnP@TiO2. The elemental distribution in the
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composite (SnP/AA@TiO2) was investigated using energy-dispersive X-ray (EDX) map-
ping (Figure S1). Ti, O, Sn, N and C were evenly distributed in the composite, indicating
that SnP was well immobilized on the TiO2 nanoparticles.
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The TGA curves of the samples are displayed in Figure S2. TiO2 exhibited only a
slight weight loss (~1 wt%) between 50 ◦C and 600 ◦C, compared to 2.12 wt% for SnP@TiO2
and 3.26 wt% for SnP/AA@TiO2 in the range of 200–440 ◦C. The high thermal decompo-
sition temperatures of the composites suggest a successful combination of the molecular
components. SnP@TiO2 and SnP/AA@TiO2 possess moderate specific surface areas of
62.21 and 77.37 m2g−1, respectively (Figure S3). The composites also exhibit type-IV
adsorption-desorption isotherms, demonstrating the mesoporous nature of the surface of
the composites. The data indicate that SnP molecules were successfully anchored on the sur-
face of the TiO2 nanoparticles to form SnP/AA@TiO2 and SnP@TiO2 composite structures
with high thermal stability and a large surface area. The characteristics of these composite
nanoparticles, revealed by the spectroscopic, SEM, TGA and surface area analyses, indicate
their attractive potential as visible-light-activated photocatalysts.

2.2. Photocatalytic Degradation of Rhodamine B (RhB)

The photocatalytic efficiency of SnP/AA@TiO2 and SnP@TiO2 was investigated in the
degradation of an organic dye under visible-light irradiation in an aqueous medium. We
selected rhodamine B (RhB) as the target pollutant dye for the photocatalytic degradation
reaction. As shown in Figure S4, a period of ~25 min was required to reach the adsorption-
desorption equilibrium, where 3, 14, 18 and 21% of RhB were respectively adsorbed by
SnP, TiO2, SnP@TiO2 and SnP/AA@TiO2. The degradation experiment indicates that the
high surface area and porous nature of SnP/AA@TiO2 and SnP@TiO2 can enhance the
adsorption of pollutants and can also promote mass diffusion. Time-dependent absorption
spectra of the aqueous solution of RhB dye in the presence of SnP/AA@TiO2 under visible-
light irradiation are shown in Figure S5. Negligible decay of RhB dye was observed in the
absence of either visible light or the SnP/AA@TiO2 photocatalyst (Figure 5). Therefore,
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visible light as well as a photocatalyst are required for the degradation of RhB dye. The
absorbance of RhB dye at 554 nm decreased as the irradiation time increased (Figure S5).
As depicted in Figure 5, all precursors and as-prepared composite catalysts clearly showed
significant effectiveness for the photo-degradation of RhB in aqueous solution.
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The degradation of RhB dye in the presence of a photocatalyst can be described by
the degradation efficiency, (C0 − C)/C0, where C0 is the starting concentration of RhB
dye and C is the concentration at time t. The respective degradation rates of RhB in the
presence of SnP, TiO2, SnP@TiO2 and SnP/AA@TiO2 were 12, 37, 47 and 95% after 80
min of irradiation of visible light (Figure 5). The SnP/AA@TiO2 photocatalyst shows
superior performance for RhB dye degradation compared to SnP, TiO2 and SnP@TiO2.
To further elucidate the reaction kinetics for the degradation of RhB dye, we applied the
pseudo-first-order theory exhibited by the equation ln(C0/C) = kt, which is generally used
in photocatalytic degradation experiments if the initial concentration of dye (C0) is low;
k is the pseudo-first-order rate constant for degradation experiments. Based on the data
plotted in Figure 5, Figure S6 presents the reaction kinetics of RhB dye degradation. The
first-order degradation rate constant of RhB dye in the presence of SnP, TiO2, SnP@TiO2
and SnP/AA@TiO2 was calculated as 0.0016, 0.006, 0.0078 and 0.0366 min−1, respectively
(Figure S6). The above results are encouraging compared with other reported rate constants
for the degradation of RhB dye (Table 1).

Among the developed photocatalysts, SnP/AA@TiO2 possesses the highest pho-
todegradation rate and can remove ~95% of RhB dye within 80 min. To confirm the effect
of TiO2-immobilized SnP on the photocatalytic activity of the SnP/AA@TiO2 composite,
the weight percentage of SnP in the composite was serially varied and the effect on the
degradation of RhB dye was evaluated (Figure S7). The photodegradation of RhB by
SnP/AA@TiO2 containing 30 wt% SnP proceeded much more efficiently than that in the
presence of pure SnP or pure TiO2. When the mass ratio of SnP to TiO2 in the composite
was increased, the dye degradation rate increased and reached a maximum of 30%. The
degradation rate increased slightly to 40% or 50%. When the wt% of SnP in SnP/AA@TiO2



Inorganics 2023, 11, 336 8 of 15

is higher than 30%, SnP molecules agglomerate easily on the surface of TiO2 to some extent.
This reduced the number of reactive sites, restrained the photogenerated charge separation
and slowly lowered the degradation rate. This trend suggests that the synergistic effects
between SnP and TiO2 are responsible for the enhanced photocatalytic efficiency of the
SnP/AA@TiO2 composite.

Table 1. Comparison of the photodegradation efficiency of RhB with that of various photocatalysts.

Photocatalyst Rate Constant (min−1) Reference

ZnP-SnP-ZnP triad nanostructure 0.0100 [41]
H2Ti3O7 nanotube 0.0020 [55]

TiO2 (P-25) 0.0010 [55]
Co0.6Zn0.4Fe2O4 0.0150 [56]

TiO2 0.0015 [57]
TiO2/MgZnAl 0.0050 [57]

ZnO 0.0090 [58]
ZnO/Burkeite 0.0280 [58]

Ni0.5Zn0.5Al2O4 0.0050 [59]
g-C3N4 0.0032 [60]

O-g-C3N4 0.0790 [60]
SnO2-Acalypha Indica 0.0062 [61]

H2O2@Cu/Al2O3/g-C3N4 0.0820 [62]
Au/ZnO 0.0300 [63]

TiO2–SnO2–Al2O3 0.0610 [64]
ZnS-NaBH4 0.0123 [65]

SnP 0.0016 this study
TiO2 0.0060 this study

SnP@TiO2 0.0078 this study
SnP/AA@TiO2 0.0366 this study

Because the reusability of photocatalysts is very important for practical application,
we evaluated the recyclability of SnP/AA@TiO2 in RhB dye degradation (Figure S8). Even
after ten consecutive cycles, SnP/AA@TiO2 still maintained a high degradation efficiency,
with only a 3% reduction, indicating that the SnP/AA@TiO2 photocatalyst possesses
remarkable stability. The stability of this photocatalyst was further confirmed by examining
the structure of SnP/AA@TiO2 after the degradation reaction. The XRD (Figure S9) and
FE-SEM (Figure S10) data for used SnP/AA@TiO2 were almost the same as that of the
pristine state, indicating that the properties of this photocatalyst remained intact during the
photocatalytic reaction. Moreover, SnP/AA@TiO2 was easily recovered from the reaction
mixture through a successive filter–wash–dry procedure.

To optimize the reaction conditions (RhB dye/photocatalyst ratio, temperature and
solution pH), the photodegradation of RhB was performed under several different condi-
tions. Degradation experiments were performed at various temperatures to analyze the
effect of temperature on the decay of RhB dye by SnP/AA@TiO2. Over the temperature
range of 290–330 K, the degradation occurred consistently without a significant decrease
(Figure S11). Initially, the RhB dye solution was prepared with distilled water at pH 7. The
pH of the aqueous RhB dye solution had a notable effect on the degradation rate of RhB
dye. It is evident from Figure S12 that the rate of degradation increased when the pH was
raised from pH 2 to 7 but decreased when the pH was further increased to 12. Basic pH
had a greater effect on the degradation compared to acidic pH. Additionally, the effect of
the RhB dye/catalyst ratio on the degradation of RhB dye was examined using various
concentrations of RhB solution (10 to 80 mg L−1) with a constant amount of photocatalyst
SnP/AA@TiO2 (50 mg was used in every experiment). Most of the RhB dye was degraded
at concentrations of 10–30 mg L−1, and approximately 70% of the dye was degraded even
at 80 mg L−1 (Figure S13).

The mechanism of photocatalytic degradation of dye by SnP@TiO2 is somewhat
different from that of SnP/AA@TiO2. In the case of SnP@TiO2, when visible light is
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absorbed, excited electrons can easily move to the conduction band of TiO2. These reactive
electrons in the conduction band can react with oxygen to produce superoxide radical
anions (O2

−•) and degrade RhB dye. TiO2 holes can react with water to generate hydroxyl
radicals (•OH) and degrade RhB dye. On the other hand, when the surface of TiO2 is
modified with SnP via AA, SnP/AA@TiO2 can behave as a single molecule with lower
band gap energy [66,67]. Therefore, the degradation mechanism of SnP/AA@TiO2 is very
similar to other porphyrin-based materials [42–45]. In step 1, the Sn(IV)porphyrin-based
photocatalyst (Pcat) in an aqueous solution of RhB dye is activated by absorbing visible
light. After crossing the bandgap, the valence band (VB) electrons are promoted to the
conduction band (CB). This leads to the creation of electron-hole pairs (e−/h+) pairs on
the surface of the photocatalyst. These photo-generated holes (h+) subsequently react with
H2O to produce highly reactive hydroxyl radicals (•OH) (step 2). The excited electron
reacts with O2 (dissolves in water) to produce highly reactive superoxide radical anions
(O2
−•) in step 3. The above photo-generated highly reactive species (•OH and O2

−•) react
with RhB dye and degrade it into smaller molecules, eventually forming CO2 and H2O
(steps 4 and 5).

Pcat + hν→ Pcat
∗(e− + h+) (1)

H2O + h+ → •OH + H+ (2)

O2 + e− → O2
−• (3)

•OH + RhB→ degraded products (4)

O2
−• + RhB→ degraded products (5)

The surface modification of TiO2 through AA bridging enhanced the adhesive strength
of SnP photosensitizers and optimized its surface properties. During the photocatalytic
process, it is possible that the bridging–anchoring groups strongly inhibited the detachment
of SnP from the surface of modified TiO2. And the robustly strong adhesion between SnP
and AA@TiO2 not only increases the amount of SnP attached to the surface of AA@TiO2
but also accelerates electron transfer from excited SnP to the conduction band of TiO2.

To detect the photo-generated reactive species during the photocatalytic degradation
of RhB dye, we used radical trapping experiments [68,69]. For this purpose, tert-butanol
(tBuOH) was used to capture hydroxyl radicals (•OH); para-benzoquinone (p-BQ) was used
for superoxide radical anions (O2

−•); NaN3 for singlet oxygen; and ethylenediaminete-
traacetic acid disodium (Na2-EDTA) was used to capture photogenerated holes (h+) during
the photodegradation of RhB dye in the presence of SnP/AA@TiO2. Figure S14 reveals that
the RhB dye degradation rate was critically affected in the presence of tBuOH, Na2-EDTA
and p-BQ. The degradation of RhB dye was not affected by the presence of NaN3 or singlet
oxygen. Photogenerated holes (h+) are the major reactive species compared to hydroxyl
radicals (•OH) or superoxide radicals (O2

−•), which are responsible for the catalytic degra-
dation of RhB dye in aqueous solution. The photocatalytic activity of SnP/AA@TiO2 in
RhB degradation under irradiation with monochromatic light at different wavelengths was
also investigated (Figure S15). The variation in the wavelength-dependent photodegrada-
tion of RhB dye demonstrated that optical absorption makes a significant contribution to
solar energy conversion and photocatalytic performance. SnP/AA@TiO2 showed some
degradation ability even at λ > 700 nm.

To identify the degradation products of RhB dye after visible-light irradiation in the
presence of SnP/AA@TiO2, the reaction mixture was withdrawn after 40 min for each
photo-degradation experiment and analyzed by ESI-mass spectrometry (Figure S16). The
new peaks appearing in the mass spectra confirmed the degradation of RhB dye to new,
smaller molecules [70]. Based on the mass spectrum in Figure S16, possible intermediates
for the degradation of RhB dye are shown in Figure 6. The initially observed base peak
(m/z = 443.2; a cationic form of RhB) belongs to the RhB dye. RhB dye can undergo N-
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de-ethylation and fragment into smaller parts (m/z 415.2 and m/z 387.2). Finally, all four
N-de-ethylation steps lead to the product with m/z 331.1. This cationic species fragmented
further after cleavage of the chromophoric group to smaller molecules (m/z 115.0, 166.9,
110.0). These low-molecular-weight aromatic compounds can undergo successive ring
cleavage and hydrolysis, thereby forming low-molecular-weight compounds (m/z 119.0,
105.0). Finally, all these intermediate molecules were further disintegrated and mineralized
into CO2 and H2O. Furthermore, the total organic carbon (TOC) was estimated to calculate
the removal of RhB dye by the photocatalysts [71]. The TOC removal percentage obtained
with SnP/AA@TiO2 was only 81%. The TOC removal was 78% for SnP@TiO2.
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3. Materials and Methods

TiO2 (P-25, Degussa, average particle size 100–300 nm) was purchased from com-
mercial suppliers. All purchased chemicals were used without further purification unless
otherwise specified. Toluene and pyrrole were distilled from a solution of calcium hy-
dride. (trans-Dihydroxo)(5,15,10,20-tetraphenylporphyrinato)tin(IV) (SnP) was synthesized
according to our previously reported procedure [36]. Fourier-transform infrared (FT-IR)
spectra (KBr) were measured using a Shimadzu FTIR-8400S spectrophotometer (Shimadzu,
Tokyo, Japan). Steady-state UV-vis spectra were measured on a Shimadzu UV-3600 spec-
trophotometer (Shimadzu, Tokyo, Japan). Fluorescence spectra were measured with a
Shimadzu RF-5301PC fluorescence spectrophotometer (Shimadzu, Tokyo, Japan). Ther-
mogravimetric analysis (TGA) was recorded using an Auto-TGA Q500 instrument (TA
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Instruments, New Castle, DE, USA) at a scan rate of 10 ◦C/min in the range of 30–600 ◦C,
under an N2 atmosphere. The Brunauer−Emmett−Teller (BET) surface area was calculated
with an analyzer (BELSORP-mini volumetric adsorption equipment) by acquiring N2 ad-
sorption isotherms at 77 K. The data for the catalyst surface were obtained by using an
Autosorb-iQ and Quadrasorb SI apparatus. Powder X-ray diffraction (PXRD) patterns were
determined on a Bruker AXS D8 Advance powder X-ray diffractometer (Bruker, Billerica,
MA, USA). The morphology and elemental distribution of the synthesized samples were
examined using field-emission scanning electron microscopy (FE-SEM) (MAIA III, TES-
CAN, Brno, Czech Republic) with energy dispersive X-ray spectroscopy (EDS). All samples
were deposited on the surface of copper tape by using the drop-casting method. The
zeta potential was measured using an Otsuka Electronics ELSZ-2 instrument. Inductively
coupled plasma (ICP) analyses were performed on an ICP-Spectrociros CCD instrument.

3.1. Synthesis of SnP/AA@TiO2

TiO2 (1.0 g, 12.5 mmol) was added to a solution of adipic acid (1.83 g, 12.5 mmol)
dissolved in tetrahydrofuran (THF, 20 mL) and stirred for 6 h at room temperature. The
solid materials were filtered and washed with THF and then dried under vacuum for
over 2 h at 70 ◦C. The resulting solid was added to a solution of SnP (0.30 g, 0.39 mmol)
dissolved in CH2Cl2 (40 mL). The reaction mixture was stirred for 12 h at 25 ◦C. After that,
the solid was filtered, washed with CH2Cl2 and dried in a vacuum oven for 6 h at 90 ◦C.
SnP/AA@TiO2 powder was obtained with a yield of 1.101 g.

3.2. Synthesis of SnP@TiO2

TiO2 (1.0 g, 12.5 mmol) was added to a solution of SnP (0.30 g, 0.39 mmol) dissolved
in CH2Cl2 (40 mL). After that, the reaction mixture was stirred for 12 h at 25 ◦C. The solid
was filtered, washed with CH2Cl2 and dried in a vacuum oven for 4 h at 80 ◦C. SnP@TiO2
was obtained in a yield of 1.122 g.

3.3. Photocatalytic Degradation Experiment

The photocatalytic efficiency of the synthesized SnP/AA@TiO2 or SnP@TiO2 was
investigated in the degradation of RhB dye in aqueous solution. The photodegradation
reaction of this dye was carried out under irradiation with a 150 W xenon arc lamp with a
UV cut-off filter (ABET Technologies, Old Gate Lane Milford, CT, USA) at room temperature
(298 K). In a typical procedure, 50 mg of the photocatalyst was added to a 100 mL aqueous
solution of RhB (40 mg L−1, distilled water at pH 7) with stirring at room temperature.
The reaction mixture remained in the dark for 25 min to reach adsorption–desorption
equilibrium. After irradiation with visible light, 3 mL of the suspension was collected
at regular intervals. The photocatalyst was collected from the solution by centrifugation
followed by filtration using filter paper. The concentration of RhB was examined by
determining the absorbance at 554 nm using a UV-vis spectrophotometer.

4. Conclusions

A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the co-
ordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-
tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2
nanoparticles. The SnP center was tightly coupled to the TiO2 nanoparticles via an adipic
acid linkage in SnP/AA@TiO2, as judged by various instrumental techniques. Compared
to SnP, TiO2 and SnP@TiO2, SnP/AA@TiO2 exhibited remarkably enhanced photocatalytic
efficiency for the degradation of rhodamine B dye (RhB) under visible-light irradiation
in aqueous solution. The high dye degradation efficiency, low catalyst loading and high
reusability make this photocatalyst more efficient than other conventional photocatalysts,
such as TiO2 and ZnO. This work provides a new route for the design of high-efficiency
porphyrin-based photocatalytic systems and holds great importance for extending applica-
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tions in the field of environmental remediation. The catalyst can prospectively be used as
an alternative to so-called conventional photocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11080336/s1, Figure S1. Energy dispersive X-ray spec-
troscopy (EDS) elemental maps (C, N, O, Ti, and Sn) of SnP/AA@TiO2. Figure S2. TGA curves of
TiO2, SnP@TiO2, and SnP/AA@TiO2. Figure S3. N2 adsorption-desorption isotherms of SnP@TiO2
and SnP/AA@TiO2. Figure S4. RhB adsorption ability of SnP, TiO2, SnP@TiO2, and SnP/AA@TiO2.
Figure S5. Photocatalytic degradation of RhB dye in aqueous solution by SnP/AA@TiO2 under
visible-light irradiation. Figure S6. Kinetics for the photocatalytic degradation of RhB dye by SnP,
TiO2, SnP@TiO2, and SnP/AA@TiO2 photocatalysts under visible-light irradiation. Figure S7. Com-
parison of RhB dye degradation in presence of SnP, TiO2, and SnP/AA@TiO2 with various wt% of
SnP with respect to TiO2. Figure S8. Recyclability of SnP/AA@TiO2 composite photocatalyst in
RhB degradation. Figure S9. XRD of SnP/AA@TiO2 composite photocatalyst before and after RhB
degradation. Figure S10. FE-SEM images of SnP/AA@TiO2 composite photocatalyst before and
after RhB degradation. Figure S11. Effect of temperature on RhB degradation in the presence of
SnP/AA@TiO2 composite photocatalyst. Figure S12. Effect of pH of the solution on RhB degradation
in the presence of SnP/AA@TiO2 composite photocatalyst. Figure S13. Effect of initial concentration
of RhB on dye degradation using 50 mg of SnP/AA@TiO2 composite photocatalyst. Figure S14. Pho-
tocatalytic degradation of RhB dye in aqueous solution by SnP/AA@TiO2 composite photocatalyst
with the addition of different scavengers under visible-light irradiation ([Na2-EDTA]0 = [p-BQ]0
= [tBuOH]0 = 5 mM, pH 7.0, T = 298 K). Figure S15. Photocatalytic activity of SnP/AA@TiO2 at
different wavelengths for the degradation of RhB dye. Figure S16. ESI-MS spectrum (positive ion
mode) of the reaction mixture of RhB dye with the SnP/AA@TiO2 composite photocatalyst after
40 min of visible-light irradiation.
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