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Abstract: In this study, the biological properties of novel borenium and borinium compounds in
terms of their oxidative, genotoxic, and cytotoxic effects were assessed on cultured human peripheral
blood cells, as well as several types of cancer cells. Our results revealed that the borinium compounds
yielded the best results in terms of supporting total antioxidant capacity (TAC). In fact, borenium 1,
borenium 2, borenium 3, borinium 4, and borinium 5 compounds elevated TAC levels of cultured
human blood cells at rates of 42.8%, 101.5%, 69.8%, 33.3%, and 49.2%, respectively. There were no
statistically significant differences (p > 0.05) between the negative control and the groups treated with
all borinium and borenium concentrations from the micronucleus (MN) and chromosome aberration
(CA) assays, demonstrating the non-genotoxic effects. Moreover, borenium 1 (60.7% and 50.7%),
borenium 2 (70.4% and 57.2%), borenium 3 (53.1% and 45.2%), borinium 4 (55.1% and 48.1%), and
borinium 5 (51.0% and 36.1%) minimized the mitomycin C(MMC)-induced genotoxic damages at
different rates as determined using CA and MN assays, respectively. Again, it was found that the
borinium compounds exhibited higher cytotoxic activity on cancer cells when compared to borenium
compounds. Consequently, in light of our in vitro findings, it was suggested that the novel borinium
and borenium compounds could be used safely in pharmacology, cosmetics, and various medical
fields due to their antioxidant and non-genotoxic features, as well as their cytotoxicity potential on
cancer cells.

Keywords: antioxidant; antigenotoxicity; boron compounds; borenium; borinium; cancer cells;
cytotoxicity; human blood cells; genotoxicity

1. Introduction

Around 400 different industrial domains involving the production of ceramics and
fertilizers, glass and glass fibers, pharmaceuticals, chemicals, nuclear power, automobiles,
and spacecrafts employ boron (B) in different chemical structures. In light of recent scien-
tific findings based on the biological and physicochemical properties of boron-containing
compounds (BCCs), B is now regarded as a strategic element whose usage and application
domains are expanding constantly [1]. Due to its superior physicochemical properties
and its preference in many industrial fields, new boron derivatives are synthesized by
scientists and new BCCs are offered for use. B is considered to be a crucial microelement
for plants. Despite the vast body of scientific evidence, it has not been conclusively re-
ported that B is necessary for both humans and animals. In fact, several BCCs, such as
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borates, boronates, and boronic acids, exhibited interesting biological activities, includ-
ing antiviral [2], antibacterial [3,4], antifungal and antiparasitic [5,6], antioxidant [7,8],
wound healing [9], anti-inflammatory [10,11], antimutagenic [12], anticancerogenic [13,14],
radiobiological [15], and neuroprotective properties [16,17]. Interestingly it was found
that people living in B-rich regions had less cancer incidence than the people living in
B-poor regions [18]. The functions of B in the human body are not known clearly but
previously suggested health benefits of boron included protection of the liver, enhancement
of fetal development, regulation of enzymatic activity associated with the immune system,
and improvement of brain functions in humans and animals [19]. Hence, researchers and
industries have recently given extensive effort in studying BCCs with the goal of under-
standing their physiological process and locating novel health technologies endowed with
clinical safety.

A few studies on boron compounds that have been previously synthesized are the
ionic liquids based on boronium cations [20]. These cations were considered to be a highly
electrophilic species that was elusive and was reported to have a key role in the chemistry
of B. A commercially available ionic fluid boron tetra-fluoro borate (BF4) anion has this
cation. Compounds with a BF4

- anion have a hypersensitivity to the reactivity of the pipe
to air and water [21]. Given this context, the main objective of the current investigation
was to synthetize novel cationic B-based compounds that exhibit high resistance properties
due to a B cation and introduce novel boron compounds with potential to be used in
the biomedical field. In accordance with this goal, we aimed to obtain useful electrolyte
compounds indicating higher thermal stability and more resistance to heat treatment.

Understanding the behavior of the novel borenium and borinium compounds can
guide researchers or applicators in choosing the relevant biomedical materials for dif-
ferent clinical and anatomical purposes. Along with the proper thermal stability and
heat-resistance features of novel biomedical materials, their toxicity potential should be
evaluated before safe clinical use. The chemical and physical features of biomedical materi-
als influence their biological and toxic potential [22]. In this regard, the chemical, physical,
and biological features of B provide medicinal chemists a unique chance to research and
develop brand new fields of biomedical sciences, especially in drug discovery [23–25].
Recent investigations indicated that BCCs could affect the crucial cellular machineries
implicating cell survival, tissue regeneration, and immunogenic responses [26]. Although
the toxicity potentials by borenium and borinium compounds are not well known, their
antibacterial and antiviral properties have been well documented [27–29]. Thus, these
limited studies indicate that borenium and borinium compounds can be used safely in
medical, cosmetics, and green chemistry domains [28,30]. Hence, the second aim of this
investigation was to assess the oxidative, genotoxic, and cytotoxic effects of novel borenium
and borinium compounds on human peripheral blood cells, as well as several types of
cancer cells. We assessed the in vitro effects of these compounds on cytotoxicity using an
MTT assay, DNA damage response via MN and CA assays, and antioxidant capacity using
a TAC assay.

2. Materials and Methods
2.1. Novel Ionic Liquids

Ionic liquids are salts that exist in liquid form at room temperature, and at lower
temperatures, and generally have an organic cationic part. Ionic liquids have high polarity,
low vapor pressure, and are resistant to high temperatures. Due to these properties, ionic
liquids can be used repeatedly as both solvent and catalyst in many reactions, and they can
also be easily removed from the reaction medium without leaving any waste. In this way,
ionic liquids are superior to other classic solvents and cause them to be preferred in terms
of environment.

In this study, an oxidative, genotoxic, and cytotoxic evaluation of new boron-containing
molecules to the family of ionic liquids was performed. In the five novel compounds we
synthesized, new ionic liquids with a boron cationic center—not BF4- anion—were syn-
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thesized. Cationic forms of boron are produced in two different forms, borinium and
borenium, as shown in Figure 1. The original ionic liquids were synthesized with organic
extension derivatives of these structures containing chiral structures.
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Figure 1. Borinium (L) and borenium (R) forms.

NMR analyses were performed in DMSO, CDCl3, and MeOH with an Agilent Pre-
mium Contact NMR 600 MHz spectrophotometer, and the chemical shift values (δ) in the
spectrum were expressed in ppm. IR measurements were performed with the Agilent
Cary 630 FTIR device. The recovery of the silver amino acid salts was confirmed with
the Agilent 7700 series ICP-MS instrument. A Heidolp brand rotary evaporator was used
for the solvent removal system. Melting point was determined with Stuart SMP40 brand
melting point determination device. Analytical TLCs were performed using aluminum
plates coated with a layer of silica gel (SiO2, Merck 60 F254).

2.2. Experimental Design

We used human U87MG, SHSY-5Y, PC-3, and Detroit-562cell lines for screening of
cytotoxicity of boronated compounds. The U87MG, SHSY-5Y, and Detroit-562 cell lines
were obtained from Atatürk University, Faculty of Medicine, Erzurum, Turkey. PC-3
cells were provided from the American Type Culture Collection (Manassas, VA, USA).
Cells were harvested using 0.25% trypsin–EDTA solution and suspended with RPMI 1640
medium (Sigma-Aldrich, St. Louis, MO, USA) containing 10% FBS, L-glutamine (1%), and
penicillin–streptomycin mixture (1%). The different concentrations (from 1.56 to 400 mg/L
or from 2.91 to 1316.01 µM) of borenium and borinium compounds were applied to the
cultures (n = 5). All experiments were performed in accordance with the rules of the World
Medical Association.

2.3. Cytotoxicity Testing

The cytotoxic potential of the boron compounds was determined by MTT analysis. In
brief, compounds were added into the cell culture plates at a wide concentration range from
1.56 to 400 mg/L or from 2.91 to 1316.01 µM and incubated for 48 h (n = 5). Then, 10 µL of
MTT solution was added to wells and incubated for an additional 3 h at 37 ◦C. After dis-
carding cell mediums, DMSO (100 µL) was added to wells for dissolving formazan crystals.
Finally, the color intensities were measured via using a microplate reader at 570 nm [31]. A
podophyllotoxin derivative, etoposide (Merck), which is a chemotherapy medication, was
dissolved in DMSO (<1%) and used as a positive control agent for comparing cytotoxic
action of boron compounds.

2.4. Genotoxicity Testing

The in vitro genotoxic/antigenotoxic potential of boron compounds on human whole
blood cell cultures using chromosomal aberration (CA) and micronucleus (MN) assays
was tested. For CA assay, a 0.65 mL aliquot of heparinized blood sample was cultured in
7 mL of culture medium (Chromosome medium B; Biochrom, Berlin, Germany) containing
phytohemagglutinin (5 mg/mL, Biochrom). Then, the cultures were incubated for 72 h at
37 ◦C. Around 2 h before harvesting, 0.1 mL of colchicine (0.2 mg/mL, Sigma; St Louis, Mis-
souri, USA) was added into the culture tubes and hypotonic treatment/fixation steps were
performed. The prepared slides were stained using Giemsa solution (3%). For each culture
tube (n = 5), 30 well-spread metaphases were scored to detect CA frequencies. Chromatid or
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chromosome gaps and chromatid or chromosome breaks were scored as recommended by
Environmental Health Criteria 46 for environmental monitoring of human populations [32].

For MN assay, cytochalasin B (at a final concentration of 6 µg/mL, Sigma) was added
into the culture tubes (contained 2 × 106 cells/mL) after 44 h of culture and incubated
for 72 h (n = 5). After the incubation period of three days, the lymphocytes were fixed
using treatment with ice-cold methanol:acetic acid (1:1) and stained Giemsa (5%) for
12 min. The slides were scored by using a bright-field microscope (at 400×magnification,
Olympus). A total of 2000 binucleated lymphocytes were scored per treatment type for
the presence of one, two, or more micronuclei according to previously reported standard
criteria [33]. Mitomycin C (MMC, 5 × 10−6 M) was used as the positive control in CA and
MN assays [34].

2.5. Determining of TAC Levels

The commercially available kit (Rel Assay Diagnostics, Gaziantep, Turkey) was used
to determine the antioxidant capabilities of the borenium and borinium compounds on
human whole blood cell cultures for 72 h (n = 5). The principle of this kit assay is to
monitor antioxidant levels of cultures via inhibiting formation of free radical featured
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) compound. Furthermore, the assay
is calibrated with Trolox equivalent vitamin E analogue. The cultures without boronated
compounds were studied as a negative control group. Ascorbic acid (10 µM) was also used
as a positive control in total antioxidant capacity (TAC) analysis [35].

2.6. Statistical Analyses

Statistical analysis was performed using IBM program SPSS version 25. All tests
were performed for at least five different repeats. The obtained data were analyzed us-
ing a variance (ANOVA) test followed by Duncan’s test and values with p < 0.05 were
accepted as significantly different. Probit regression analyses were performed to estimate
the concentrations required to reduce cell viability rates by 50% using SPSS [36].

3. Results

Examples of ionic liquids containing boron cations are very rare in the literature [37].
In previous research, a series of ionic liquids containing N-alkylimidazole-amine BH2+
structures were synthesized, and their electronic and spectroscopic properties were ex-
amined [38]. Some new boronium cation-based ionic liquids were also synthesized and
their potential for use in lithium ion batteries was investigated. In this study, it is of great
importance to test the usability of ionic liquids with boron cations in practice [39].

3.1. Synthesis of Borenium Ionic Liquids

The dialkyl aryl borane and the anion compound, chlorobenzene, were dissolved.
After mixing, an aromatic amine compound was added to this reaction solution, and it
was allowed to boil at a temperature >120 ◦C. Centrifugation was applied and the solvent
component was removed. The synthesis reaction and code numbers of the synthesized
borenium 1, 2, and 3 compounds are presented in Figures 2–4. The IR, 1H-NMR, and 13C-
NMR (Agilent, Premium Compact, 14.1 tesla, 600 MHz) spectra of three novel borenium
compounds are presented in Supplementary Figures S1–S9.
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3.2. Synthesis of Borinium Ionic Liquids

The dialkyl aryl borane and the anion compound, chlorobenzene, were dissolved.
After mixing, an aromatic amine compound was added to this reaction solution, and it
was allowed to boil at a temperature of >130 ◦C. Centrifugation was applied and the
solvent component was removed. After one night, after the reaction was cooled to room
temperature, the first centrifugation was applied, and the solvent part was removed. The
synthesis reactions of borinium 4 and borinium 5 are presented in Figures 5 and 6. The IR
(Agilent Cary 630), 1H-NMR, and 13C-NMR spectra of three novel borinium compounds
are presented in Supplementary Figures S10–S15.
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such as the National Cancer Institute, debate IC50 values for classifying cytotoxicity poten-
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mentary Figures S16–S20. 

Table 1. The determined IC50 values for boronated compounds in several cancer cell lines and hu-
man whole blood cells after 48 h of exposure. 

Compounds 
IC50 Value 

U87MG Cells SHSY-5Y 
Cells 

PC-3  
Cells 

Detroit-562 
Cells 

Human Whole 
Blood Cells 

Positive control 
(Etoposide) 

16.305 mg/L 
0.027 µM 

12.665 mg/L 
0.022 µM 

6.904 mg/L 
0.012 µM 

26.342 mg/L 
0.045 µM 

81.122 mg/L 
0.138 µM 

Borenium 1 
117.365 mg/L 
317.031 µM  

86.141 mg/L 
232.687 µM 

67.608 mg/L 
182.625 µM 

106.884 mg/L 
288.719 µM 

235.190 mg/L 
635.304 µM 

Borenium 2 
168.410 mg/L 
516.304 µM 

111.361 mg/L 
341.406 µM 

86.773 mg/L 
266.025 µM 

179.662 mg/L 
550.800 µM 

324.655 mg/L 
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Figure 6. Synthesis reaction of bis(1,2-dimethyl-1H-imidazol-3-yl) dihydroboronium iodide (Borinium 5).
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The cytotoxicity of the boron compounds on three different cancer cells, including
human glioblastoma (U87MG), neuroblastoma (SHSY-5Y), prostate (PC-3) and pharyn-
geal (Detroit-562) cancer cell lines, as well as human whole blood cells, was determined.
The determination of cytotoxicity was evaluated by calculating percent inhibition (IC50).
Table 1 presents the IC50 values as estimated using the results of the MTT assay and Probit
analysis. IC50 values are used to express the concentration corresponding to a survival
rate of 50% under in vitro conditions. This value is commonly used for measuring antag-
onist drug potency using outputs from cell-based cytotoxicity tests; the lower the IC50
value, the more cytotoxic the compound, drug candidate, or drug is. The international
authorities, such as the National Cancer Institute, debate IC50 values for classifying cyto-
toxicity potentials by compounds as high cytotoxic (IC50 < 20 mg/L), moderate cytotoxic
(20 mg/L < IC50 < 200 mg/L), weak cytotoxic (200 mg/L < IC50 < 500 mg/L), and non-
cytotoxic (IC50 > 500 mg/L) [40–43]. No statistical difference (p > 0.05) in cell viability was
observed between the negative controls and vehicle (DMSO, <1%) controls. Borinium 5
was found to be the most promising compound as an anti-proliferative agent, but it seems
necessary to take into consideration that concentration-dependent cytotoxicity on healthy
cells might occur at excessive exposure. The PC-3 cells were found to be more sensitive to
boronated compounds in comparison to other cancer cells, such as the U87MG, SHSY-5Y,
and Detroit-562 lines. The concentration-dependent cell viability alterations are presented
in Supplementary Figures S16–S20.

Table 1. The determined IC50 values for boronated compounds in several cancer cell lines and human
whole blood cells after 48 h of exposure.

Compounds
IC50 Value

U87MG Cells SHSY-5Y Cells PC-3
Cells Detroit-562 Cells Human Whole

Blood Cells

Positive control
(Etoposide)

16.305 mg/L
0.027 µM

12.665 mg/L
0.022 µM

6.904 mg/L
0.012 µM

26.342 mg/L
0.045 µM

81.122 mg/L
0.138 µM

Borenium 1 117.365 mg/L
317.031 µM

86.141 mg/L
232.687 µM

67.608 mg/L
182.625 µM

106.884 mg/L
288.719 µM

235.190 mg/L
635.304 µM

Borenium 2 168.410 mg/L
516.304 µM

111.361 mg/L
341.406 µM

86.773 mg/L
266.025 µM

179.662 mg/L
550.800 µM

324.655 mg/L
995.314 µM

Borenium 3 96.674 mg/L
318.057 µM

77.804 mg/L
255.975 µM

53.096 mg/L
174.685 µM

108.025 mg/L
355.402 µM

177.020 mg/L
582.396 µM

Borinium 4 88.369 mg/L
197.098 µM

59.113 mg/L
131.845 µM

60.554 mg/L
135.059 µM

92.045 mg/L
205.297 µM

145.224 mg/L
323.907 µM

Borinium 5 71.436 mg/L
132.783 µM

55.238 mg/L
102.804 µM

41.941 mg/L
78.057 µM

69.786 mg/L
129.880 µM

169.208 mg/L
314.916 µM

The results of the genotoxicity tests of five different borenium and borinium com-
pounds, which were evaluated in cultured human lymphocytes by CA and MN assays, are
shown in Table 2. The rates of chromosomal aberrations (abnormal cell, %) and abnormal
cells (CAs/cell) were determined by blindly scoring at least 30 well-spread metaphases for
each culture type (a total of at least 150 metaphases for each experimental group). Likewise,
the rates of micronuclei (MNs) were monitored by blindly scoring at least 1000 binucleated
cells (MN/1000 cells) for each culture type (a total of at least 4000 binucleated cells for
each treatment). MMC treatment led to 6.13- and 6.69-fold change increases of CAs and
MNs formations, respectively. On the contrary, the frequency of CAs and the rate of MNs
in cells treated with different concentrations of the novel boron compounds were similar
to those of the untreated control cells (p > 0.05). When assessed in terms of genotoxic
damage potentials, the rates of CAs/cell and MN/1000 cells did not significantly (p > 0.05)
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increase at all tested concentrations of boron compounds. Hence, our findings reveal the
non-genotoxic features of these novel boron compounds.

Table 2. The CA and MN frequencies after exposure to boronated compounds in cultured human
lymphocytes for 72 h.

Groups CAs/Cell MN/1000 Cells

Negative control 0.32 ± 0.04 2.89 ± 0.18
Positive control (MMC, 5 × 10−6 M) 1.96 ± 0.22 * 19.35± 2.44 *

Borenium 1

1.56 mg/L (4.22 µM) 0.34 ± 0.08 2.81 ± 0.23
3.12 mg/L (8.44 µM) 0.32 ± 0.05 2.75 ± 0.21
6.25 mg/L (16.88 µM) 0.35 ± 0.07 2.66 ± 0.27
12.5 mg/L (33,77 µM) 0.35 ± 0.07 2.71 ± 0.34
25 mg/L (67.53 µM) 0.37 ± 0.05 2.84 ± 0.32
50 mg/L (135.06 µM) 0.34 ± 0.08 2.88 ± 0.25
100 mg/L (270.12 µM) 0.37 ± 0.04 2.93 ± 0.33
200 mg/L (540.24 µM) 0.39 ± 0.09 2.97 ± 0.37
400 mg/L (1080.48 µM) CD CD

Borenium 2

1.56 mg/L (4.79 µM) 0.24 ± 0.05 2.68 ± 0.25
3.12 mg/L (9.58 µM) 0.27 ± 0.07 2.61 ± 0.28
6.25 mg/L (19.16 µM) 0.24 ± 0.09 2.75 ± 0.35
12.5 mg/L (38.32 µM) 0.26 ± 0.06 2.89 ± 0.23
25 mg/L (76.64 µM) 0.28 ± 0.08 2.96 ± 0.28
50 mg/L (153.28 µM) 0.33 ± 0.08 3.08 ± 0.34
100 mg/L (306.56 µM) 0.37 ± 0.06 2.95 ± 0.37
200 mg/L (613.12 µM) 0.39 ± 0.09 3.19 ± 0.29
400 mg/L (1226.24 µM) 0.37 ± 0.07 3.24 ± 0.32

Borenium 3

1.56 mg/L (5.14 µM) 0.30 ± 0.05 2.77 ± 0.27
3.12 mg/L (10.28 µM) 0.30 ± 0.07 2.73 ± 0.31
6.25 mg/L (20.56 µM) 0.29 ± 0.08 2.78 ± 0.26
12.5 mg/L (41.13 µM) 0.34 ± 0.09 2.93 ± 0.37
25 mg/L (82.25 µM) 0.32 ± 0.09 3.04 ± 0.34
50 mg/L (164.50 µM) 0.30 ± 0.07 3.08 ± 0.33
100 mg/L (329 µM) 0.37 ± 0.08 3.11 ± 0.38
200 mg/L (658 µM) 0.39 ± 0.07 3.16 ± 0.34
400 mg/L (1316 µM) CD CD

Borinium 4

1.56 mg/L (3.49 µM) 0.33 ± 0.05 2.55 ± 0.14
3.12 mg/L (6.97 µM) 0.34 ± 0.04 2.63 ± 0.22
6.25 mg/L (13.94 µM) 0.30 ± 0.07 2.94 ± 0.29
12.5 mg/L (27.88 µM) 0.36 ± 0.06 2.41 ± 0.15
25 mg/L (55.76 µM) 0.33 ± 0.03 2.77 ± 0.17
50 mg/L (111.52 µM) 0.30 ± 0.02 2.92 ± 0.22
100 mg/L (223.04 µM) 0.38 ± 0.06 2.97 ± 0.33
200 mg/L (446.08 µM) 0.42 ± 0.05 3.12 ± 0.18
400 mg/L (892.16 µM) CD CD

Borinium 5

1.56 mg/L (2.91 µM) 0.30 ± 0.05 2.69 ± 0.21
3.12 mg/L (5.82 µM) 0.34 ± 0.07 2.66 ± 0.24
6.25 mg/L (11.63 µM) 0.36 ± 0.09 2.75 ± 0.32
12.5 mg/L (23.26 µM) 0.36 ± 0.08 2.83 ± 0.31
25 mg/L (46.53 µM) 0.38 ± 0.05 2.89 ± 0.26
50 mg/L (93.06 µM) 0.33 ± 0.09 2.93 ± 0.44
100 mg/L (186.12 µM) 0.47 ± 0.06 2.98 ± 0.38
200 mg/L (372.24 µM) 0.42 ± 0.05 3.06 ± 0.28
400 mg/L (744.48 µM) CD CD

* symbol presents statistical difference from the negative control group at the level of p < 0.05. Positive control:
Mitomycin C (MMC, 5 × 10−6 M), CD: Stimulated cells could not be observed due to cellular death.
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The results for the antigenotoxicity assays performed via MMC in combination with
three different concentrations (25, 50, and 100 mg/L) of boronated compounds are also
reflected in Table 3. MMC alone caused a statistically significant increase in CA and MN
frequencies when compared to the control group (p < 0.05). On the contrary, co-treatment
with boronated compounds significantly reduced the frequencies of CAs and MNs, which
were elevated by MMC (p < 0.05). In fact, in lymphocytes treated with the combination of
boronated compounds plus MMC at 72 h (except for 25 mg/L borenium 1), the frequencies
of CAs and MNs were significantly reduced compared to the positive control (MMC) at 25,
50, and 100 mg/L. Borinium 4 (55.1% and 48.1%), borinium 5 (51.0% and 36.1%), borenium
1 (60.7% and 50.7%), borenium 2 (70.4% and 57.2%), and borenium 3 (53.1% and 45.2%)
minimized the MMC-induced genotoxic damage at different rates, as determined using CA
and MN assays, respectively. Furthermore, borenium 2 was found to be the most potent
compound for the prevention of DNA damage induced by MMC.

Table 3. Frequencies of CAs and MNs in cultured human peripheral lymphocytes after treatment
with different concentrations of boronated compounds plus MMC.

Treatment Type CAs/Cell MN/1000 Cells

Negative control 0.32 ± 0.04 a 2.89 ± 0.18 a

Positive control (MMC, 5 × 10−6 M) 1.96 ± 0.22 f 19.35 ± 2.44 e

MMC + 25 mg/L (67.53 µM) Borenium 1 1.33 ± 0.33 d 16.80 ± 2.66 d

MMC + 50 mg/L (135.06 µM) Borenium 1 0.92 ± 0.25 c 10.85 ± 1.88 bc

MMC + 100 mg/L (270.12 µM) Borenium 1 0.77 ± 0.21 bc 8.55 ± 1.75 b

MMC +25 mg/L (76.64 µM) Borenium 2 1.21 ± 0.33 d 14.18 ± 2.80 d

MMC +50 mg/L (153.28 µM) Borenium 2 0.86 ± 0.17 c 10.19 ± 2.36 bc

MMC +100 mg/L (306.56 µM) Borenium 2 0.58 ± 0.19 b 7.43 ± 1.55 b

MMC +25 mg/L (82.25 µM) Borenium 3 1.46 ± 0.28 e 15.22 ± 3.08 d

MMC +50 mg/L (164.50 µM) Borenium 3 1.22 ± 0.26 d 11.73 ± 2.77 c

MMC +100 mg/L (329 µM) Borenium 3 0.92 ± 0.24 c 9.66 ± 2.12 b

MMC + 25 mg/L (55.76 µM) Borinium 4 1.38 ± 0.26 de 14.75 ± 2.61 d

MMC + 50 mg/L (111.52 µM) Borinium 4 0.97 ± 0.34 c 10.69 ± 2.18 bc

MMC + 100 mg/L (223.04 µM) Borinium 4 0.88 ± 0.30 c 9.02 ± 1.49 b

MMC + 25 mg/L (46.53 µM) Borinium 5 1.68 ± 0.28 e 15.32 ± 2.52 d

MMC + 50 mg/L (93.06 µM) Borinium 5 1.45 ± 0.13 e 13.54 ± 2.48 d

MMC + 100 mg/L (186.12 µM) Borinium 5 0.96 ± 0.27 b 11.08 ± 2.30 bc

Different letters in the same column denote significant differences between treatments at the level of p < 0.05.

In the TAC assay, the available antioxidants in the cultures reduced the colored free
radical to its colorless form, and the alternation in absorbance at 660 nm refers to the total
antioxidant level in samples from treated and untreated cultures. The presented values
in Table 4 correspond to the mean value of at least four different absorbance readings
from each culture type. The most significant contribution to the TAC level was observed
after treatment with the borenium 2. In fact, borenium 2 elevated TAC levels at a rate
of 10.6, as compared to those levels (6.3) in the negative control group. Furthermore, its
highest concentration (400 mg/L) increased the TAC levels at a rate of 7.9%. Moreover,
the decreasing order of effectiveness for enhancing TAC levels by the tested compounds
was as follows: borenium 2 > borenium 1 > borinium 4 > borenium 3 > borinium 5. In
fact, the borinium 4, borinium 5, borenium 1, borenium 2, and borenium 3 compounds
elevated TAC levels at rates of 33.3%, 49.2%, 42.8%, 101.5%, and 69.8%, respectively. To the
contrary, the increasing concentrations of borinium 4 (at 200 and 400 mg/L), borenium 1 (at
400 mg/L), borenium 3 (at 200 and 400 mg/L), and borinium 5 (at 100, 200 and 400 mg/L)
caused statistical (p < 0.05) reductions of TAC levels (Table 4).
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Table 4. The determined TAC levels (as mmoleqv./L) after exposure to novel borinium and borenium
compounds for 72 h in cultured human blood cells.

Groups TAC Level

Negative control 6.3 ± 0.8 c

Positive control (AA, 10 µM) 15.8± 1.2 f

Borenium 1

1.56 mg/L (4.22 µM) 6.3± 0.7 c

3.12 mg/L (8.44 µM) 6.5± 0.8 c

6.25 mg/L (16.88 µM) 6.6± 0.6 c

12.5 mg/L (33,77 µM) 7.5± 0.7 cd

25 mg/L (67.53 µM) 7.9± 0.9 cd

50 mg/L (135.06 µM) 8.5± 0.8 d

100 mg/L (270.12 µM) 9.0± 1.1 d

200 mg/L (540.24 µM) 6.1± 0.7 c

400 mg/L (1080.48 µM) 5.4± 0.5 b

Borenium 2

1.56 mg/L (4.79 µM) 6.5± 0.7 c

3.12 mg/L (9.58 µM) 6.9± 0.7 c

6.25 mg/L (19.16 µM) 7.5± 0.9 cd

12.5 mg/L (38.32 µM) 8.2± 1.0 cd

25 mg/L (76.64 µM) 9.7± 0.9 d

50 mg/L (153.28 µM) 10.6± 1.3 d

100 mg/L (306.56 µM) 12.7± 1.4 e

200 mg/L (613.12 µM) 7.9± 0.9 cd

400 mg/L (1226.24 µM) 6.8± 0.7 c

Borenium 3

1.56 mg/L (5.14 µM) 6.1± 0.8 c

3.12 mg/L (10.28 µM) 6.4± 0.7 c

6.25 mg/L (20.56 µM) 6.6± 0.8 c

12.5 mg/L (41.13 µM) 6.9± 0.7 c

25 mg/L (82.25 µM) 8.9± 1.0 d

50 mg/L (164.50 µM) 10.7± 1.1 d

100 mg/L (329 µM) 6.5± 0.6 c

200 mg/L (658 µM) 5.8± 0.7 b

400 mg/L (1316 µM) 5.3 ± 0.5 b

Borinium 4

1.56 mg/L (3.49 µM) 6.2± 0.8 c

3.12 mg/L (6.97 µM) 6.4± 0.6 c

6.25 mg/L (13.94 µM) 6.5± 0.5 c

12.5 mg/L (27.88 µM) 7.1± 0.7 c

25 mg/L (55.76 µM) 7.7± 0.8 cd

50 mg/L (111.52 µM) 8.4± 1.0 d

100 mg/L (223.04 µM) 7.8± 0.9 cd

200 mg/L (446.08 µM) 5.7± 0.6 b

400 mg/L (892.16 µM) 5.1± 0.6 ab

Borinium 5

1.56 mg/L (2.91 µM) 6.6± 0.9 c

3.12 mg/L (5.82 µM) 6.9± 0.7 c

6.25 mg/L (11.63 µM) 7.5± 0.8 cd

12.5 mg/L (23.26 µM) 8.5± 0.9 d

25 mg/L (46.53 µM) 9.4± 1.0 d

50 mg/L (93.06 µM) 6.0± 0.6 bc

100 mg/L (186.12 µM) 5.8± 0.7 b

200 mg/L (372.24 µM) 4.2± 0.5 a

400 mg/L (744.48 µM) 3.6± 0.4 a

Different letters in the same column denote significant differences between treatments at the level of p < 0.05.

4. Discussion

Previous reports revealed that incorporation of cationic boron centers in organic hete-
rocycles or transition-metal metallocenes could provide opportunities for the development
of novel biomedical materials with superior redox activity and optical properties [21].
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In our study, new boron-containing molecules were introduced into the family of ionic
compounds, and the synthesis and characterization of the compounds were carried out. In
the first step, the synthesis of boronium ionic liquids was performed. Briefly, boronium
amino acid salts were obtained by anion exchange over the boronium iodide compounds
obtained. At this stage, silver salts of various amino acid derivatives, which were dissolved
in the appropriate solvent, were slowly added to the solution of boronium iodide salts
dissolved in the appropriate solvent at room temperature in the dark, and the targeted
compounds were obtained. In the second phase of our study, the synthesis of borenium
ionic liquids was performed. When the 1H-NMR and 13C-NMR spectra of the synthesized
compounds are examined, the presence of the peaks indicates that the synthesis of the
targeted compounds has been successfully achieved.

The cytotoxic, genotoxic, and oxidative damage potentials of the newly synthesized
borenium and borinium compounds were investigated in this study. The cytotoxic effects
of these new ionic liquids of B have been demonstrated as a result of exposing U87MG,
SHSY-5Y, PC-3, and Detroit-562 cancer cells to these liquids. Our findings revealed that the
PC-3 cells were found to be more sensitive to boronated compounds in comparison to other
cell lines. Furthermore, borinium 5 was found to be the most potent among them (Table 1).
Similar to our findings, previous cellular and epidemiological studies revealed that B (as
boric acid, BA) did not induce carcinogenicity. Moreover, supplementation with B might
decrease the risk for prostate and brain cancers [44,45]. The underlying mechanisms of
anticancer properties by BCCs are still unclear. It has been found that a Ca signal has a
regulatory role in cell profiling and very little attention has been paid to cancer-preventive
therapies. In a previous study, it was determined that supplementation with high amounts
of boron (50 mg/L) inhibited the proliferation of human DU-145 prostate cancer cells
via decreasing intracellular Ca signals and stores [46]. Another underlying anticancer
mechanism due to B supplementation was associated with inhibition of serine proteases,
such as prostate specific antigens and the affinity of BA to hydroxyl groups [47]. Again, BA
was shown to contribute to proliferative inhibition via dose-dependent reductions in the
expression of cyclins A-E and MAPK proteins in DU-145 prostate, HeLa cervical cancer,
and DLD-1 colorectal adenocarcinoma cells [48–50]. In addition, ferroptosis (a new type
of iron-dependent cell death) was characterized by intracellular iron ion accumulation.
Moreover, B was reported to modulate the ferroptosis in HepG2 hepatocellular carcinoma
cells, hence it could serve as a sensitizer to anticancer chemotherapeutics [51]. In this
context, the induction of ferroptosis might be one of the possible underlying mechanisms
for anticancerogenic action by introduced borenium or borinium compounds. In fact,
in a recent investigation it was reported that BA (up to 1500 mg/L) was able to trigger
both ferroptosis and apoptosis in C6 glioma cells and affected the emaphorin–neuropilin
signaling pathway [52]. AKT phosphorylation by B could be proposed as another associated
mechanism for explaining the anticancer properties of BCCs in hepatocellular carcinoma
and glioma cases [53,54].

The determined IC50 values after exposure to boronated compounds in several cancer
cell lines clearly revealed that the effects of boron compounds on different cancer types
might be variable (Table 1). In a recent investigation, BA and borax (BX) enhanced the
apoptosis in human DMS-114 lung cancer cells by upregulating pro-apoptotic genes, such
as Bax and Casp-3. In addition, these borates modulated anti-apoptotic genes, such as
BIRC2, BIRC5, and Bcl-2, and induced cell cycle arrest at the G2/M phase [55]. Similar to
our findings, different concentrations (150–3000 mg/L) of BA exerted cytotoxic action on
U87MG and T98G glioblastoma (GBM) cells with high IC50 values (1050 mg/L) [56]. In this
regard, the novel boron compounds, especially borinium 5, might be novel sources for anti-
GBM therapies with their moderate cytotoxic IC50 values without damaging healthy cells
(Table 1). Alongside the cell cycle arresting and apoptosis modulating features, BCCs were
found to interfere with other key tumorigenic pathways involving glycolysis, molybdenum
Fe–S-containing flavin hydroxylases, and intratumoral IGF-I levels—as well as transient
receptor potential in glioma cases [57].
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In the present investigation, it was revealed that the tested borenium and borinium
compounds exerted non-genotoxic features. All of the concentrations of these compounds
did not induce the formations of CAs or MNs as compared to untreated cells (Table 2). In
accordance with the present findings, the World Health Organization propounded that
genotoxic damage cannot be associated with exposure to B in both animals and humans [58].
Likewise, previous multiplexed in vitro studies proved the non-genotoxic features of certain
commercially important BCCs, including potassium tetraborate, BX, ulexite, colemanite,
and B-ionic liquids [30]. In addition to these in vitro studies, the three orally administered
BA doses (5, 10, and 20 mg/kg) did not cause DNA damage in the mononuclear leukocytes
of rats [59]. Relatively high doses of BX (100 mg/kg) also did not induce DNA strand
breaks in rat lymphocyte cells; hence, BX was reported to have a non-genotoxic nature [60].
Our findings also revealed that the genotoxic damages in the co-treated with MMC and
borenium or borinium compounds monitored via CA and MN frequencies were lower than
the solely MMC-applied group (Table 3).

Our findings indicated that both the borenium and borinium compounds also have
in vitro antigenotoxic action potential. Cross-linking to DNA occurred in MMC-treated
human cells, thus MMC application induced persistent DNA double-strand breaks [61].
BCCs, such as boric acid (BA), reduced the formation of DNA double-strand breaks and
prevented chromosome loss of cells [62]. Moreover, ataxia–telangiectasia-mutated (ATM)
protein kinase was reported to initiate DNA repair after formation of double-strand breaks
by mutagens [63]. Furthermore, BA was able to lead to ATM activation and a DNA damage
response of the cells [62]. The observed antigenotoxicity action by the borenium and
borinium compounds (Table 3) could also be attributed to their direct chemical interaction
before MMC caused genotoxic damage [64]. Previous evidence exerted that antioxidant-
featured substances can eliminate ROS before these reactive chemicals interact with DNA
and change in a DNA sequence [64]. Consistent with our findings, previous reports
suggested that BCCs have antigenotoxic effects against several genotoxic agents, such as
titanium, aluminum, aflatoxins, lead, bismuth, arsenic, and cadmium [65]. The observed
antigenotoxic action by several boron compounds on animal or cell culture models could
be primarily linked to their antioxidant properties. In fact, the antioxidative features of
several BCCs were associated with their antigenotoxic action [66,67].

The results of our study put forward that the borinium compounds yielded the best
results in terms of TAC values when compared to the untreated control treatment. Moreover,
concentrations below 100 mg/L supported the TAC levels of human blood cultures (Table 4).
Various experimental studies indicated that erythrocytes were especially susceptible to
oxidative stress. Furthermore, B regulated the activity of cellular antioxidant enzymes,
such as oxidoreductases, aldehyde dehydrogenase, xanthine oxidase, and cytochrome
b5 oxidoreductase, and affected coagulation factors, such as glyceraldehyde-3-phosphate
dehydrogenase and lactate dehydrogenase, by interacting with enzymes, such as serine
proteases [61,68]. It was also observed that BA could alter the oxidative metabolism in
animals. However, the eventual mechanisms of this change are still unclear [69]. The
primer findings in this field manifested that several BCCs at relatively low doses (<80
mg/L) supported antioxidant enzyme activities in human whole blood cultures. Indeed,
the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX),
glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PD), and the
levels of total glutathione (TGSH), as well as TAC levels, were strengthened by application
with certain BCCs, including BA, BX, and calcium borates [8,50,70].

In conclusion, the five novel borenium and borinium compounds exerted key bio-
logical functions involving (I) antioxidant (supporting TAC levels up to 101.5%), (II) non-
genotoxic (having no clastogenic and eugenic effects), (III) antigenotoxic (minimizing MMC
induced genotoxic damages in different rates up to 70.4%), and (IV) moderate cytotoxic
(IC50 values < 200 mg/L on glioblastoma, neuroblastoma, prostate, and pharyngeal cancer
cell lines and ranging from 41.941 to 179.662) properties. Our findings will contribute
to further investigations on the biomedical evaluation of these borenium and borinium
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derivatives. They have great potential to be employed for nutritional, pharmacological, and
medicinal purposes. These boron compounds deserve to be studied further in cancer treat-
ment and nutrition due to their multi-biological functions. In the meantime, concentration
adjustment should be undertaken while using these new boron compounds to promote
health benefits.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11080324/s1. Figure S1: IR spectrum of dicyclohexyl borenium
dimethyl amino pyridine trifluoro methane sulphonate (Borenium 1); Figure S2: 1H-NMR spectrum
of dicyclohexyl borenium dimethyl amino pyridine trifluoro methane sulphonate (Borenium 1);
Figure S3: 13C-NMR spectrum of dicyclohexyl borenium dimethyl amino pyridine trifluoro methane
sulphonate (Borenium 1); Figure S4: IR spectrum of dicyclohexyl borenium dimethyl amino pyridine
2-amino-4-methylpentanoate (Borenium 2); Figure S5: 1H-NMR spectrum of dicyclohexyl borenium
dimethyl amino pyridine 2-amino-4-methylpentanoate (Borenium 2); Figure S6: 13C-NMR spectrum
of dicyclohexyl borenium dimethyl amino pyridine 2-amino-4-methylpentanoate (Borenium 2);
Figure S7: IR spectrum of bisdimethyl amino borenium dimethyl amino pyridine trifluoro acetate
(Borenium 3); Figure S8: 1H-NMR spectrum of bisdimethyl amino borenium dimethyl amino pyridine
trifluoro acetate (Borenium 3); Figure S9: 13C-NMR spectrum of bisdimethyl amino borenium
dimethyl amino pyridine trifluoro acetate (Borenium 3); Figure S10: IR spectrum of dicyclohexyl
borinium trifluoro methane sulphonate (Borinium 4); Figure S11: 1H-NMR spectrum of dicyclohexyl
borinium trifluoro methane sulphonate (Borinium 4); Figure S12: 13C-NMR spectrum of dicyclohexyl
borinium trifluoro methane sulphonate (Borinium 4); Figure S13: IR spectrum of Bis (2-methyl-
1H-imidazol-3-yl) dihydroboronium iodide (Borinium 5); Figure S14: 1H-NMR spectrum of Bis
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