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Abstract: Compounds composed of [Cu(HIm, metIm)2–3L] · nH2O (n = 0, 2) were obtained during
the interaction of slightly soluble tartrate and copper(II) salicylate composed of CuL · nH2O (n = 1–2,
L2−—Tar2−, Sal2−) with imidazole (HIm) and 2-methylimidazole (metIm). Mono- and bi-ligand salts
were analyzed; the process of their thermal decomposition was studied. The solubility constants KS

of the CuC4H4O6 · 2H2O tartrate and CuC7H4O3 · H2O salicylate of copper(II) with at ionic strength
of 0.3 were determined. The IR spectroscopy method showed the participation in complexation of
the nitrogen atom N(3) of imidazole and the oxygen atoms of the carboxyl groups of oxyacids, as
well as the hydroxyl group of salicylic acid in the mixed-ligand salts of copper(II). The compositions
and stability of the imidazole-tartrate(salicylate) copper(II) complexes in an aqueous solution were
determined by performing photometry and spectrophotometry and of the monoligand complexes
[CuTar] and [CuSal] were determined by solubility and isomolar series methods.

Keywords: tartrate and salicylate of copper(II); imidazole and 2-methylimidazole; mixed-ligand
complexes; stability; solubility

1. Introduction

Tartaric C4H6O6 (H2Tar), salicylic C7H6O3 (H2Sal) acids, and some of their salts with
cations of biometals (such as Fe, Zn, Cu, Mn, and Co) are used for the development of new
drugs (e.g., the acidic salicylate of copper(II) Cu(C6H4(OH)COO)2 is used in dermatology),
biologically active substances, and fungicidal compositions [1]. They can be interesting for
researchers working on the synthesis of new materials with predictable properties [2].

References [3–5] described the methods of extracting copper(II) salts with tartaric acid
of different compositions from aqueous solutions, for example, salts CuC4H4O6 · 3H2O
and CuC4H4O6 · 2H2O [3]; MTart compounds (where M2+ is the ion of Mn, Fe, Co, Ni, Cu,
and Zn) [4]; and the coordinated polymer {[Cu2(Tart)2(H2O)2] · 4H2O}n [5].

Both phenolic and carboxylic groups are present in salicylic acid, so salicylic acid can form
acidic and medium salts. When the copper ion is coordinated by one or two functional groups
(−COOH and −OH), homo- and hetero-nuclear compounds are formed. For example, there is
the low-soluble copper salicylate CuC7H4O3 · H2O [1]; compounds M(HSal)2 · nH2O (n = 3
for cobalt and copper salts, and n = 2 for the lead salt) [6]; and heteronuclear mixed-ligand
salicylates [CuSr(Ba)(HSal)4(DMAA)4H2O] and [CuCu(HSal)4(H2O)2] · 2DMAA (DMAA is
dimethylacetamide) [7], which are used as precursors for the synthesis of new compounds.

The complexing of copper(II) with tartaric and salicylic acids in an aqueous solution is
investigated. The formation of complexes between ions Cu2+ and Tart2− (L2−) at 25 ◦C in
a 1 M solution of NaClO4 has been studied [8]. The presence of complexes with different
compositions in the pH range of 1–4, namely, CuL, CuHL, CuL2, CuHL2, CuH2L2, Cu2L2,
Cu2L3, and Cu2L4 (no charges listed), has been shown. The logarithms of the stability
constants of these complexes have been determined. The data on the stability constants of
the tartrate and salicylate copper(II) complexes are presented in [8–10].

In biological systems, metal ions typically interact with several ligands. The anions of
carboxylic acids, oxyacids, amino acids, vitamins, and azoles containing donor atoms of
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oxygen and nitrogen can participate as ligands in such mixed-ligand metal compounds.
Azoles are used to produce anti-infective drugs.

There is information on the syntheses of copper(II) biligand salts, including imidazole(HIm)
and its derivatives: Cu(1,2-dimethylIm)2(HSal)2 and Cu(2-methylIm)3Sal (1,2-dimethylIm, 2-
methylIm, 1,2-dimethylimidazole, and 2-methylimidazole) [11]; Cu(HIm)n(Hsal)2, where n
= 2, 5, 6 was obtained owing to the reaction of imidazole with the Cu2(HSal)4 salt [12];
hexakis-(N-methylimidazole) copper(II) salicylate and [Cu(N-methylIm)6](Hsal)2 [13]; and
[CuLHSal] (L is deprotonated 4-phenyltyosemycarbazide) [14]. [Cu(HIm)2(cinn)2(H2O)],
[Cu(HIm)2(paba)2], and [Cu(HIm)2(clba)2] have the cinn− — C9H7O2

−, paba− — C7H6NO2
−,

and clba− — C7H4ClO2
− — anions of cinnamon, para-aminobenzoic, and 2-chlorobenzoic

acids, respectively [15]. [Cu(HIm)6]Cl2 · 4H2O and [Cu(HIm)6]Cl2 · 2H2O have been
synthesized using the hydrothermal method [16].

Both the production of solid mixed-ligand salts (MLSs) and the simultaneous study of
mixed-ligand complexes (MLCs) in a solution based on nitrogen and oxygen ligands are of
particular interest [17–23]. Therefore, the purpose of this study was to develop a method
for synthesizing the mixed-ligand compounds of copper(II) with tartaric and salicylic acid
anions and azoles using previously synthesized slightly soluble tartrate and salicylate of
copper(II). Another purpose of the research was to establish the physicochemical properties
and structure (the mode of coordinating organic ligands using a complexant) of the syn-
thesized compounds, as well as to determine the composition and stability of the biligand
imidazole-tartrate(salicylate) complexes [Cu(HIm)XL] formed in the solution.

2. Materials and Methods

The objects of the research are copper(II) compounds with biologically active oxy-
carboxylate ligands—tartaric and salicylic acids—and those with azoles—imidazole and
2-methylimidazole—in the form of solid salts and complex compounds in a solution. Im-
idazole C3H4N2 has a five-membered cycle with two heteroatoms of nitrogen and has
amphoteric properties.
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The nitrogen N(3) atom with an unshared electron pair is capable of protonation (lgB1 
has values in the range of 7–7.7; B1 is the constant of imidazole protonization) and the 
coordination of metal ions. The compound 2-methylimidazole C4H6N2 forms less stable 
complexes than imidazole because of emerging steric hindrances owing to a substituent 
[24]. 

The nitrogen N(3) atom with an unshared electron pair is capable of protonation (lgB1
has values in the range of 7–7.7; B1 is the constant of imidazole protonization) and the
coordination of metal ions. The compound 2-methylimidazole C4H6N2 forms less stable
complexes than imidazole because of emerging steric hindrances owing to a substituent [24].
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To analyze and study the properties of the synthesized salts to determine the com-
position and stability of the mixed-ligand complexes in the solution, the following were
used: thermal, thermogravimetric, and elemental analyses; pH potentiometry, photometry,
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and spectrophotometry; and IR spectroscopy. The spectra of the solutions were recorded
using the spectrophotometer LEKI SS2107UV. The optical density of the solutions was also
measured using the photocolorimeter KFK–2–UHL 4.2, with an absorbing layer thickness
of l = 10 mm. The pH of the solutions was measured using the pH-meter-673. Its glass
electrode was calibrated using buffer solutions with a pH from 3.56 to 6.86. Thermograms
of the synthesized salts were recorded using the Netzsch STA 449 F1 device under the
following conditions: the crucible material was Al2O3, the heating rate was 10 ◦C per min,
and the atmosphere was air (80 mL/min). The IR spectra of the ligands and mono- and
bi-ligand salts in tablets from KBr were obtained on the spectrometer Agilent Cary 630 FTIR
at a frequency of 400–4000 cm−1. The synthesized salts were analyzed by means of an
automatic elemental CHNS analysis on the analyzer EURO EA 3000 using the microbalance
Sartorius MSE 3.6P-000-DM. The used reagents were labeled as ch.p. or p.a. and were not
additionally recrystallized.

2.1. Synthesis and Solubility of Tartrate and Salicylate Copper(II)

Original monoligand salts of copper(II) were synthesized using aqueous solutions via
the reaction between chloride or the nitrate of metal (CuX2) and tartaric or salicylic acid
(H2L), partially neutralized by sodium hydroxide, with a mole ratio of CuX2:H2L = 1:1

CuX2 + H2L + (1.8-1.9)NaOH→ CuL↓.

The precipitates were released at a pH of 4–5 of the mixture. After being rinsed with
water, they were dried in the air. By heating the salts at 125 and 900 ◦C, the content of water
and the oxide of copper(II), respectively, was determined. In addition, the metal ion content
was found trilonometrically (it satisfactorily coincided with the results of the metal content
in oxide). The elemental analysis confirmed the composition of the monoligand salts.

Table 1 shows the data of the analyses of the original salts and the tartrate and salicylate
of copper(II). The solubility of the monoligand salts in the (H, Na)NO3 solutions with an
ionic strength of I = 0.3 at 25 ◦C was studied.

Table 1. Analysis data of mono- and bi-ligand salts of copper(II) with tartaric and salicylic acids,
imidazole, and 2-methylimidazole.

Compound
N, % C, % H, % CuO, % H2O, %

f* c* f c f c f c f c

CuC4H4O6 · 2H2O – – 19.1 19.38 2.7 3.23 33.1 32.12 14.6 14.54

Cu(C3H4N2)3C4H4O6 · 2H2O 17.9 18.60 34.1 34.52 4.0 4.43 16.6 17.61 8.1 7.97

CuC7H4O3 · H2O – – 37.8 38.59 2.7 2.76 35.9 36.54 8.3 8.27

Cu(C3H4N2)3C7H4O3 21.0 20.80 46.9 47.54 3.9 3.96 21.0 19.69 – –

Cu(C4H6N2)2C7H4O3 17.9 15.40 49.5 49.50 4.6 4.40 20.4 21.87 – –

f *—found; c*—calculated.

Table 2 shows the data on solubility, the calculation of the solubility constants KS of the
tartrate CuC4H4O6 · 2H2O and salicylate CuC7H4O3 · H2O of copper, and the calculation
of the stability constants of the complexes of the [CuL] composition, taking into account the
hydrolysis of ion Cu2+ and the protonization of acid anions. To simultaneously calculate
according to the solubility data the solubility constants KS of the salts composed of 1:1
CuL · nH2O and the stability constants
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Table 5. The data of optical density measurements and calculation of stability constant of the 1 : 1 
[CuSal]0 complex in isomolar solutions of the CuCl2—NaHSal (рН 3.5; Vcum = 6 mL; λ = 750 nm; D∞ = 
0.556; С0 (CuCl2) = С0 (NaHSal) = 2 ∙ 10−2 mole/L; logВ1 = 13.7; logВ2 = 16.53; Kh1 (Cu2+) = 3.1 ∙ 10–8; f = 
1.92 ∙ 1010; ω = 1.007). 

No. 
VM, 
mL 

VL, 
mL D DM ∆D СM, mole/L СL, mole/L αC β1∙1011 logβ1 

1 6.00 0.00 0.213 0.213 0.000 2.00 ∙ 10−2 0.00 – – – 
2 4.00 2.00 0.175 0.142 0.033 1.30 ∙ 10−2 6.70 ∙ 10−3 0.0797 2.57 11.41 
3 3.50 2.50 0.164 0.124 0.040 1.20 ∙ 10−2 8.30 ∙ 10−3 0.0930 2.68 11.43 
4 3.25 2.75 0.155 0.115 0.040 1.08 ∙ 10−2 9.16 ∙ 10−3 0.0907 2.28 11.36 
5 2.75 3.25 0.141 0.098 0.043 9.16 ∙ 10−3 1.18 ∙ 10−2 0.0940 1.83 11.26 

1 of the complexes composed of 1:1 CuL, formed
in the saturated solution, the author program “Solubility” [25] was used. In this program,
the following notations were used: f —ligand protonization function, f = 1 + B1h + B2h2;
Bi—common constants of anion protonization of oxyacids: hydrolysis functionω = 1 + Kh1/h;
Kh1—hydrolysis constant of Cu2+ ion in the first step, h = [H+]. When using the material
balance equations for the metal and ligand (in the saturated solution composed CM = CL)
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and the expression for the constant of heterogeneous equilibrium KS = [Cu][L] (charges are
omitted), the equation for KS, reduced to linearity, can be written as follows:

CCu = [CuL] +
√

KS·
√

fω,

and the stability constant value of the complex is
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1 = [CuL]/KS. According to the data in
Table 2, the values of KS and
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1 4.62 3.82 · 10−4 7.44 5.43 7.20 · 10−3 13.57

2 3.50 5.03 · 10−4 7.52 5.05 7.10 · 10−3 13.68
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In the saturated solutions of copper(II) tartrate, the copper concentration was deter-
mined iodometrically. The concentration of the solution of sodium thiosulfate was specified
in the presence of tartaric acid, which exerts little influence on the results of the iodometrical
determination of copper(II). In the saturated solutions of copper(II) salicylate, the copper
concentration was determined by using the calibration characteristic obtained via the de-
pendence of the optical density of the solutions on the concentration of the synthesized salt
CuSal · H2O (Table 3).

Table 3. Composition of solutions for building the calibrating characteristic of system CuSal–NaNO3

(λ = 750 nm; pH 3.6; I = 0.3; C0 (CuSal · H2O) = 8.84 · 10−3 mole/L; Vcum = 6 mL).

№ VCuSal, mL CCuSal, mole/L D750
Parameters of
Straight Line

1 1 1.59 · 10−3 0.043

a = 0.0229,
b = 11.222,
R2 = 0.993

2 2 3.19 · 10−3 0.060

3 3 4.78 · 10−3 0.073

4 4 6.38 · 10−3 0.091

5 5 7.89 · 10−3 0.112

6 6 9.57 · 10−3 0.133

2.2. Synthesis and Thermogravimetry of Mixed-Ligand Salts of Copper(II)

Mixed-ligand compounds were obtained from the synthesized oxycarboxylates of
copper(II) CuL · nH2O and imidazole and 2-methylimidazole according to the reaction

CuL + xHIm(metIm)→ Cu(HIm)X(metIm)XL↓.

The reaction was carried out in an aqueous solution with a pH of 6.5–8.5, and, sub-
sequently, the precipitation of the mixed-ligand salts from the aqueous solution for the
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imidazole(methylimidazole)-salicylate salt and from the aqueous–etheric solution for the
imidazole tartaric salt was carried out. For this purpose, a weighed portion of the original
mono-ligand salt was placed into a small volume of water (8–10 mL). Then, the calculated
amount of HIm(metIm) was gradually added to the suspension, creating a molar ratio of
CuL:HIm(metIm) equal to 1:1, 1:2, etc. This was carried out until the copper(II) tartrate
dissolved completely or the salt of salicylic acid transformed into a new homogeneous,
brightly colored bilig and salt. The suspension CuSal–Him(metIm) was held at room tem-
perature for one day. For the mixed-ligand salts, the following procedure was conducted:
an elemental analysis; a thermal analysis of the content of water and metal oxide; and a
thermogravimetric analysis quantitatively confirming the content of water, ligands, and
metal oxide in the salts. Table 4 shows the results of the analysis of the thermograms of the
two salts as an example.

Table 4. Analysis of thermograms of copper(II) biligand salts.

№ Nature of Effect
Temperature
Interval, ◦C

Loss of Mass (from init.), % Corresponding
Processf c

Cu(HIm)3Sal

1 Endo-effects 175–340 49.5 50.57 Loss of imidazole
ligand

2 Exo-effects 340–510;
510–900

29.8;
21.0

33.70;
19.69

Destruction of
salicylate ion and
oxide formation

Cu(metIm)2Sal

1 Endo-effects 170–340 43.3 45.09 Loss of
methylimidazole

2 Exo-effects 340–510;
510–900

33.6;
23.3

37.43;
21.87

Destruction of
salicylate ion and
oxide formation

The formulas of the synthesized biligand salts were calculated using the results of the
analyses (Table 1). The data on the mass content of the copper(II) oxide and water in the
salts were averaged using the results of the thermal and thermogravimetric analyses. Since
the removal of water, the degradation of the oxyacid anion, azole, and the formation of the
corresponding copper(II) oxide occur in different temperature ranges in the synthesized
salts, the data of the thermogravimetric analysis of the biligand salts confirm the salt
compositions established using other methods and allow us to suggest the mechanism of
their thermal decomposition (Table 4).

So, for example, the thermal decomposition of the imidazolesalicylate of copper(II)
Cu(HIm)3Sal in the air proceeds in several stages, which are quantitatively confirmed by
the change in the salt mass (f —found; c—calculated). The endothermic process of imidazole
loss proceeded at 175–340 ◦C. Moreover, immediately, with the exothermal effect within
340–900 ◦C, the complete combustion of the salicylate ion and the formation of metal oxide
in the air took place. The methylimidazolesalicylate of copper(II) decomposed similarly
to the thermal decomposition of the imidazolesalicylate of copper(II). Thermogravimetric
studies of synthesized compounds are important for understanding their thermal stability,
which, along with other properties, is used by scientists searching for new materials.

2.3. Determination of Composition and Stability of Mono- and Bi-ligand Complexes in Solution

The stability constants of the CuL complexes (L2−—anion of oxyacid), required for
the calculation of the stability constants of MLC, are taken from the literature or calculated
based on our data of solubility methods and isomolar series. The composition of the
monoligand CuL complexes, formed in the solution, was determined by using the method
of isomolar series. According to the data of the isomolar series of the CuCl2—NaHSal
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system (Figure 1), whose diffused maximum points to the presence of two complexes in
the solution, the stability constant of the [CuSal] complex was calculated.
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Figure 1. Isomolar series of system CuCl2—NaHSal: (C0 (CuCl2) = C0 (NaHSal) = 2 · 10−2 mole/L,
Vcum = 6 mL, pH 3.5, I = 0.3, λef = 750 nm, l = 10 mm).

To calculate the stability constant of the [CuSal] complex according to the isomolar
series data, the experimental data with a ratio of CL:CM, being in the 0.5–1.9 interval,
were used. The [CuSal]0 complex dominance in this range was confirmed by the perma-
nence of the stability constant of the complex (Table 5). According to the isomolar series
data (Table 5), the stability constant of the [CuSal] complex was calculated by using the
following formula:

β1 = ([CuSal])/([Cu2+] × [Sal2−]) = (CCωf )/{(CCu − CC) × (CSal − CC)},

where CC, ω, and f are the complex concentration in the equilibrium solution, the Cu2+

cation hydrolysis functions, and the protonization of the salicylic acid anion, respectively:
CC = {(D − DCu)CCu}/(D∞ − DCu) when CCu < CSal; [Sal2−] = (CSal − CC)/f, [Cu2+] = (CCu
− CC)/ω; αC = CC/CM (CL) complex yield. D∞ was assessed in the solutions with a molar
ratio of Cu2+:L2− = 1:1 and a pH value varying within 3–6.

According to the data of the saturation curves of the Cu2+–L2−–HIm systems
(Figures 2 and 3), the stability constants β111 and β121 of the mixed-ligand complexes of
the composition [Cu(HIm)1,2L] were calculated. The saturation curve (Figure 2) is wavy,
having a plateau, which is evidence of the stepwise nature of complexing. The presence of
the plateau in Figure 2 (the ratio of CHim:CCu is in the interval of ≈(0.7–1.2)) indicates that,
in this area, the complex composition 1:1:1 ([CuHImTar]) dominates, which is confirmed by
the constancy of the value of logβ111 (Table 6).

The absence of points in Figure 3 up to the CHIm/CCu ratio ≈1.7 is associated with the
precipitation of low-soluble copper(II) salicylate, which is then dissolved by increasing the
imidazole concentration. The stability constant β121 of the complex with a composition of
1:2:1 ([Cu(HIm)2Sal]) was calculated for this system.
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Table 5. The data of optical density measurements and calculation of stability constant of
the 1:1 [CuSal]0 complex in isomolar solutions of the CuCl2—NaHSal (pH 3.5; Vcum = 6 mL;
λ = 750 nm; D∞ = 0.556; C0 (CuCl2) = C0 (NaHSal) = 2 · 10−2 mole/L; logB1 = 13.7; logB2 = 16.53;
Kh1 (Cu2+) = 3.1 · 10–8; f = 1.92 · 1010;ω = 1.007).

No. VM,
mL

VL,
mL D DM ∆D CM,

mole/L
CL,

mole/L αC β1·1011 logβ1

1 6.00 0.00 0.213 0.213 0.000 2.00 · 10−2 0.00 – – –

2 4.00 2.00 0.175 0.142 0.033 1.30 · 10−2 6.70 · 10−3 0.0797 2.57 11.41

3 3.50 2.50 0.164 0.124 0.040 1.20 · 10−2 8.30 · 10−3 0.0930 2.68 11.43

4 3.25 2.75 0.155 0.115 0.040 1.08 · 10−2 9.16 · 10−3 0.0907 2.28 11.36

5 2.75 3.25 0.141 0.098 0.043 9.16 · 10−3 1.18 · 10−2 0.0940 1.83 11.26

6 2.50 3.50 0.130 0.089 0.041 8.30 · 10−3 1.20 · 10−2 0.0878 1.65 11.22

7 2.25 3.75 0.121 0.080 0.041 7.50 · 10−3 1.25 · 10−2 0.0861 1.55 11.19

8 2.00 4.00 0.112 0.071 0.042 6.70 · 10−3 1.30 · 10−2 0.0866 1.49 11.17

logβ1 = 11.29 ± 0.10.
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Inorganics 2023, 11, 232 8 of 14

Table 6. Calculation results of the stability constant lgβ111 in the [CuHImTar]0 complex accord-
ing to data of the saturation curve of CuCl2–H2Tar–xHIm (λef = 670 nm, pH 6.8; f Im = 8.74; Kh1

(Cu2+) = 3.1 · 10−8; logβCuTart = 3.03; I = 0.3; Vcum = 6 mL; C0
HIm = 0.075 mole/L; CCu = CTar

= 0.0125 mole/L; ε0 = DCuTar/CCu = 0.042/0.0125 = 3.36; D∞ = 0.480; ε∞ = 38.4; CC = α∞CCu (CL)).

No. D670 εi α∞i VHIm, mL CHIm, mole/L CC, mole/L logβ111

1 0.369 29.52 0.747 0.2 2.500 · 10−3 1.868 · 10−3 7.69

2 0.381 30.48 0.774 0.4 5.000 · 10−3 3.870 · 10−3 7.50

3 0.389 31.12 0.792 0.6 7.500 · 10−3 5.942 · 10−3 7.41

4 0.445 35.6 0.920 0.8 1.000 · 10−2 9.200 · 10−3 7.18

5 0.450 36.00 0.932 1.2 1.500 · 10−2 1.164 · 10−2 7.63

6 0.460 36.80 0.954 1.4 1.750 · 10−2 1.193 · 10−2 7.59

7 0.462 36.96 0.959 1.6 2.000 · 10−2 1.199 · 10−2 7.49

log β111 = 7.49 ± 0.16.

In Tables 6 and 7, the data for calculating the stability constants β111 of the [CuHImTar]
complex and β121 of the [Cu(HIm)2Sal] complex, respectively, are presented. The stability
constants of MLC were calculated according to the procedure described in [26]. For
equilibrium, for example, with the participation of the two complexes Cu(HIm)2L and CuL
(L2− − Sal2−) absorbing with the same wavelength,

CuL + 2HIm K↔ Cu(HIm)2L

(charges are omitted for convenience), the equilibrium constant K connected with
the stability constants β1 of the monoligand CuL complex and β121 of the mixed-ligand
complex Cu(HIm)2L by the ratio of β121 = K · β1. When using photometric data (Table 7)
for each point of the saturation curve, we have

β121 = β1(α∞f 2
HIm)/((1 − α∞) × (CHIm − 2α∞CCu)2),

where α∞ is the maximal yield of the Cu(Him)2L complex; α∞ = (εi − ε0)/(ε∞ − ε0);
ε∞ = D∞/CCu, εi = Di/CCu; ε is the molar absorption factor of the corresponding particles:
CuL (ε0), Cu(Him)2L (ε∞), and CuL + Cu(Him)2L (εi); and f HIm = 1 + B1[H+] (logB1 = 7.69,
according to the data in [27]). The stability constant of the salicylate complex [CuSal]
(lgβ1 = 11.27) was borrowed from this work (the solubility method). The stability constant
of the tartrate complex of copper(II) [CuTar] (logβ1 = 3.03) was taken from [9].

Table 7. Calculation results of stability constant lgβ121 in the [Cu(HIm)2Sal]0 complex according to
data of the saturation curve of CuCl2–NaHSal–xHIm (pH = 6.8; I = 0.3; CCu = CSal = 1 · 10−2 mole/L;
Vcum = 6 mL; C0 (HIm) = 6 · 10−2 mole/L; ε0 = 16.8; ε∞ = 49.0; f HIm = 8.77; βCuSal = 1.86 · 1011;
D∞ = 0.490; CC = α∞CCu; Kh1 (Cu2+) = 3.1 · 10−8).

No. D670 εi α∞i VHIm, mL CHIm, mole/L CC, mole/L logβ121

1 0.450 45.0 0.876 2.0 2.00 · 10−2 8.76 · 10−3 19.22

2 0.451 45.1 0.879 2.1 2.10 · 10−2 8.79 · 10−3 18.96

3 0.480 48.0 0.969 2.8 2.80 · 10−2 9.70 · 10−3 18.79

4 0.486 48.6 0.986 3.4 3.40 · 10−2 9.86 · 10−3 18.71

5 0.483 48.3 0.978 2.6 2.60 · 10−2 9.79 · 10−3 19.10

6 0.483 48.3 0.978 3.0 3.00 · 10−2 9.79 · 10−3 18.78

logβ121 = 18.94 ± 0.23.
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Electronic absorption spectra in the visible region (Figures 4 and 5) were recorded
for the aqueous systems Cu2+–H2O, Cu2+–L2−, Cu2+–HIm, and Cu2+–L2−–(1–2)HIm
(L2− is tartrate and salicylate anions).
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Figure 5. Electronic absorption spectra of systems: 1—CuCl2–H2O (CCu = 0.02 mole/L; pH 4.00);
2—CuCl2–Na2Sal (CCu = CSal = 0.02 mole/L; pH 4.95); 3—CuCl2–HIm (CCu = 0.02 mole/L;
CHim = 0.04 mole/L; pH 5.95); 4—CuCl2–Na2Sal–HIm (CCu = CSal = 0.02 mole/L; CHIm = 0.04 mole/L;
pH 5.33).

3. Discussion

Synthesized original salts of copper(II) CuTar · 2H2O and CuSal · H2O represent fine
crystalline substances slightly soluble in water (determined by the authors for these salts
under ionic strengths of 0.3 logKS = −7.44 and logKS = −13.61, respectively). Mixed-ligand
salts, containing the oxycarboxylic acid anion and a neutral molecule of azole as ligands,
were synthesized using the slightly soluble tartrate and salicylate of copper(II) and azoles,
with the pH of the aqueous solution equal to 6.5–8.5. Figure 6 shows a distribution diagram
of the neutral imidazole HIm molecule (the mentioned hydrogen atom belongs to the
pyrrole nitrogen atom N(1), pKa = 14.5) and the protonated H2Im+ form [28]. The neutral
imidazole HIm molecule (curve 1) has a wide area of dominance in the pH range of 5.5–13.0.
Therefore, within these pH limits, the pyridine nitrogen N(3) atom of the neutral HIm
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molecule is assumed to participate in the reactions of the formation of metal complexes,
since it contains an unshared electron pair on the sp2-hybrid orbital of the nitrogen atom.
This is confirmed by the study of the IR spectra of MLS. The neutral imidazole molecule
coordination by a copper ion is also possible during a competitive reaction:

H2lm+ + Mn+ ↔MHlmn+ + H+
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The synthesis of mixed-ligand salts was performed at different CuL:HIm((metIm)
ratios. Table 1 shows that, under the stated synthesis conditions, tartrate and copper(II)
salicylate coordinate three imidazole molecules and two 2-methylimidazole molecules.

To determine the functional groups participating in complex formation with copper(II)
ions, the infrared spectra of the ligands and mono- and bi-ligand salts were used. The
IR spectra of tartaric and salicylic acids are characterized by narrow intensive absorption
bands of the carbonyl group C=O at 1711.3 and 1654.8 cm−1, respectively. The spectra of
the mono- and bi-ligand salts do not have such bands. However, they contain intense bands
of asymmetric and symmetric valence vibrations of the ionized carboxyl group COO−

involved in coordination with the metal cation. They were 1610.5 and 1322.5 cm−1 for
CuTar · 2H2O; 1588.8 and 1327.2 cm−1 for Cu(HIm)3Tar · 2H2O; 1622.5 and 1386.4 cm−1

for CuSal · H2O; 1628.6 and 1384.4 cm−1 for Cu(HIm)3Sal; and 1600.6 and 1371.2 cm−1

for Cu(metIm)2Sal. This confirmed the connection in the salts of the copper ion with
the ionized carboxyl groups of tartaric and salicylic acids. The absorption band, corre-
sponding to the deformation vibrations of the salicylic acid oxygroup at 1480.9 cm−1 in
the spectrum of copper(II) salicylate, shifted to 1448.4 cm−1, and in the biligand salts, it
shifted to 1458 cm−1 (imidazolesalicylate) and 1445.2 cm−1 (methylimidazolesalicylate).
This enabled the conclusions that the salicylic acid oxygroup participates in connection
with the copper(II) cation in mono- and bi-ligand salts and that salicylic acid in synthesized
salts behaves as bicarboxylic acid.

A shift of the intensive bands of the deformation vibrations and out-of-plane vibrations
of the imidazole ring (657.9, 1053.9 cm−1) in the IR spectrum of the biligand salts (654
and 1064 cm−1 in imidazoletartrate; 650 and 1069 cm−1 in imidazolesalicylate) was a
confirmation of the imidazole coordination in the internal sphere of the complex. The
absence of the absorption bands of the valence vibrations of the bonds C=C and C=N
of imidazole (1829.0 and 1770.6 cm−1) in the IR spectra of the biligand salts indicated a
connection between a Cu2+ ion and the N(3) atom of imidazole.

Table 8 shows that the stability constant value of the monoligand complex [CuSal]
(logβ1 = 11.27; logβ1 = 11.29), which we determined using two methods, consistently
conformed satisfactorily to the value offered by the literature. The agreement of the logβ1
values for the [CuTar] complex was worse, owing to the solubility method having a lower
accuracy than other methods.
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Table 8. Results of determining stability constants of mono- and bi-ligand complexes of copper(II)
with anions of tartaric and salicylic acids and imidazole in the solution.

Composition of
Complex

Present Work
Source, Value Logβ1

Determination Method Logβ1, Logβ1i1

[CuTar] Solubility 3.74 (s2 = 2.68 · 10−3) [9], 3.03; [10], 3.1; [8], 2.7

[CuSal] Solubility;
isomolar series

11.27(s2 = 1.77 · 10−3);
11.29 ± 0.10

[10], 10.6

[CuHImTar] Saturation curve 7.49 ± 0.16 –

[Cu(HIm)2Sal] Saturation curve 18.94 ± 0.23 –

The saturation curves of the ternary systems Cu2+–Him–L2− (Figures 2 and 3) showed
the formation of complexes of compositions 1:1:1 (CuHImTar) and 1:2:1 (Cu(Him)2Sal) in
the solution. The obtained stability constant of MLC of copper(II) with tartaric acid and
imidazole (Table 8) was used to construct a diagram of the yield of particles from pH in the
studied system at a molar ratio of components of 1:1:1 (CCu = CTar = CHIm = 0.0125 mole/L;
pH interval of 0–9). The calculation of the equilibrium composition of the solution and the
construction of the diagram (Figure 7) were carried out using the HySS2009 program [29]
taking into account Equilibria (1)–(10) and the corresponding equilibrium constants:

Equilibrium Equilibrium Constant Logarithm

Tar2− + H+ ↔ HTar− (1), lgB1T = 3.95

Tar2− + 2H+ ↔ H2Tar (2), lgB2T = 6.76

HIm + H+ ↔ H2Im+ (3), lgB1I = 7.69

Cu2+ + Tar2− ↔ CuTar (4), lg
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No. 
VM, 
mL 

VL, 
mL D DM ∆D СM, mole/L СL, mole/L αC β1∙1011 logβ1 

1 6.00 0.00 0.213 0.213 0.000 2.00 ∙ 10−2 0.00 – – – 
2 4.00 2.00 0.175 0.142 0.033 1.30 ∙ 10−2 6.70 ∙ 10−3 0.0797 2.57 11.41 
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1T = 3.10 [10]

Cu2+ + 2Tar2−↔ CuTar2
2− (5), lg
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2T = 5.11 [30]

Cu2+ + HIm↔ CuHIm2+ (6), lg
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1I = 4.33 [10]

Cu2+ + 2HIm↔ Cu(HIm)2
2+ (7), lg
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2I = 7.57 [18]

Cu2+ + Tar2− + HIm↔ CuTarHIm (8), lg
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No. 
VM, 
mL 

VL, 
mL D DM ∆D СM, mole/L СL, mole/L αC β1∙1011 logβ1 

1 6.00 0.00 0.213 0.213 0.000 2.00 ∙ 10−2 0.00 – – – 
2 4.00 2.00 0.175 0.142 0.033 1.30 ∙ 10−2 6.70 ∙ 10−3 0.0797 2.57 11.41 
3 3.50 2.50 0.164 0.124 0.040 1.20 ∙ 10−2 8.30 ∙ 10−3 0.0930 2.68 11.43 
4 3.25 2.75 0.155 0.115 0.040 1.08 ∙ 10−2 9.16 ∙ 10−3 0.0907 2.28 11.36 
5 2.75 3.25 0.141 0.098 0.043 9.16 ∙ 10−3 1.18 ∙ 10−2 0.0940 1.83 11.26 

111 = 7.49

Cu2+ + H2O↔ CuOH+ + H+ (9), lgKh1 = −7.53

H2O↔ H+ + OH− (10), lgKW = −13.8

Figure 7 shows that the mixed-ligand CuHImTar particles turn out to be the dominant
forms in a wide pH range (curve 4). The compatibility in the inner sphere of the MLC of
the copper(II) of the ligands, containing donor nitrogen and oxygen atoms, provides a high
yield of MLC (more than 60%).

The results of [18,19] and the present research (Table 8) show that the attachment of
one molecule of imidazole to the copper ion increases the stability constant logarithm of the
complex ion by approximately 3.5–4 units. The authors in [31] estimate the compatibility of
different ligands (L, A) in the inner sphere of the complex with a 1:1:1 composition by using
the value of the kS co-proportioning constant, which is related to the common stability con-
stants of the complexes by the ratio of lgkS = lgβ(MLA) − 1

2 (lgβ(ML2) + lgβ(MA2)). When
the ligands are compatible, kS > 1, and the MLC stability constant is greater than the arith-
metic mean among the stability constants of the monoligand complexes. The ligands can be
shown to be compatible in the CuHImTar complex since lgkS = 7.49 − (0.5 · 7.57 + 0.5 · 5.11)
= 1.15 and kS > 1 (lgβ(Cu(HIm)2) = 7.57 [18], lgβ(CuTar2) = 5.11 [30]), and lgβ(CuHImTar)
> 1

2 (lgβ(Cu(HIm)2) + lgβ(CuTar2)), 7.49 > 6.34.
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The electronic absorption spectra of the systems (Figures 4 and 5) confirm the formation
of MLC in the solution. The large value of optical density D in the system with the two
ligands CuCl2–H2L–HIm (Figures 4 and 5, curve 4) as compared to the systems CuCl2–HIm
and CuCl2–L is evidence of the formation of new complexes. This was also confirmed
by the shifting of the absorption maximums of the systems with complexes, compared to
the hydrated copper ion, to the short-wave region. The substitution of water molecules
in the coordination sphere of the Cu2+ ion by more firmly bound ligands (the best donors
of electronic pairs) increases the difference in the energies of the split d-sublevels of the
complex former. Its d-d-band of absorption shifts to the side of shorter wavelengths (the
hypsochromic effect).

The formation of mixed-ligand solid salts and complexes in the solution is related to
the affinity of the Cu2+ (d9) ion to both the donor nitrogen atoms and the oxygen atoms of
ligands — imidazole and the anions of oxycarboxylic acids. The obtained biligand salts
of oxycarboxylic acids, imidazole, and 2-methylimidazole hold promise when used as
substances containing a metal microelement and bioactive ligands.

4. Conclusions

A method for the synthesis of new mixed-ligand copper(II) compounds of the composi-
tion Cu(HIm)x(metIm)xTar(Sal) from low-soluble copper(II) oxycarboxylates and azoles was
developed. The composition of these compounds was confirmed using chemical, thermal, and
thermogravimetric methods. It is planned to study the various biological properties of the
obtained compounds in comparison with those of the initial components—copper(II) salicylate
(antiseptic) and azoles (antimycotics).

An analysis of the electronic absorption spectra of the systems confirmed the formation
of MLC in an aqueous solution, and an analysis of the IR spectra of the initial ligands and
selected mixed-ligand copper(II) compounds allowed us to conclude the structure of the
latter: the complexation with copper(II) ions involves the nitrogen atom N(3) of imidazole,
the oxygen atoms of the carboxyl groups of tartaric acid, and the oxygen atoms of the
carboxyl and hydroxyl groups of salicylic acid. The formation of individual mixed-ligand
compounds and complexes in a solution with azole molecules and oxycarboxylic acid
anions is due to the affinity of the Cu2+ ion (d9) for donor nitrogen and oxygen atoms.

The solubility constants of copper(II) tartrate and salicylate and the stability constants
of the mono- and bi-ligand complexes ([CuTar(Sal)], [CuHImTar], and [Cu(HIm)2Sal])
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determined in this work complete the bank of thermodynamic values for copper(II) salts
and complexes.
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