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Abstract: Lanthanide coordination compounds contining multiple lanthanides are the most promising
candidate materials for luminescent thermometry. Sensing elevated temperatures requires highly
stable complexes and matrices, such as those of thermally stable polymers. However, most high-
temperature polymers are not optically inert, and this can affect their thermometric properties,
including decreasing their intensity and sensitivity. In the present paper, the proper selection of
the combination of a matrix and two emitters allowed us to obtain a highly sensitive and highly
emissive luminescent thermometry material, 1{5[Tb(Bz)3Phen]2+1[Eu(Bz)3Phen]2}:4PI4050, based on
terbium and europium complexes in poly(ethylene glycol) diacrylate (PI4050), which is suitable for
the detection of temperatures up to 200 ◦C.

Keywords: luminescent thermometry; lanthanide complexes; aromatic carboxylates; terbium benzoate;
europium benzoate; PI4050; PI2050; PI4072

1. Introduction

Luminescence thermometry combines high accuracy with the versatility of the appli-
cation [1–8], making it the most promising solution for measuring the temperature of small,
fast-moving, sensitive, or hard-to-reach objects. Luminescence thermometry in the high-
temperature range is the most ambitious application [9], and usually requires temperature
mapping. High-temperature luminescent thermometers are particularly important, as they
are essential tools for non-contact temperature measurement in high-temperature environ-
ments, where traditional contact-based temperature measurement techniques may not be
feasible or safe. They are typically made using a combination of luminescent materials, host
materials, and optical fibers or other components that can withstand high temperatures
and maintain good performance over time [10,11].

Coordination compounds of terbium and europium, which combine narrow emission
bands with a constant position and high luminescence intensity, are the most promising
compounds [12–16]; combined within one material, they can enable the use of the lumines-
cence intensity ratio (LIR) as a temperature-dependent luminescence parameter, meaning
these materials are not subjected to additional calibrations.

Due to their lower thermal stability, lanthanide coordination compounds are not
usually used for luminescent thermometry at elevated temperatures, except in several of
our recent works [17–20]. We showed that the mixture of complexes demonstrates higher
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sensitivity than one bimetallic complex, and polystyrene was used as a matrix for thin film
deposition [18].

At the same time, despite its high thermal stability and high melting point, polystyrene
softens at temperatures over 160 ◦C, hampering the high-temperature application of com-
posite materials based on it. Another problem that we faced is that the thermal stability
of the compound, when subjected to simultaneous UV exposure, significantly decreases.
So, in [20], the obtained material only demonstrated reproducibility up to 120 ◦C, while
its thermal stability, according to TGA, exceeded 400 ◦C. Therefore, the goal of the present
work was to select a better polymer host, as well as to study the reproducibility of the
obtained systems.

As the objects of study, a mixture of terbium and europium complexes [Tb(Bz)3Phen]2
and [Eu(Bz)3Phen]2 (HBz = benzoic acid, Phen = o-phenanthroline) [18,21], doped into one
of the polymers from Figure 1, was selected. These polyimide matrices were selected for
their well-known high thermal stability [22].
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Figure 1. Formulae of the organic compounds used in this work. Ligands: (a) benzoic acid,
(b) o-phenanthroline; polymers: (c) PI4050, (d) PI2050, (e) PI4072; photoinitiator: (f) Irgacure 369
(2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1).

2. Results and Discussion

Despite lanthanide aromatic carboxylates belonging to the most stable lanthanide-
based coordination compounds [23], simultaneous exposure to thermal treatment and UV
light causes their decomposition. Thus, it was very important not to overheat the system
during our experiment, and to ensure high reproducibility, a particular measurement setup
was built (Figure 2).
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2.1. Measurement Setup Construction

The temperature was set using a PTC ceramic heater with a 230 ◦C cut-off temperature
to prevent the sample from overheating, which may cause decomposition and degradation.
An MH1301 B controller with a Pt100 resistance thermometer was used to perform tem-
perature control. The heater was placed in a custom dark box, equipped with an optifiber
light guide. The optifiber was connected to the Maya 2000 Pro spectrometer, which was
connected to a PC, without a collimator or light filters. An LED with a 365 nm wavelength
(100 mW) was used as a luminescence excitation source.

2.2. Synthesis and Characterization

[Ln(Bz)3Phen]2 (Ln = Tb, Eu) was obtained and characterized as in [18,24]. It was
isostructural to the previously published dimeric terbium complex [Tb(Bz)3Phen]2 (CCDC
identifier SAJGEQ), containing two terbium atoms, bound with the two µ2:κ2–κ1 and two
µ2:κ1–κ1 benzoate ligands, while two other benzoate ligands and two phenanthroline
ligands adopted a κ2 coordination mode. Composite materials were obtained by adding
the powders of the coordination compounds, in mass ratios of [Ln(Bz)3Phen]2:PI = 1:4
and [Tb(Bz)3Phen]2:1[Eu(Bz)3Phen]2 = 5:1 (or 0.83:0.17 with respect to the matrix), into
the photo-cured resin, followed by the addition of the photoinitiator (less than 5% of the
mass of the matrix). Photopolymerization was carried out via exposure to light, with a
wavelength of 365 nm, for 10 min, and between two cover glasses to exclude air access. The
obtained sample assignment is given in Table 1.

Table 1. Composite assignment.

LTPI1 1{5[Tb(Bz)3Phen]2+1[Eu(Bz)3Phen]2}:4PI4050
LTPI2 1{5[Tb(Bz)3Phen]2+1[Eu(Bz)3Phen]2}:4PI2050
LTPI3 1{5[Tb(Bz)3Phen]2+1[Eu(Bz)3Phen]2}:4PI4072

The FTIR spectra of PI4050, PI2050, and PI4072, as well as LTPI1-3 (Figure 3), demon-
strate the absence of coordinated solvent molecules, which is significant for elevated
temperature luminescence thermometry; if present, solvent molecules could be irreversibly
removed upon heating, affecting the luminescence properties. Moreover, the spectra of
the composite materials are superpositions of the complex and polymer spectra with a
predominance of the bands of polymers, which is obvious, given its mass fraction. These
data confirm the absence of any chemical reaction between components of the composites.
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Figure 3. Infrared spectroscopy data.

The obtained coordination compounds are thermally stable up to 250 ◦C (Figure S2),
the matrices are stable up to 200 (PI2050 and PI4070) and 250 ◦C (PI4050), and the obtained
composites are thermally stable up to at least 200 ◦C (Figures 4, S4 and S5), which satisfies
the requirements of elevated temperature thermometry.
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Figure 4. Thermal analysis data (10 ◦C/min) for (a) LTPI1, (b) LTPI2, and (c) LTPI3.

The morphologies of all the samples were studied, and are presented in Figure 5 and
ESI (Figure S6). These data demonstrate the acquisition of smooth samples. The SEM
photographs show powder grains in the complexes, since the complexes are insoluble in
the matrix and do not react with it. In this case, the powders and matrices are thoroughly
mixed, which ensures a uniform distribution of the powder complexes in the matrix.
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2.3. Luminescence
2.3.1. Room Temperature Data

Before further investigation, [Tb(Bz)3Phen]2 and [Eu(Bz)3Phen]2 was doped separately
into each of the polymers to ensure that their luminescence was not quenched by the
selected materials (Figure 6). This was followed by the acquisition of the LTPI1-3 composite,
which also demonstrate intense luminescence, and consist of typical narrow-band emission
of both terbium (centered at 545 nm) and europium (centered at 613 nm). The excitation
spectra (see ESI Figure S7), recorded at the emission of both ions, consist of a broad
band of through-ligand excitation. In contrast, the spectra, recorded upon the emission
of europium, also contains a narrow band, centered at 390 nm, corresponding to direct
europium excitation (7F0,1→5L6).
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Figure 6. Photoluminescence of [Tb(Bz)3Phen]2 and [Eu(Bz)3Phen]2, doped into PI4050.

The luminescence spectra of LTPI1-3 composite materials (Figure 7) contain high-
intensity bands of both terbium and europium ions [25,26]. In this case, we chose a ratio
of terbium and europium complexes of [Tb(Bz)3Phen]2:[Eu(Bz)3Phen]2 = 5:1, wherein the
bands of terbium (5D4-7F5) and europium (5D0-7F2) were comparable in intensity. This was
necessary, since the calculation of temperature sensitivity in such systems is carried out
according to LIR = I(at 543 nm)

I(at 613 nm)
.
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The lifetimes of the excited states (τ) were slightly affected by the doping and de-
pended on the selected polymer (Table 2), as well as the luminescence quantum yields
(PLQYs). The lowest value of 7% is observed for LTPI2, while the remaining two compos-
ites demonstrate rather high quantum yields of 22% and 27%. Based on these data, LTPI1
was selected to study luminescent thermometry.
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Table 2. Luminescent data for [Tb(Bz)3Phen]2, [Eu(Bz)3Phen]2, LTPI1, LTPI2, and LTPI3.

Sample PLQY, ±5% τ(Tb), ±0.01 ms τ(Eu), ±0.1 ms

[Tb(Bz)3Phen]2 14 0.13 -

[Eu(Bz)3Phen]2 99 - 1.24

LTPI1 22 0.20 1.25

LTPI2 7 0.20 1.51

LTPI3 27 0.22 1.70

2.3.2. Luminescent Thermometry

Temperature-dependent luminescence was initially studied in the whole range using the
constructed setup (20–220 ◦C). It was ensured that the emission of both metals was present
across this whole range. No softening of the materials was observed during measurements.
Additionally, to exclude any phase transition processes, temperature-dependent PXRD data
were recorded for [Eu(Bz)3Phen]2 powder in the range of 30–120 ◦C (Figure 8b and ESI). A
special accessory was constructed to enable temperature-dependent PXRD measurements
(scheme in Figure 8a). These data reveal that the crystal structure is preserved, while the cell
volume obviously increases upon heating (see ESI for indexing details).
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Figure 8. (a) Scheme of the setup for PXDR measurement with heating and (b) PXDR data for
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(λex = 365 nm); inset shows heating profile: violet color corresponds to heating, while orange
corresponds to cooling. (d,e) LIR in the temperature ranges of (d) 20–220 ◦C and (e) 20–180 ◦C.

However, according to our study of reproducibility, the sample was subjected to
degradation during the measurement, even though it was thermally stable at this temper-
ature range according to the TGA data (Figure 8c). Such a result can be associated with
simultaneous exposure to UV radiation when the sample was heated, or longer holding
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of the material at a high temperature when measuring the temperature dependencies of
the luminescence spectra. To select the temperature range at which the samples worked
reproducibly, a series of heating and cooling experiments was performed at various tem-
peratures (160–220 ◦C) (see ESI). This established that luminescence intensity was restored
completely after cooling only if the sample was heated below 180 ◦C. So, according to this,
LTPI1 can be used as a thermometer in the temperature range of 20–180 ◦C.

To determine the uncertainty of the LIR determination, the standard deviation of
the intensities was calculated at each temperature, and the standard deviation of the LIR
value was calculated from these data. For this purpose, the luminescence spectra were
recorded several times at each temperature up to 220 ◦C (see ESI). These data also support
the conclusion that degradation starts upon UV irradiation with simultaneous heating over
180 ◦C. Indeed, up to this temperature, the luminescence intensity is preserved, while at
190–220 ◦C, the intensity decreases with every measurement. Additionally, the obtained
data demonstrate that the observed “hysteresis” is within the experimental error.

Sensitivity represents the accuracy of temperature measurement at a given temperature:

Sr =
1

LIR
·dLIR

dT
(1)

It was found to be in the range of 20–180 ◦C, where it reached 0.85%/◦C (Figure 9).

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 10 
 

 

range according to the TGA data (Figure 8c). Such a result can be associated with simul-
taneous exposure to UV radiation when the sample was heated, or longer holding of the 
material at a high temperature when measuring the temperature dependencies of the lu-
minescence spectra. To select the temperature range at which the samples worked repro-
ducibly, a series of heating and cooling experiments was performed at various tempera-
tures (160–220 °C) (see ESI). This established that luminescence intensity was restored 
completely after cooling only if the sample was heated below 180 °C. So, according to this, 
LTPI1 can be used as a thermometer in the temperature range of 20–180 °C. 

To determine the uncertainty of the LIR determination, the standard deviation of the 
intensities was calculated at each temperature, and the standard deviation of the LIR value 
was calculated from these data. For this purpose, the luminescence spectra were recorded 
several times at each temperature up to 220 °C (see ESI). These data also support the con-
clusion that degradation starts upon UV irradiation with simultaneous heating over 180 
°C. Indeed, up to this temperature, the luminescence intensity is preserved, while at 190–
220 °C, the intensity decreases with every measurement. Additionally, the obtained data 
demonstrate that the observed “hysteresis” is within the experimental error.  

Sensitivity represents the accuracy of temperature measurement at a given tempera-
ture:  𝑆 = 1𝐿𝐼𝑅 · 𝑑𝐿𝐼𝑅𝑑𝑇   (1)

It was found to be in the range of 20–180 °C, where it reached 0.85%/°C (Figure 9). 

0 50 100 150 200

0,8

1,2

1,6

2,0

LI
R

Temperature, oC

0,0

0,3

0,6

0,9
Sr

, %
/o C

 
Figure 9. Luminescence intensity temperature dependencies and relative sensitivity (Sr) of LTPI1. 

3. Experimental Section 
3.1. Materials and Methods 

All solvents and chemicals (terbium nitrate pentahydrate (Tb(NO3)3·6H2O, 99.9%), 
europium chloride hexahydrate (EuCl3·6H2O, >99%), 1,10-phenanthroline (Phen, 99%), 
benzoic acid (H(Bz)), 99.5%), poly(ethylene glycol) diacrylate (PI4050, QL200), poly(eth-
ylene glycol) dimethacrylate (PI2050, QL200), trimethylolpropane triacrylate (PI4072, 
QL200), 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (Irgacure 369, 
QL100) were purchased from commercial sources. Thermal analysis was carried out using 
an STA 449 F1 Jupiter thermal analyzer (NETZSCH, Selb, Germany) in a temperature 
range of 40–1000 °C in air, and at a heating rate of 10° min−1. The evolved gases were 
simultaneously monitored during the TA experiment using a coupled QMS 403 Aëolos 
Quadro quadrupole mass spectrometer (NETZSCH, Selb, Germany). The mass spectra 
were registered for the species with the following m/z values: 18 (corresponding to H2O), 
44 (corresponding to CO2), 45 (corresponding to C2H5OH), and 31 (corresponding to 
CH3O). The IR spectra were recorded using a Thermo Scientific™ Nicolet™ iS50 FTIR 
Spectrometer with powders via ATR (Waltham, Massachusetts, USA). Powder X-ray dif-
fraction (PXRD) was performed using Bruker D8 Advance (λ(Cu-Kα) = 1.5418 Å; Ni filter) 
with a step size of 0.020°. The patterns were indexed via an SVD index [27] using the 
TOPAS 4.2 software [28]. Then, the powder patterns were refined using the Pawley 

Figure 9. Luminescence intensity temperature dependencies and relative sensitivity (Sr) of LTPI1.

3. Experimental Section
3.1. Materials and Methods

All solvents and chemicals (terbium nitrate pentahydrate (Tb(NO3)3·6H2O, 99.9%),
europium chloride hexahydrate (EuCl3·6H2O, >99%), 1,10-phenanthroline (Phen, 99%), ben-
zoic acid (H(Bz)), 99.5%), poly(ethylene glycol) diacrylate (PI4050, QL200), poly(ethylene
glycol) dimethacrylate (PI2050, QL200), trimethylolpropane triacrylate (PI4072, QL200),
2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (Irgacure 369, QL100) were
purchased from commercial sources. Thermal analysis was carried out using an STA 449 F1
Jupiter thermal analyzer (NETZSCH, Selb, Germany) in a temperature range of 40–1000 ◦C
in air, and at a heating rate of 10◦ min−1. The evolved gases were simultaneously mon-
itored during the TA experiment using a coupled QMS 403 Aëolos Quadro quadrupole
mass spectrometer (NETZSCH, Selb, Germany). The mass spectra were registered for the
species with the following m/z values: 18 (corresponding to H2O), 44 (corresponding to
CO2), 45 (corresponding to C2H5OH), and 31 (corresponding to CH3O). The IR spectra
were recorded using a Thermo Scientific™ Nicolet™ iS50 FTIR Spectrometer with powders
via ATR (Waltham, MA, USA). Powder X-ray diffraction (PXRD) was performed using
Bruker D8 Advance (λ(Cu-Kα) = 1.5418 Å; Ni filter) with a step size of 0.020◦. The pat-
terns were indexed via an SVD index [27] using the TOPAS 4.2 software [28]. Then, the
powder patterns were refined using the Pawley method. Scanning electron microscopy
(SEM) was performed using an FEI Helios G4 CX dual beam scanning electron microscope.
Preliminarily, a thin layer of Cr (10 nm) was coated on the samples using SPI Supplies.
The luminescence spectra were determined and the measurement of quantum yields car-
ried out using a FluoroMax (HORIBA) spectrometer at room temperature, excitation was
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performed through a ligand, and the absolute method in the integration sphere was used.
The registration of luminescence spectra upon heating was carried out on a Maya 2000Pro
spectrofluorometer (Ocean Optics) using a heating element.

3.2. Synthesis

The synthesis of [Ln(Bz)3Phen]2 (Ln = Tb, Eu) was carried out through an exchange
reaction between LnCl3Phen (in situ from a mixture of lanthanide chlorides and Phen) and
potassium benzoates (in situ from KOH and Hobs), as in refs. [18,24].

Composite materials based on [Ln(Bz)3Phen]2 (Ln = Tb, Eu) were prepared by adding
the powders of the coordination compounds in the desired proportions into the photo-cured
resin, with added photoinitiator (less than 1% by weight), in a ratio of 1 to 4. Photopoly-
merization was carried out via exposure to light with a wavelength of 365 nm, for 10 min,
between two cover glasses.

4. Conclusions

We demonstrated that polyimides are suitable as hosts for lanthanide-based materials
with thermally dependent luminescence. The luminescence of both terbium and europium was
visible and, despite the decrease in the quantum yield due to doping, remained intense. The
polyimide hosts did not soften in the temperature range under investigation. At the same time,
we demonstrated that the thermal stability of the compounds decreased with simultaneous
exposure to UV light; therefore, studying novel materials for high-temperature luminescence
thermometry is particularly important for analyzing their reproducibility. As a result, we
obtained a composite material based on a mixture of terbium and europium benzoates with
phenanthroline in poly(ethylene glycol) diacrylate (PI4050), which demonstrated high thermal
stability and luminescent thermometry properties up to 180 ◦C. Particular attention was paid
to reproducibility, as the simultaneous exposure to UV light and heating resulted in a loss of
reproducibility up to >180 ◦C. These results are promising for future research, and show that
by choosing a thermally stable and optically transparent matrix, one can obtain an efficient
fluorescent thermometer for high temperature measurements.

Supplementary Materials: The supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11050189/s1. Figure S1: PXDR data of (1) Tb(Bz)3Phen;
(2) Eu(Bz)3Phen; (3) theoretical PXDR pattern of Tb(Bz)3Phen calculated from the crystal struc-
ture (CCDC identifier SAJGEQ); Figure S2: Thermal analysis with mass-detection of the evolved
gases of (a) Tb(Bz)3Phen, (b) Eu(Bz)3Phen; Figure S3: Thermal analysis (10 ◦C/min) of polymers:
(a) PI4050, (b) PI2050, (c) PI4072 and (d) PI4050, PI2050, PI4072; Figure S4: Thermal analysis of
composite and polymer (a) LTPI1 and PI4050, (b) LTPI2 and PI2050, (c) LTPI3 and PI4072; Figure S5:
Thermal analysis (5 C/min) of LTPI1, PI4050, Tb(Bz)3Phen, Eu(Bz)3Phen; Figure S6: SEM data of
(a,b) LTPI1, (c,d) LTPI2, (e,f) LTPI3; Figure S7: Excitation spectra of (a) LTPI1 (λem = 543 nm), (b) LTPI1
(λem = 612 nm), (c) LTPI12 (λem = 543 nm), (d) LTPI2 (λem = 612 nm), (e) LTPI13 (λem = 543 nm),
(f) LTPI13 (λem = 612 nm); Figure S8: Lifetimes of (a) Tb(Bz)3Phen at 487 nm; (b) Tb(Bz)3Phen at
543 nm, (c) Eu(Bz)3Phen at 612 nm, (d) Eu(Bz)3Phen at 697 nm, (e) LTPI1 at 487 nm, (f) LTPI1 at
543 nm, (g) LTPI1 at 612 nm, (h) LTPI1 at 697 nm, (i) LTPI2 at 487 nm, (j) LTPI2 at 543 nm, (k) LTPI2 at
612 nm, (l) LTPI2 at 697 nm, (m) LTPI3 at 487 nm, (n) LTPI3 at 543 nm, (o) LTPI3 at 612 nm, (p) LTPI3
at 697 nm (λex = 350 nm); Figure S9: Reproducibility of LTPI1. Dependence of luminescence spectra
(a,c,e,g,i) and LIR (b,d,f,h,j) on temperature when heated to 130 ◦C (a,b), 160 ◦C (c,d), 180 ◦C (e,f),
200 ◦C (g,h) and 220 ◦C (i,j). (λex = 365 nm); Figure S10: Luminescence spectra of LTPI1 measured
several times successively in the range from 50 to 220 ◦C in steps of 10 degrees (λex = 365 nm); Figure
S11: PXRD data for Eu(Bz)3Phen at different temperatures: (a) 30_start, (b) 60_heat, (c) 80_heat,
(d) 100_heat, (e) 120_heat, (f) 100_cool, (g) 80_cool, (h) 60_cool, (i) 30_finish. Experimental curve
(blue), fitting curve (red), difference (grey).
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