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Abstract: The global demand for energy is constantly rising, and thus far, remarkable efforts have been
put into developing high-performance energy storage devices using nanoscale designs and hybrid
approaches. Hybrid nanostructured materials composed of transition metal oxides/hydroxides,
metal chalcogenides, metal carbides, metal–organic frameworks, carbonaceous compounds and
polymer-based porous materials have been used as electrodes for designing energy storage systems
such as batteries, supercapacitors (SCs), and so on. Different kinds of hybrid materials have been
shown to be ideal electrode materials for the development of efficient energy storage devices, due
to their porous structures, high surface area, high electrical conductivity, charge accommodation
capacity, and tunable electronic structures. These hybrid materials can be synthesized following
various synthetic strategies, including intercalative hybridization, core–shell architecture, surface
anchoring, and defect control, among others. In this study, we discuss applications of the various
advanced hybrid nanostructured materials to design efficient batteries and SC-based energy storage
systems. Moreover, we focus on their features, limitations, and real-time resolutions.

Keywords: hybrid materials; energy storage systems; battery; supercapacitor; hybrid electrode

1. Introduction

The radical deficit of fuel, global warming, and the growing interest in moveable
electronic devices and electric automobiles have encouraged the development of efficient
energy storage systems. Moreover, the total energy consumption rate is exponentially
growing with the increasing global population, economic revolutions, invention of tech-
nologies and machines, access to modern facilities in remote areas, and significant changes
to human lifestyles [1]. According to the annual BP Statistical Review of World Energy 2022,
the total amount of primary energies consumed worldwide in 2021 exceeded 595 exajoules,
which is 3% higher than that in 2019 and 5.5% higher than in 2020, when primary energy
consumption levels fell due to the coronavirus pandemic and its effects on the demand for
transportation, fuel, and general economic performance (Figure 1) [2]. Another report has
predicted that the demand for clean and sustainable energy will increase by about 20% by
2050 [3]. The radical shortage of fossil fuels and growing interest in wearable electronics
and electric vehicles has driven the innovation of efficient hybrid technologies for suitable
energy storage systems.
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In order to maintain a balance between energy production and consumption, it is
essential to store excess energy to fulfil the demand in relation to short- and long-term
purposes. The utilization of advanced energy storage facilities makes it possible to over-
come the limitations of suitable storage systems for renewable energies from solar, wind,
hydroelectric, and geothermal sources. In this case, non-conventional energy storage
devices—predominantly batteries and capacitors—facilitate the storage of electricity from
renewable sources. Moreover, it is possible to distribute it continuously through electric
wires, even in remote areas. Therefore, there have been significant research efforts focused
on the innovation of sustainable energy storage technologies. Among them, priority has
been given to rechargeable batteries and capacitors due to their remarkable storage capacity,
with very high power (W kg−1) or energy density (W h kg−1) [4].

Developing new devices to satisfy the necessity and urgency of energy storage has
become an important issue for addressing the challenges regarding energy supply. The
International Energy Agency (IEA) reports that worldwide energy demand will increase
up to 450 GW in 2050 [5]. Therefore, it is important to store the excess energy for future
use, if any extra electricity is produced from any source. For a long time, batteries have
been used as non-conventional devices for storing and supplying energy in remote areas.
Many different types of vehicles are run using the energy stored in batteries as a portable
form. The latest applications of this type of energy are in smartphones (e.g., Galaxy and
iPhones); in this case, lithium-ion (Li-ion) batteries play a vital role, storing and supplying
energy for operating these electronic devices. High-tech manufacturing facilities with
continuous power supply at a consistent frequency are essential for the production and
use of such electronic devices [6]. Compared to the elevated rate of energy demand, a slow
transition rate has been observed in developing sustainable energy systems. Currently, the
biggest challenge in satisfying the rising energy demand is introducing an efficient and cost-
effective energy storage system. Additionally, it is important to develop efficient materials
for manufacturing devices with high capacity, such as supercapacitors and rechargeable
batteries. Therefore, the biggest difficulty facing electrochemical systems in recent years
has been the investigation of new electrode materials or the modification of existing ones.
In particular, the specific capacity, cyclic stability, and Columbian efficiency are three very
important properties desired for any energy storage cell to work effectively. However,
there are common limitations of most materials used as electrodes, such as limited capacity,
changes in crystal structure, and volume growth during cycling [7,8].

To avoid these drawbacks, hybrid nanostructured materials are being employed
as electrode materials in modern supercapacitors as well as various batteries. Hybrid
materials are nanocomposite materials with or without interactions between the inorganic
and organic components, amorphous sol-gel complexes, and crystalline highly structured
coordination polymers, etc. Therefore, to increase the power and energy density of next-
generation storage systems, varieties of multifunctional hybrid nanostructured materials
are consistently generating tremendous interest.
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There are five sections in this review. The various types of energy storage systems,
especially supercapacitors and batteries will be concisely covered in Section 2 after the
introduction in Section 1. Section 3 will detail the different types of nanostructured hybrid
materials, their special electrochemical characteristics, and some representative outcomes
as an example of recent development for energy storage performances. The current electro-
chemical data on hybrid energy storage systems will be briefly examined in Section 4, along
with other information. We will also summarize our discussion with some limitations and
a forecast for the future applications of hybrid electrode materials in Section 5.

2. Energy Storage Devices

Available energy storage devices can be classified into various types; for example,
based on storage duration, there are three types: short-, mid-, and long-term. Depending
on their reaction time, they are considered to be either rapid or slow. According to their
storage capacity, they can be classified as small-, medium-, or large-scale [9]. There are many
techniques for the storage of various types of energies, including electrical, mechanical,
chemical, and thermal. Moreover, based on the precise needs and applications, storage
technologies have different technical and economic criteria [10].

2.1. Types of Energy Storage Systems

The classification of energy storage systems is consistent with the various associated
shapes; energy is often stored within a mold, which can be electrochemical, electromagnetic,
mechanical, and thermal one (Figure 2). Hydrogen batteries and fuel cells are electrochemi-
cal systems, while electromagnetic systems include SCs and superconductors. Mechanical
systems are often divided into kinetic energy storage (e.g., flywheels) and potential energy
storage (e.g., pumped hydraulic and compressed gas systems) [11,12].
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Techniques and devices are constantly changing and improving to meet the increasing
demands for energy storage devices. The battery, as the primary systematic energy memory
device, remains the leading and most widely used technique, with a general efficiency
of over 90%. A battery may be a chemical device, storing electricity within chemicals
and converting the stored energy into a direct current (DC) through an electrochemical
reaction. A battery usually consists of three main components: two electrodes and an
electrolyte. It also consists of terminals, a separator, and a container. There are two types
of electrodes: anode (negative electrode) and cathode (positive electrode) [13]. The Italian
physicist Alessandro Volta invented the first battery (in the modern sense) in 1800, which
consisted of disks of zinc and copper, while a concentrated salt solution (brine) was used as
an electrolyte. To date, many different types of batteries have been reported, such as Ni-Cd,
Li-O2, and Li-S batteries [14,15].

2.2. Batteries for Energy Storage

There are two main types of batteries: physical and chemical batteries (Figure 3a). A
physical battery is a device that directly converts solar power, thermal energy, or atomic
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energy into DC electricity using physical effects, such as solar cells, thermoelectric genera-
tors, core batteries, and so on. A chemical battery is a device that converts energy directly
into DC electricity. Chemical batteries are the most common type of batteries, and can
be classified into two categories: primary (non-rechargeable) and secondary (recharge-
able). A primary battery is a straightforward and convenient power source, such as a
zinc–manganese or alkaline–manganese battery, which cannot be charged electrically. They
are utilized in household applications for various portable electronic and electrical ap-
pliances, such as lamps, cameras, watches, toys, radios, and so on. A secondary battery
is commonly referred to as a rechargeable battery, which may be recharged after being
discharged to its original state by a current through the cells during discharge. For instance,
lead–acid and lithium-ion batteries are well-reported rechargeable batteries. It should be
noted that the energy storage capacity of an electrochemical system is restricted by the
electrochemical properties of the electrode materials. Therefore, storage abilities need to
be increased through the use of coupling (or hybridizing) with materials having very low
equivalent weights. At present, the world is entering a new era of digital technologies
featuring updated energy storage devices.
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2.3. Supercapacitors for Energy Storage

After the invention of rechargeable batteries, another storage device, known as a
capacitor, has been widely used for this purpose. A supercapacitor (SC) is an upgraded
version of a capacitor. In this line, the hybridization of a battery and capacitor can be
accomplished to achieve high energy storage efficiency. The general performance of an
SC is mainly governed by the nature and structure of the electrodes, separator, current
collector, and electrolytes. SCs provide many advantages over batteries, such as a high
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power density (>10 kW kg−1), quicker charging/discharging speed (within seconds), cyclic
stability (>100,000 cycles), and being more cost-effective and safer [16,17].

Figure 3b exhibits the different types of SCs. Based on their charge storage behavior
and electrode materials, there are three kinds of supercapacitors: electrochemical double-
layer capacitors (EDLCs), pseudo-capacitors, and hybrid capacitors [18]. The most well-
known type of energy storage technology now employed in industrial applications is the
EDLC. Here, electricity is stored at the interface between the electrolyte and electrode
through Helmholtz double layers [19]. As this process does not allow for a Faradaic redox
reaction, the swelling of the active material, EDLCs typically present high stability and
rapid charge/discharge rates. Due to their environmental friendliness, large specific surface
area, good electrical conductivity, high chemical stability, and wide working temperature
range, carbon-based materials such as graphene, activated charcoal, CNTs are used to make
the majority of EDLC electrodes. Furthermore, depending on the type of electrolyte utilized,
EDLC performance might be altered. However, the energy density of EDLC equipment
is constrained as a result of the electrostatic surface charging mechanism, which severely
limits the use of EDLCs.

On the other hand, pseudocapacitor electrodes are constructed of some redox compo-
nents, such as polymers, metal oxides, or hydroxides [20]. Moreover, their charge storage
mechanism follows a fast Faradaic reaction. The formation of such an electrical double
layer near the surface provides larger capacitance with high energy density, compared
to other capacitors. As pseudocapacitors can store charge through electroporation, redox
reactions, or intercalation, they have higher capacitance and energy density than EDLCs.
In contrast to EDLCs, pseudocapacitance can be created both on the electrode surface and
throughout the entire electrode, resulting in a higher energy density and larger capacitance.

Another type is called hybrid capacitors, which are a combination of EDLCs and
pseudocapacitors, with higher specific capacitance compared to each individual type. A
hybrid capacitor accumulates charges either electrostatically or electrochemically, using
electrochemical or electrostatic absorption-desorption or oxidation-reduction reactions.
The hybrid supercapacitor is further divided into three categories: battery-type hybrid,
composite hybrid, and asymmetric hybrid. With its extensive power and energy density,
as well as improved cycling stability, the hybrid supercapacitor can perform well [21]. In
addition, SCs may have various geometric properties, such as flexible SCs including a
skinny film, sandwich-type, and planar structure (e.g., as integrated micro-SCs). Flexible
SCs are ultrafast rechargeable energy storage devices. It is necessary to utilize a material
with very good conductivity, high mechanical rigidity, compact structure, and lightweight
properties for the design of flexible SC devices. A planar structure design enhances the
rapid ion transfer within the 2D-direction of flexible SCs [22–24].

In terms of the storage and release of electricity, batteries and capacitors are very
similar; however, they perform in a completely different manner. In general, batteries
offer better energy density for storage, whereas capacitors may charge and discharge more
quickly [25]. The supercapacitor’s cyclic voltammetry (CV) curve (Figure 4a) is rectangular
during the charge and discharge operation, yet the current is nearly constant. Additionally,
the galvanostatic charge/discharge (GCD) curve (Figure 4c) of this device is typically
inclined with a constant slope. Generally, a battery keeps its voltage steady except when
it is close to 100% charged/discharged (TOC/EOD), during which it exhibits Faradaic
reactions and its CV curve displays a clear redox peak (Figure 4b,d). In addition, the GCD
curve shows a relatively flat charge-discharge platform. At the same time, supercapacitors
must be integrated with a DC-DC converter for applications requiring a consistent output
voltage to control and maintain the output voltage. The energy stored in these two types
of electrodes is measured differently (in terms of capacitance vs. capacity) due to the
difference in the charge-storage process [26].
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Figure 4. (a,b) Cyclic voltammetry (CV) curves and (c,d) galvanostatic charge-discharge (GCD)
curves of supercapacitors and batteries. Reproduced with permission from [26]. Copyright 2018
American Chemical Society.

Based on the power density equation, the energy density of a capacitor is determined
by the specific capacitance of the electrode material and the potential difference between
the positive and negative electrodes, developing porous nanoelectrode materials is one of
the best strategies to raise the energy density of supercapacitors. Porous nanoelectrode
materials can boost energy density by increasing the specific surface area, which in turn
raises the specific capacitance. Constructing hybrid or asymmetric supercapacitors is
a further approach that can improve the performance of the entire device. Hence, we
highlight current developments in nanostructured hybrid electrode materials for batteries
and supercapacitors in the next section.

3. Hybrid Nanostructured Materials in Energy Storage Devices

Hybrid nanostructured materials are a type of nanocomposites made up of two or
more separate components at the molecular level, each of which has at least one dimension
on the nanoscale. They are put together in a manner that offers them characteristics that
no one substance alone could provide. Metal ions, metal clusters or particles, oxides,
sulfides, non-metallic elements, and their derivatives are typically combined in hybrid
nanomaterials through specific interactions that enhance their functional properties in a
synergistic manner. Electrostatic interactions, dispersion interactions, H-bonding, and other
intermolecular interactions may all play a role in the assembly of hybrid materials, from the
formation of molecules to nanoscale binding, self-assembly, and microstructuring [27]. The
general classification of hybrid materials is shown in Figure 5a. Hybrid materials are now
categorized into three types based on their utility, as illustrated in Figure 5a: (i) structurally
hybridized materials, (ii) functionally hybridized materials, and (iii) chemically hybridized
materials [28,29]. Furthermore, hybrid materials that are formed through weak chemical
interactions, such as Coulomb forces, hydrogen bonds, and dipole-dipole forces are classi-
fied as Class I hybrid materials. On the other hand, Class II hybrid materials are formed by
combining the constituent components through strong chemical linkages, such as covalent
or ionic-covalent interconnections.

In the last two decades, a variety of synthesis techniques have been used to rapidly
advance the design and preparation of hybrid nanostructured materials with various ar-



Inorganics 2023, 11, 183 7 of 21

chitectures and dimensionalities. These hybrid materials could be from 0D nanoparticles
to 2D nanosheets, including core–shell hybrid nanostructures (for example, MOF-derived
NiSe@C nanocomposite [30]), nanoparticle-based hybrid nanostructures (such as Graphene–
silver hybrid nanoparticle [31]), well-defined heterostructures (for example, CoZn-Se@N-
MX heterostructured hybrid [32]), hierarchical heterostructures (e.g., hierarchical MX-
ene/TMC (SnS, NiS, and MoS2) [33]), and so on. The techniques for constructing these
superior materials, together with nanostructuring, nano-/micro-combination, hybridiza-
tion, pore-shape control, configuration design, surface modification, and composition
optimization, are key challenges for researchers.

Figure 5b provides a summary of the synthetic mechanisms and methods used to create
hybrid materials, enabling the creation of custom materials with predetermined features
for particular applications [34,35]. Route A is a traditional sol-gel process that employs
specific bridged, polyfunctional precursors and a hydrothermal synthesis process to create
homogenous molecular organic-inorganic compounds. This approach is highly versatile
and can be used to synthesize crystalline microporous hybrid solids such as zeolites
and Metal-Organic Frameworks (MOF) [36]. Route B, on the other hand, utilizes self-
assembling techniques to create various inorganic nanocomposites or hybrid networks that
are templated by organic surfactants. This method provides a high degree of control and
enables adjustment over the hybrid interfaces, resulting in a wide variety of nanocomposites.
Route C involves assembling or dispersing well-defined nanobuilding blocks (NBB) that
retain their integrity in the final product. These NBB can be organically pre- or post-
functionalized nanoparticles, metallic oxides, chalcogenides, clays, and layered double
hydroxides that can intercalate organic components. Route D combines the use of NBBs and
self-assembly methods to obtain hierarchically organized materials in terms of structure
and function. This approach enables the tailoring and fine-tuning of the mechanical,
optical, electrical, thermal, and chemical properties of hybrid materials, allowing for the
development of specialized applications using the synthesized materials [37].

3.1. Applications of Hybrid Nanostructured Materials as Electrodes in Batteries
and Supercapacitors

To be an efficient electrode in energy storage devices, materials must adhere to certain
standards. For example, the cathode material in a lithium-ion battery (LIB) or a sodium-ion
battery (NIB) must exhibit a high free energy of reaction with lithium or sodium to achieve a
high voltage, as well as have large interstitial spaces within their crystallographic structure
to accommodate a significant amount of Li or sodium ions. Moreover, electrode materials
must have a high level of electronic conductivity, be non-toxic, and not react chemically
with the electrolyte [38]. When used as an anode, the material should show low voltages
(0.0–1.0 V) and usually control the energy density, cycle life, and power density of the
cell [39].

Capacitance and charge storage are two criteria that depend on the kind of electrode
materials used in supercapacitors. According to the energy density formula, the specific
capacitance of the electrode material and the potential difference between the positive
and negative electrodes determine the energy density of a capacitor. Developing porous
nanoelectrode materials is one of the most effective ways to increase the energy density of
supercapacitors. Porous nanoelectrode materials can increase energy density by increasing
specific surface area, which increases specific capacitance. This highly efficient method of
enhancing the performance of supercapacitors could revolutionize their use in a variety
of applications. For example, using carbon materials is more promising due to their
high surface area, low cost, availability, and electric conductivity. Surface area, electrical
conductivity, electrode wetting, and the permeability of electrolyte solutions are just a
few of the variables that have a significant impact on the electrochemical performance of
electrode materials [40]. Another approach is to build hybrid/asymmetric supercapacitors,
which can improve the overall device performance.
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In addition, energy storage materials are critical for the efficient, clean, and adaptable
use of energy, as well as the exploitation of renewable energy sources. As a result, they
encompass a wide spectrum of materials and have received a lot of attention, in all stages
from research to industrialization. In particular, the electrode materials of batteries and SCs
with high charge density, cycling strength, rate capability, and stability of batteries and SCs
are of utmost importance [41]. The area of the electrode that will be reached by ions/charges
may be a particularly crucial factor in determining battery or SC performance [42]. The
operational, thermal, and electrical characteristics of devices are largely determined by
the electrode material and electrolyte used. The electrodes, for example, must have high
conductivity, high temperature stability, long-term chemical stability, high corrosion resis-
tance, large surface area per unit volume and mass, environmental friendliness, and low
cost [43,44]. Therefore, to meet the emerging demands, numerous multifunctional hybrid
nanostructured materials are being explored at the present time in order to improve the
energy density and power of next-generation storage devices. As an example, applications
of some of the hybrid materials with promising performances as an electrode in batteries
and SCs will be discussed in the following sub-sections.

3.1.1. Carbon-Based Electrodes

Among the diverse electrode materials, carbon compounds have been widely used
due to their exciting properties, such as low cost, massive surface area, excessive electric
conductivity, availability, non-toxicity, chemical/thermal resistance, environmental friendli-
ness, and excessive stability [45–48]. Nanostructured porous carbon materials have a large
surface area, which allows for the addition of functional compounds, such as oxidative
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groups, hydroxyl groups, or nitrogen, in order to maximize electrode performance. Their
surface changes have been demonstrated to allow for increased capacity and electrochemi-
cal activity, which is beneficial for the electrolyte. Carbon-based electrode materials also
have longer cyclic stability, high performance rate, better safety, and are more cost-effective
than pseudo-capacitive electrode materials. When used as electrodes in SC cells, conducting
polymers and transition metal oxide-based nanomaterials may result in lower power densi-
ties and compromise their long-term stability. To address these limitations, carbon-based
asymmetric or hybrid materials are widely used as electrodes in over 80% of commercially
available supercapacitor devices [45]. Activated carbon (AC) [49], carbon nanofibers [50],
templated carbon [51], carbon aerogels [52], carbon nanotubes (CNTs) [53], graphene [54],
and carbon composites are all examples of carbon materials [55] which have been used as
electrode materials for batteries and SCs.

CNTs with metal oxides, or conductive polymers based on various sorts of core–shell
hybrid nanostructured materials as electrodes, have presented outstanding electrochemical
performance, promising constancy, longevity, flexibility, and almost 95% capacitance reten-
tion at around 1147.12 mF cm−2 at 10 mV s−1 (or more), even after 10,000 cycles [56–61].
Their outstanding performance may be due to the formation of interfacial linkages and
a conductive grid between the CNTs and substrate molecules within the composite. For
example, a nanocomposite of γ-Fe2O3/CNT has exhibited great reusability, with calculated
capacity of 1186.8 mAhg−1 after 400 cycles [56].

As an electrode, graphene has been proven as another potential candidate, due to the
existence of a strong van der Waals interaction among its layered structure. Additionally,
a highly porous structure with a wide surface area and very good conductivity are its
primary characteristic properties, which makes it an ideal material for energy storage
applications [62]. Graphene is composed of graphite and has excellent mechanical, electrical,
and optical properties. Unfortunately, it also has some practical limitations, including low
electron/lithium-ion transport between sheets, which results in poor anode electrochemical
performance. Additionally, graphene’s large specific surface area can lead to agglomeration
between sheets, reducing its effective area and capacity. Due to these constraints, graphene
is typically studied as a hybrid or nanocomposite compound, or in a modified form.
However, because of its excellent mechanical properties, graphene can also be used as a
conductive carrier and to connect active materials, preventing the destruction of electrode
structures [63]. Graphene-based three-dimensional (3D) conductive networks may improve
electron and ion movement within electrode materials [64]. Several studies have reported
the use of reduced graphene oxide (rGO) as a hybrid component with other metal oxides;
for example, an NiO/SnO2/rGO composite has been employed as an anode for Na-ion
and Li-ion batteries, which showed a specific capacity as high as 800 mAh g−1 at a current
density of 1000 mA g−1, even after 400 cycles [65]. Another study has reported that
an as-synthesized porous graphene nanoribbon foam displayed greater stability up to
10,000 cycles, maintaining a specific capacity of 123 mA h g−1 [66]. Additionally, three-
dimensional graphene sponges and aerogels have exhibited a high specific capacitance
(~1100 F g−1) at the current density of 10 A g−1.

Activated carbon (AC), as another carbon-based material, has also presented very good
performance in the manufacturing of power storage systems, due to its intense conductivity
and large surface area [67]. A Li-ion battery exhibited high specific capacity (1351 mA h
g−1), with great stability even after 300 cycles, when a sulfur-incorporated AC composite
was used as an electrode material [68]. Contact between AC and sulfur decreases the gap
among inter-layers, enhancing Li-ion transport as well as energy storage capacity. A mesh-
like structure of fullerene (C60) connected by covalent bonds has been shown to be another
promising carbon material [69]. The fullerene-coated nanocomposites have exhibited
outstanding specific capacity over 2000 mAh g−1 with high stability, both as anode or
cathode [70,71]. These types of resources may lead to a revolution in determining workable
methods for the innovation of cost-effective energy storage devices. The electrochemical
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properties of various carbon-based hybrid nanostructured materials as electrodes in various
energy storage devices, such as batteries and supercapacitors, are listed in Table 1.

Table 1. The electrochemical performances of carbon-based hybrid nanostructured materials as
electrodes in various energy storage devices.

Application in Supercapacitors

Materials Capacitance
(Fg−1)

Energy Density
(Wh kg−1)

Power Density
(kW kg−1)

Retention
%/Cycles Ref.

N, B co-doped -GO 885 23.23 872 80/10,000 [72]

NiCo2S4/graphene aerogel 704.34 20.9 800.2 80.3/1500 [73]

MoS2 NS-polypyrrole -rGO 1942 39.1 700 78.6/3000 [74]

SWCNTs/TiO2 144 20 10,000 95/10,000 [75]

Bio-C/MoS2 945 157 80 92/10,000 [76]

SnO2/PCN electrode 799 138 53 95/500 [77]

rGO/MXene-PPy composite 408.2 11.3 500 91.2/10,000 [78]

Ge4Se9/RGO/FCNTs 440 32 1071 83/5000 [79]

CoP/CoO@PrGO 402 4.2 785 100/10,000 [80]

Application in Batteries

Materials Discharge Capacity
(mAh g−1)

Current Density
( mAh g−1)

Retention
%/Cycles Application Ref.

NiS@C 435 50 99.9/500 Mg2+/Li+ battery [81]

F-CuS-CNT hybrid 479 165 85.5/100 Mg2+/Li+ battery [82]

MWCNTs@N-doped-C@CoS2 1590 100 99.9/250 Li-S battery [83]

NG/C@Si/CNF hybrid 1346.20 100 97.8/100 Li-ion batteries [84]

2D Si@SiOx@MpC 1239 100 99.94/600 Li-ion batteries [85]

NG/SiOx/NG hybrids 545 200 99/450 Li-ion batteries [86]

TC-RGO-CNT hybrid 1401 50 99%/150 Li-ion batteries [87]

VSe2@MWCNT hybrid 319.6 50 99.7/200 Na-ion batteries [88]

C@porousSi/rGO composite 825.7 40 90.4/100 Li-ion batteries [89]

3.1.2. Metal–Organic Framework (MOF) Electrodes

MOFs (metal-organic frameworks) have shown to be promising materials for efficient
energy storage systems [90–92]. MOFs are composed of metal sites and organic linkers.
The metal sites are often ions of transition metals, alkaline earth metals, or lanthanides,
while the organic linkers are typically multi-dentate molecules with N- or O-donor atoms
(e.g., pyridyl, polyamines, carboxylates, and so on). As a result of the presence of highly
organized and tunable metal nodes and organic linkers, MOFs offer various unique compo-
sitional and structural advantages. Due to their large specific area and low density, MOFs
are considered to be very promising electrode materials for new–generation rechargeable
batteries and SCs [93–95]. Additionally, various porous MOF nanoarchitectures, such
as 0D nanoparticles, 1D nanorods, 2D nanosheets, and 3D hierarchic structures, can be
developed through the precise management of MOF growth following re-crystallization,
surface management, and size confinement. Moreover, the assembly of MOF crystals into
superstructures, or the template-guided growth of MOF-based materials, is expected to
allow for increasingly diverse options in this field [94]. In relation to the efficient utilization
of MOFs in energy storage devices, the versatile insertion of counter-components, such as
polymers, carbons, ionic liquids, and solid inorganic compounds, has inspired the design
of new MOF architectures with improved storage capabilities [96].
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3.1.3. Halide Perovskite Electrodes

Halide perovskites have recently been deployed for electricity storage in lithium-
ion batteries and photo-rechargeable batteries [97–101]. Three-dimensional perovskite
structures have been utilized in various fields of energy storage applications, including
metal-ion batteries and SCs. Ionic defects within the structure of perovskite materials have
a major impact on transport properties such as ionic diffusion and ionic conductivity. These
properties are important in the consideration of perovskite materials in energy storage
applications [99]. The application of perovskite materials as electrode materials in SCs has
been limited, due to their low specific surface area and poor catalytic properties. In recent
years, several research groups have reported that transition metal oxides containing a per-
ovskite structure can overcome these limitations. For instance, TMOs with a 3D–perovskite
structure—namely, NiMnO3 oxide—have been synthesized via a low hydrothermal method.
As an electrode material for SCs, it showed a high specific capacitance of 99.03 F g−1 and
excellent cycle stability (77%) after 7000 cycles [102].

3.1.4. Transition Metal Oxide and Its Nanosheets as Electrodes

The promising family of transition metal oxides (TMO) and mixed metal oxides has
been considered appropriate for use as active electrode materials in batteries and SCs, due to
the multiple oxidation states and ions they possess, resulting in superior specific capacitance.
Moreover, hybridization with graphene and other materials has gained incredible interest
due to their large surface area and excellent electrical conductivity, which is very important
for promoting a Faradaic redox reaction [103–105]. In addition, various nanocomposites of
TMOs—such as RuO2, NiO, MnO2, Mn3O4, V2O5, Co3O4, and their corresponding hybrid
materials—have widely been used as electrodes in energy storage studies. For example,
the growth of TMO nanoparticles on highly porous carbon nanotubes, graphene, activated
charcoal, and carbon fibers has been reported, with a theoretical capacitance of 1300 to over
3500 F g−1 [106–111]. Moreover, the incorporation of carbon components can remarkably
enhance the overall capacitance. Additionally, increasing conductivity—and, therefore,
stability in cycling—makes these composites important for energy storage applications.

Beyond the above, many promising electrode materials have been developed with
diverse 2D-nanosheet structures for the design of energy storage devices. Among them,
transition metal oxides (TMOs) nanosheets (NSs) [112], transition metal dichalgogenides
(TMD) [113], MXene NSs [114,115], layered double hydroxide (LDH) NSs [116,117], and
MOFs NSs [118,119] have been shown to present promising characteristics. The hybridiza-
tion of 2D inorganic NSs with counter nanomaterials/NSs can provide a viable means
to investigate high-performance anode materials with extended surface zones, extended
voltage windows, increased electrical conductivity, and improved capacitance, in particular.
These points of interest of 2D inorganic NSs render them promising candidates in the de-
velopment of effective cathode materials for different auxiliary batteries and SCs [120,121].
Two–dimensional (2D) inorganic NS-based terminals are regularly synthesized through
certain manufacturing methodologies, such as intercalative hybridization, stacking control,
core–shell engineering, surface securing, and deformity control [120]. As an example, a 3D
NiCo2O4@MnO2 nanohybrid has been synthesized utilizing a two-step electro-deposition
strategy, which displayed a progressive particular capacitance of 913.6 F g−1 with a high
capacity of 37.5 Wh kg−1 and an extreme control thickness of 7500 W kg−1 [122]. Another
report has found that a 1 mol% La-doped Ni(OH)2/CNT nanohybrid electrode exhibited a
capacitance of 2731 F g−1 at 1 A g−1 and good capacity retention of 84% at 5000 cycles [123].

3.1.5. Conducting Polymer Electrodes

Conducting polymer- (CP), such as polyaniline (PANI-), polypyrrole (PPy-) and poly-
thiophene (PTh-) based nanocomposites have attracted vital interest due to their physical
phenomena, reaction behavior, and promising potential for versatile applications ranging
from environmental rectification, energy storage, novel catalysts, and so on. The conductive
behavior of polymers is the main reason for their utilization in the development of SCs and
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Li-polymer batteries. CPs possess a delocalized π-electron, obtainable redox conditions, and
controllable physical assets, which have made them the ultimate choice in the design of var-
ious energy storage devices [124]. The sole limitation of CPs is their poor cyclic stability due
to architectural demolition of the polymer electrodes, leading to a poor charge/discharge
capability [125]. Therefore, the addition of various metal oxides/hydroxides/phosphates
and/or CNT graphene to CPs may produce more promising nanostructured electrode
materials [126]. For example, according to Shao et al., polyaniline (PANI)/graphene quan-
tum dots/graphene was coated on commercially available compressed nonwoven towels
and used as an electrode in SC. The composite material displayed a high specific capac-
itance of 195 mF cm−2 at 0.1 mA cm−2 and a high level of stability at 96.5% retention
6000 cycles later [127]. Furthermore, ternary composites such as carbon LiFePO4/PANI
have a substantial function as cathodes with increased capacity. The active carbon-based
polyaniline composite was chemically oxidized and introduced into the LiFePO4 cathode to
improve the low theoretical capacity of 170 mAh g−1. At 10 C, the carbon-LiFePO4/PANI
composite electrode outperforms the carbon-LiFePO4 electrode by 26% [128]. Furthermore,
the outstanding elasticity of CPs can also facilitate the manufacturing of flexible tools for
wearable electric arrangements [129,130]. For instance, Table 2 lists selected conducting
polymer-based hybrid materials that are used as electrode materials in batteries, and SCs.
Although the progress of varied polymer-based nanocomposite materials has provided
considerably more consistent energy storage capacities, beyond this, their fabrication cost
and limited performances in some cases until now has been restricted in the consideration
of large-scale applications.

Table 2. Applications of conducting polymer-based hybrid materials as an electrode in energy storage
applications.

Applications in Supercapacitors

Electrode Materials Capacitance
(Fg−1)

Power Density
(kW kg−1)

Retention
%/Cycles Ref.

MnO2/PANI/rGO QD 423 640 85/2000 [131]

PANI/S,N:G QDs 2524 2250 100/1000 [132]

PVA-GQD/PEDO 291.86 984.4 98/1000 [133]

TBN–Py CMP/SWCNT 430 - 99/2000 [134]

3D NiCoO2-PPy 1037 465 89/7000 [135]

LaMnO3@CC-Ppy 862 - 66/3000 [136]

Applications in Batteries

Electrode Materials Discharge Capacity
(mAh g−1)

Current Density
(mAg−1)

Retention (%)/
Cycles

Polymer/CNT hybrid films 142.3 500 74.6/300 [137]

Poly(Te-BnV) anode 502 - 100/300 [138]

Poly(pyrene-tetraone Sulfide) 697.1 335.4 82/500 [139]

TEMPO-Methacrylate Copolymers 1110 - 99/500 [140]

Metal-organic conjugated polymers 1164 - 99/1500 [141]



Inorganics 2023, 11, 183 13 of 21

4. Hybrid Energy Storage Device (HESD)

As it has been discussed in the above sections, the development of some hybrid
nanostructured materials have shown promising results in various energy storage devices.
Beyond this, the performance of most of the devices is restricted either by their power
or energy capability for energy storage because of above mentioned limitations of the
employed electrode materials [142,143]. Therefore, a novel form of hybrid energy stor-
age device (HESD) using the benefits of both battery-type and capacitor-type electrode
materials has been reported at first in 1999 by Stepanov et al. [144]. This type of HESD
has a high energy density and power density compared to other types of energy storage
devices such as traditional batteries and capacitors [145]. As a result, the hybrid energy
storage device (HESD) that combines battery-type and capacitor-type electrode materials
is one of the most promising next-generation energy storage systems. The basic principle
behind the development of this kind of device is some characteristics of batteries and su-
percapacitors. Especially, batteries provide options with low power density (<1 kW kg−1),
high specific energy (30–200 Wh kg−1), shorter lifecycle, lower self-discharge capacity, and
lower prices. On the other hand, SCs present less specific energy (<20 Wh kg−1), high
specific power (~10 kW kg−1), quick charging, longer time periods (~100,000 times), and
high self-discharge capacity. Thus, the combination of batteries and SCs can serve to utilize
the complementary properties of each alternative. These HESDs are regarded as one of
the most promising energy storage systems for future applications because they inherit
the high-power density and long cycle life of supercapacitors and the high energy density
of the secondary battery [146]. It is crucial to obtain a perfect match between the positive
and negative electrodes since HESD has both battery-type and capacitance-type electrode
properties. If the two electrodes are well-matched, the overall performance of HESDs will
be enhanced. As shown in Figure 6a, a perfect match between the positive and negative
electrodes can result in improved energy density and power density, as well as a longer
cycle life.

HESDs can be mainly categorized into two types; (i) asymmetric supercapacitor (ASC),
and (ii) battery-supercapacitor (BSC). BSCs are systems in which one electrode stores
charge using a battery-type Faradaic process, while the other electrode stores charge using
a capacitive mechanism [147]. ASCs are systems with two separate capacitive electrodes.
The schematic diagrams for ASC and BSC are displayed in Figure 6b,c, respectively. Based
on the electrolytes used, BSCs can be further classified into lithium-ion BSCs (LIBSCs),
sodium-ion BSCs (NaIBSCs), acid BSCs (ADBSCs), alkaline BSCs (ALBSCs), and other
types. For instance, Li et al. developed a unique LIBSC that used activated carbon as the
anode electrode and a composite of LiMn2O4 and graphene (LMO-MSs@GNSs) as the
cathode electrode [148]. According to the electrochemical test results, the LMO-MSs@GNSs
composite LIBSC demonstrated an energy density of 38.8 Wh kg−1 at a power density of
12.6 W kg−1 with an organic electrolyte in the voltage range of 0–2.3 V. After 500 cycles,
the capacity was maintained at 90.4% at 2 C. One direction for the development of HESDs
is lead-acid batteries. The cycling performance of the electrode material was significantly
enhanced by the use of a graphite current collector in H2SO4 in a PbO2 film that was
supported by graphite. The completed device can be charged and discharged 3000 times at
10 C, yielding an energy density of 27 Wh kg−1 [149].
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According to the various energy storage mechanisms, battery-type materials can
be broadly classified as intercalation-type, conversion-type, and alloying-type materials.
The electrochemical redox reaction of H+, OH, Li+, and Na+ ions from their respective
nanocomposites, such as LiMn2O4, LiCoO2, LiFePO4, and LiTi2(PO4)3, is the energy storage
mechanism of the intercalation-type electrode. Activated carbon, carbon nanotubes, and
graphene are examples of porous carbon materials with a large specific surface area that
are typically used as double-layer electrode materials. Transition metal compounds, e.g.,
MnO2, RuO2, MXene, etc., conductive polymers, and heteroatom-doped carbon materials
are frequently used as pseudocapacitance materials. It is crucial to achieve a perfect match
between the positive and negative electrodes since the energy storage device combines
several charge storage techniques and has properties of both capacitance- and battery-type
electrodes. A well-matched HESD can lead to enhanced overall performance. The mass
matching method, widely adopted in battery research, is used to match the positive and
negative electrodes’ capacities at their respective current densities [151]. However, HESD
research is still in its early stages, there are certain obstacles as well as opportunities: due
to the charging transfer kinetics, the conductivity of pseudocapacitance and battery-type
electrode materials is relatively poor, limiting the rate performance. In addition, commonly-
used capacitance-type materials such as AC have a very low capacity, making electrode
fabrication and matching extremely challenging. Therefore, much work is still needed to
develop a HESD that combines high power and energy density.
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5. Conclusions and Future Perspective

There is a growing global demand for batteries that are lighter, smaller, more powerful,
and efficient, in order to meet the requirements of modern energy storage devices. For
instance, lithium-ion batteries are widely used for electronic devices, electric vehicles, and
portable electrical equipment. However, many components of battery cells need improve-
ment, leading to numerous options for research and development in the field of high-power
lithium-ion cell batteries. The performance of a battery or supercapacitor is significantly
influenced by its electrodes and electrolytes. Research has shown that nanostructured
hybrid materials are highly promising for fabricating high-performance supercapacitors
and batteries, as they can regulate morphologies, surface areas, and electronic properties
for energy storage. Therefore, the development of novel electrodes, including those that
are micro- and nanostructured, has shown potential to meet these expanding needs. Addi-
tionally, several synthesis techniques have been employed to increase their energy storage
capacity, including the manufacture of electrodes made from a variety of materials such
as conducting polymers, transition metal oxides, and carbon. Furthermore, modifying
carbonaceous materials structurally has been used as active electrodes in both batteries and
supercapacitors.

Supercapacitors are suitable for applications that require rapid charging and dis-
charging, high cyclic stability, high power delivery, and extended cycle life. Although
supercapacitors’ energy densities are substantially lower than those of the rechargeable
batteries that are now in use, it is anticipated that supercapacitor technology has a long
way to go before it can achieve battery-level energy densities to replace it.

Efficient energy storage systems have been the subject of recent studies. However, the
goal of developing high-capacity energy storage devices to meet the growing global energy
demands is still far from being achieved. (i) The literature suggests that reasonable alter-
ations in the geometry of electrode materials can enhance their electrochemical behaviors.
Therefore, a thorough understanding of the electrode-electrolyte interface is essential to
design new electrode materials and solid-solid or solid-liquid interfaces. (ii) Nanostruc-
tured materials with optimized electrochemical properties are more appropriate for use in
battery technologies. Therefore, very effective nanostructured hybrid substances need to
be advanced in the future to address imminent power storage issues, mechanical strength,
and outstanding conductivity, enabling future power storage functions in batteries and
SCs. (iii) The synthesized materials must be inexpensive, highly pure, and easy to produce,
and the synthesis process must be adaptable to an industrial setting. (iv) The degradation
of the electrode material with use is another crucial factor. To ascertain the electrodes’
usable specific capacity and cyclic resistance, a series of chronoamperometric experiment
is necessary to prevent mechanical deterioration of the electrode structure resulting from
changes in the electrode’s volume. (v) To advance further, it may be necessary to use green
electrolytes such as ionic liquid electrolytes, which have high electrical conductivity and a
large voltage window. (vi) As for increasing the efficiency of electrodes, more and more
new hybrid materials must be explored for the resolution of issues related to material
structure changes during electrochemical processes, to increase electrochemical efficiency,
and facilitate the use of these materials in more demanding energy applications.
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